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Abstract
The goal of this thesis is to investigate the dilepton anisotropy of the interaction πN→ πe−e+ with focus
on the impact of the t-channel. This work builds upon the results of Speranza, Zétényi, and Friman [1]
[2] who have already studied dilepton anisotropy for the abovementioned process in the resonant s-
and u-channels. We follow their approach and employ effective Lagrangians to extend their results for
the dominant nucleon resonances for intermediate π, ρ-meson and a1. We study the process for a CM
energy of

p
s = 1.49GeV and various dilepton masses, ranging from 100 MeV to 500 MeV.
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Zusammenfassung
Das Ziel dieser Masterarbeit ist es die Dileptonenanisotropie in der Teilcheninteraktion πN → πe−e+

zu untersuchen. Dabei liegt das Hauptaugenmerk auf dem Einfluss des t-Kanals. Diese Arbeit baut auf
den Ergebnissen von Speranza, Zétényi und Friman [1] [2] auf, die bereits Dileptonenanisotropie für
den oben genannten Prozess in den Resonanten s- und u-Kanälen untersucht haben. Wir folgen ihrer
Herangehensweise und benutzen effektive Lagrange-Dichten, um ihre Ergebnisse für die dominanten
Nukleonresonanzen zu erweitern. Dabei betrachten wir virtuelle π, ρ-Mesonen und die a1-Resonanz im
T-Kanal. Wir halten die Schwerpunktsenergie bei

p
s = 1.49GeV und betrachten verschiedene Dilepto-

nenmassen von 100 MeV to 500 MeV.
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1 Introduction
The theory of nuclear and particle physics helps us in understanding how our world and the universe
work. In order to find new information and test existing theories, one can study spin dependencies of
hadronic interactions, which allow us to deduce the underlying mechanisms. Hadronic interactions are
typically found in heavy ion collisions. However it is difficult to study the strongly interacting matter
directly because there are secondary reactions in the collision volume. Therefor electromagnetic probes
such as photons and dileptons can be used [3] since they do not interact strongly and hence their mean
free path is expected to be larger than the transverse size of the collision volume. A dilepton pair can be
created by the decay of a virtual photon, which according to quantum field theory is a photon with non
vanishing rest mass that can briefly exist before decaying into an electron positron pair under the rules of
quantum electrodynamics. The leptons then carry on the polarisation information of the decayed photon.
This can be revealed by studying the angular distribution of the dilepton pair, which is for example done
in the High Acceptance Di-Electron Spectrometer HADES [4]. Not only photons can be virtual. Particles
in a collision can join an intermediate state, which in case of πN-collision can be a nucleon resonance or
a ∆-baryon. The incoming particle can also interact by exchanging an intermediate particle. All virtual
particles have in common that they, as opposed to their real counterparts, can not be observed. However,
of course they still contribute to the overall process and as such their share is also reflected in the photon
and dilepton polarisation. This allows us to get valuable insight in the role of different particles and the
overall interaction of hadronic matter.
A lot of work has been dedicated to investigate the emergence of dilepton pairs such as [4] [5] [6]. For
the interpretation of the results, a good understanding of the reactions is required. Speranza, Zétényi,
and Friman [1] [2] investigated the angular anisotropy of πN → Ne+e−theoretically with focus on the
s- and u-channel of the interaction. This allows to draw conclusions about the intermediate nucleon
resonances, that only contribute in these two channels. By implementing various resonances around the
HADEScenter of mass energy

p
s = 1.49GeV they were able to identify the two dominant resonances

N(1440) and N(1535). To study the anisotropy they came up with the novel concept of anisotropy
coefficients which reflect the polarisation state of the virtual photon [2]. Despite the first successes
of this model, it is still incomplete because it lacks the t-channel contributions. It is the goal of this
thesis to give a more complete picture. We follow the approach of Speranza and aim to calculate the
anisotropy coefficients including the t-channel with intermediate π, ρ-mesons and a1-resonances in the
overall process.
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2 The process πN→ Ne+e−

N

π

N

e−

e+

γ

Figure 2.1.: The process Nπ → Ne+e−. Here and in all other Feynman diagrams the direction of time is
right to left.

In this thesis we investigate the interaction Nπ → Ne+e−, as depicted in Figure 2.1. This chapter is
ultimately designed to derive the anisotropy coefficients. However we first have to take a closer look at
the underlying processes. We will follow the idea of Speranza [2] and treat the process as a special case
of a more general version, where we have an initial state that produces a spin-1 particle V and another
particle P. The spin-1 particle then decays into two fermions F1 and F2, so we have the total process

initial state→ V + P → P + F1 + F2. (2.1)

If we make the assumption, that V and P do not interact with one another once produced, we can split
the process into two parts, namely the production mechanism which produces V and P and is described
by the matrix element M prod(λ); and the decay mechanism following described by M decay(λ). Thus,
this chapter is constructed as follows: We start with briefly revisiting quantum field theory in order to
derive the decay matrix element for which we also discuss the polarisation vectors of spin-1 particles.
Afterwards we will introduce the anisotropy coefficients which are the central element of this thesis. To
calculate them we will then discuss Rarita-Schwinger fields, isospin, the vector meson dominance model
and the interactions between all concerned particles in order to finally compute the production matrix
element.

2.1 Relativistic QFT I: Klein-Gordon-, Dirac- and Proca-Field

γ∗

e+

e−

Figure 2.2.: The decay process γ∗→ e−e+, for a e± with corresponding four momentum p± and spin s±.
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In our case, we have the decay γ∗ → e+e−, as shown in Figure 2.2. In order to write down the
matrix element, we will briefly revisit the underlying relativistic quantum field theories, based on Peskin
and Schroeder [7] and Greiner and Reinhardt [8]. We start with the free Klein-Gordon field φ, which
describes a (pseudo-) scalar i.e. spin-0 particle with mass mφ. Its Lagrangian (of course in natural units
ħh= c = 1) is given by

Lφ =
1
2

�

(∂µφ)(∂
µφ)−m2

φφ
2
�

. (2.2)

For less confusion with indices, we colour Lorentz indices purple. The propagator of such a field is simply
given by

Pφ(p) =
i

p2 −m2
φ
+ iε

. (2.3)

Here and throughout the thesis we use the letter p to denote the four-momentum of a particle, ε is a real
infinitesimal to avoid the singularity at p2 = m2. The Klein-Gordon field describes e.g. the pion, which
we will introduce later on. However, the Klein-Gordon Lagrangian is helpful on our way to higher spin
fields, such as the Dirac equation, which looks similar but is in first order. Its Lagrangian is given by

Lψ =ψ( /∂ −mψ)ψ, (2.4)

where m is to be understood as a diagonal 4× 4 matrix, /∂ = γµ∂µ is a convenient shorthand notation,

ψ=ψ†γ0 and the anticommutator

{γµ,γν}= 2ηµν14 (2.5)

gives a relation for the gamma matrices with the metric tensor ηµν = diag(1,−1,−1,−1)µν. We will also
introduce another gamma matrix, which is the product of the four aforementioned ones and anticom-
mutes with them:

γ5 = iγ0γ1γ2γ3 {γ5,γµ}= 0, (2.6)

In Feynman diagrams incoming Dirac particles with spin s and mass m contribute with their spinor u(p, s)
(v (p, s) for antiparticles) and outgoing particles with the conjugated spinors u(p, s), v(p, s) respectively.
They obey the completeness relations

∑

s

u(p, s)u(p, s) = /p+m
∑

s

v (p, s)v(p, s) = /p−m. (2.7)

Multiplying the Klein-Gordon propagator Equation (2.3) with the completeness relation Equation (2.7)
yields the Dirac propagator [9]

Pψ(p) =
i
�

/p+mψ

�

p2 −m2
ψ
+ iε

. (2.8)

Let us now consider a generic expression often found in the calculation of the invariant amplitude with
arbitrary matrices Ξµν[10]:

|M |2∝
�

u(p f )αΞ
αβu(pi)β
� �

u(p f )µΞ
µνu(pi)ν
�†

. (2.9)

Note that we can write the Hermitian conjugate instead of the complex conjugate, since the expression
in the square brackets is a scalar. Summing over the spins we can use the completeness relation, thus
giving

∑

s,s′
|M |2∝
∑

s,s′

�

us
α(p f )Ξ

αβus′
β (pi)
��

us′

µ(pi)Ξ
µν

us
ν(p f )
�

= Ξαβ
�

/pi +mi

�

βµ
Ξ
µν
�

/p f +m f

�

να

= Tr
¦

Ξ
�

/pi +mi

�

Ξ
�

/p f +m f

�©

,

(2.10)
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with Ξ= γ0Ξ†γ0. This allows us to drastically simplify the calculations as there are no spinors left. Now
we only need to describe the photon field to be able to describe the decay process. The well known
electromagnetic field is governed by the Lagrangian

LEM = −
1
4
FµνFµν, (2.11)

where

Fµν = ∂ [µAν] = ∂ µAν − ∂ νAµ (2.12)

is the electromagnetic field strength tensor and Aµ is the four-vector potential. It describes all massless
spin-1 ((pseudo-) vector) particles. Adding a mass term leads to the Proca field Bµ, which describes for
example the ρ

LB = −
1
4
GµνGµν +

1
2

m2
BBµBµ, (2.13)

where Gµν = ∂ [µBν]. Finally all we need is to describe the interaction between the photon gauge field
and the Dirac field, which we get by replacing the partial derivative in Equation (2.4) with the covariant
gauge derivative

∂µ→Dµ = ∂µ + ieAµ, (2.14)

where e is the coupling constant for the electromagnetic field. This leads to the interaction term

Lγee = ieψeγ
µAµψe. (2.15)

2.2 Polarisation Vectors

The spin-1 fields contribute with their polarisation vector εµ(p,λ) for incoming and ε∗µ(p,λ) for outgoing
particles. Here λ is the helicity of particle, which is the projection of its spin on the direction of motion.
This formalism allows for a relativistic treatment of angular momentum and spin, which are both defined
in different frames of reference. The helicity however is invariant under rotations and boosts that don’t
"overtake" the particle. We therefore use the helicity to parametrise a basis of eigenstates. For a massive
spin-1 particle, its helicity can assign one of the three eigenvalues λ ∈ {−1,0, 1}. An eigenvalue of
−1 corresponds to a left-handed circularly polarised state, +1 for the right-handed one and λ = 0 for
a longitudinal polarised state. However, in the four-vector formalism there are four components, thus
the field has an additional, unphysical degree of freedom (DoF). We can eliminate this extra degree by
imposing the Lorenz condition, i.e. ∂µε

µ = 0. The polarisation vectors are normalised

εµ(p,λ)ε∗µ(p,λ′) = −δλλ′ , (2.16)

and transversal to p

εµ(p,λ)pµ = 0. (2.17)

The completeness relation for the polarisation vectors is given by

∑

λ=±1,0

εµ(p,λ)ε∗ν(p,λ) = −ηµν +
pµpν

p2
. (2.18)

Hence, the propagator for a massive particle is given by

PµνB(p) =
−i
�

ηµν − pµpν

p2

�

p2 −m2
B + iε

. (2.19)
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The massless propagator takes a more complicated form. However, in our case, we take note, that the
vertices will be orthogonal to the momenta, thus Equation (2.19) simplifies to

PµνB(p) =
−iηµν

p2 −m2
B + iε

, (2.20)

which in the massless case becomes

PµνA(p) =
−iηµν

p2 + iε
. (2.21)

For a more rigorous version that of course will conclude the same result, see for example [needed].

2.3 Decay Matrix

z

z′

ϑγ∗

Nπ

ρ

N

Figure 2.3.: Kinematics of the πN→ ρN reaction in the CM frame

Now, we can write down the decay matrix element for Figure 2.2 as

M decay(λ) = ieLµεµ(λ), (2.22)

with

Lµ = ieu(p−, s−)γµv(p+, s+). (2.23)

Squaring this yields

M decayM decay∗ = −e2Lµεµ(λ)ε
∗
ν(λ)L

∗ν. (2.24)

We now define the lepton tensor as the sum of the leptonic interaction over the electron spins

Lµν =
∑

s+s−
LµL∗ν, (2.25)

and the spin density matrix for the decay

ρ
decay
λλ′ = ε

∗
µ(λ)L

µνεν(λ
′). (2.26)

By using the completeness relation Equation (2.7) and employing Casimir’s Trick Equation (2.10), we
can express the spin sum over the squared matrix element as a trace over the gamma matrices which
after another short calculation yields

∑

s+s−

�

�M decay
�

�

2
= 4e2
�

p+µ p−ν + p+ν p−µ − (p
+ · p−)ηµν
�

, (2.27)
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where we used the ultrarelativistic limit m � q. Since the actual photon in the process is virtual, we
choose the rest frame of the photon as our frame of reference. Using spherical coordinates the momenta
of the leptons are given by

p± = q







1
± sinϑ cosϕ
± sinϑ sinϕ
± cosϑ






, (2.28)

where the angles are measured between the quantisation axis of the photon and the three momentum
direction of the leptons; and q is the modulus of the three-momentum. We choose the spin quantisa-
tion axis to canonically coincide with the z′-axis as seen in Figure 2.3. The polarisation vectors from
Section 2.2 then take the explicit form

εµ(p,−1) =
1
p

2
(0,1,−i, 0)µ,

εµ(p,+1) =
−1
p

2
(0,1, i, 0)µ,

εµ(p, 0) = (0,0, 0,1)µ,

(2.29)

where the axes were defined before boosting to the rest frame. This allows us to explicitly calculate the
decay matrix, for which the indices of the rows and columns range over the helicity from −1 to +1

ρ
decay
λ′λ =

1
2





L11 + L22

p
2(L13 + iL23) −L11 − 2iL21 + L22p

2(L13 − iL23) 2L33 −
p

2(L13 + iL23)
−L11 + 2iL21 + L22 −

p
2(L13 − iL23) L11 + L22





λ′λ

. (2.30)

We see, that by definition, this matrix is hermitian i.e. ρdecay = ρdecay†
. Plugging in the lepton tensor, we

find:

ρ
decay
λ′λ = 4q2





1+ cos2 ϑ − 2p
2
eiϕ sin2ϑ e2iϕ sin2 ϑ

−
p

2
2 e−iϕ sin2ϑ 2(1− cos2 ϑ) 2p

2
eiϕ sin2ϑ

e−2iϕ sin2 ϑ 2p
2
e−iϕ sin2ϑ 1+ cos2ϑ





λ′λ

. (2.31)

2.4 Anisotropy Coefficients

We now proceed analogously to the decay matrix for the production matrix

M prod = ε∗µH
µ. (2.32)

We are not concerned with the explicit form of Hµ at this point. This will be discussed in the following
sections. Similiarly to Equation (2.25) and Equation (2.26) we define

Hµν =
∑

spins

HµH∗ν

ρ
decay
λλ′ = ε

∗
µ(λ)H

µνεν(λ
′).

(2.33)

The total matrix element is given by

M =
∑

λ

M decay(λ)M prod(λ). (2.34)

11



Plugging in the individual amplitudes, squaring and summing gives

∑

spins

|M |2 =
∑

spins

∑

λ,λ′

Lµε(λ)µε
∗
ν(λ)H

νH∗ν
′
εν′(λ

′)ε∗(λ′)µ′L
∗µ′ . (2.35)

With Equation (2.26) and Equation (2.33) we get

∑

spins

|M |2 =
∑

λ,λ′

ρ
decay
λ′λ ρ

prod
λλ′ . (2.36)

With Equation (2.36) we can give a relation for |M |2 which only depends on the elements of the produc-
tion spin density matrix

|M |2∝ (1+ cos2 ϑ)(ρprod
−1,−1 +ρ

prod
+1,+1) + 2(1− cos2 ϑ)ρprod

0,0

+
p

2
2

sin2ϑ
�

e−iϕ
�

ρ
prod
0,+1 −ρ

prod
−1,0

�

+ eiϕ
�

ρ
prod
0,1 −ρ

prod
−1,0

�∗�

+ sin2 ϑ(e−2iϕρprod + e2iϕρ
prod
−1,+1

∗
).

(2.37)

We can now introduce the anisotropy coefficients λ, which restructure Equation (2.37)

|M |2∝N
�

1+λϑ cos2 ϑ+λϕ sin2 ϑ cos2ϕ +λϑϕ sin2ϑ cosϕ

+ λ⊥ϕ sin2 ϑ sin2ϕ +λ⊥ϕλϑϕ sin2ϑ sinϕ
�

.
(2.38)

The coefficients are

λϑ =
1
N

�

ρ
prod
−1,−1 +ρ

prod
+1,+1 − 2ρprod

0,0

�

, (2.39)

λϕ = 2
1
N

Re
�

ρ
prod
−1,+1

�

, (2.40)

λϑϕ =
p

2
N

Re
�

ρ
prod
0,+1 −ρ

prod
−1,0

�

, (2.41)

λ⊥ϕ =
2
N

Im
�

ρ
prod
−1,+1

�

, (2.42)

λ⊥ϑϕ =
p

2
N

Im
�

ρ
prod
0,+1 −ρ

prod
−1,0

�

, (2.43)

with the normalisation constant

N = ρprod
−1,−1 +ρ

prod
+1,+1 + 2ρprod

0,0 . (2.44)

As Speranza[2] has noted, λ⊥ϕ and λ⊥
ϑϕ

violate reflection symmetry but not parity. Note that the differ-
ential cross section

∂ σ

∂Ω
∝
∑

|M |2 . (2.45)

Integrating Equation (2.38) over ϕ leaves us with

2π
∫

0

∑

spins

|M |2 dϕ∝ 2πN
�

1+λϑ cos2 ϑ
�

. (2.46)
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We find that the ϕ terms do not contribute to the total cross section. Introducing the transverse polarisa-
tion of the intermediate particle Σ⊥ = ρ

prod
−1,−1 +ρ

prod
+1,1 and the parallel one Σ‖ = 2ρprod

0,0 , Equation (2.46)
takes the form

2π
∫

0

∑

spins

|M |2 dϕ∝ 2πN
�

Σ⊥(1+ cos2 ϑ) +Σ‖(1− cos2 ϑ)
�

. (2.47)

Comparing Equation (2.46) with Equation (2.47) we get

λϑ =
Σ⊥ −Σ‖
Σ⊥ +Σ‖

. (2.48)

Note that this only holds true for massless particles, which we assume for the dilepton pair since me� q.
The interpretation of the anisotropy now becomes clear, as λϑ = −1 for a completely parallel polarised
particle Σ⊥ = 0. Likewise λϑ = +1 for a completely transversally polarised particle Σ‖ = 0. Finally we
want to point out, that the anisotropy coefficient is not frame independent. We formulated 2.38 in the
rest frame of the virtual photon, where we chose a quantisation axis. However, the choice is arbitrary.
We choose the helicity frame, whose quantisation axis coincides with the direction of momentum of the
photon. Note that by switching to another frame, the other anisotropy coefficients do not necessarily
vanish.

2.5 Isospin

We now come to the more complex part, in which the photon is produced. Not every combination of
incoming pions and nucleons is allowed, since isospin needs to be conserved in strong interactions. The
fact that the strong force acts equally on a proton and a neutron and both particles’ nearly identical
mass allow us to introduce isospin as an additional symmetry and regard them as different states of one
particle - the nucleon. The nucleon is a composite particle that consists of a combination of three up
and down quarks in total. Canonically we choose the quantisation axis along the z-axis and assign the
up-quark an isospin of Iz = +1/2 and consequently the down-quark an isospin of Iz = −1/2. From there
follows the isospin for the nucleon doublet

|p〉= |I = 1/2, Iz = +1/2〉=
�

1
0

�

|n〉= |I = 1/2, Iz = −1/2〉=
�

0
1

�

.
(2.49)

Isospin can be described by SU(2) symmetry, whose generators are given by the Pauli matrices

τ1 =
�

0 1
1 0

�

τ2 =
�

0 i

−i 0

�

τ3 =
�

1 0
0 −1

�

. (2.50)

To look at mesons which consists of two isospin-1/2 particles we have to look at the direct product of
the SU(2) representation. We find that 2⊗ 2 = 3⊕ 1, which means we have a triplet and a singlet state.
The basis states of the triplet are simply given by

π1 =





1
0
0



 , π2 =





0
1
0



 , π3 =





0
0
1



 , (2.51)

and are often grouped as a vector π = (π1 π2 π3)T. From here on we will refer to isospin indices in
green colour for clarity. These basis states form the three pions which consist of two charged ones, which
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are all eigenstates for rotations around the z-axis. (The isospin quantisation axis was chosen to coincide
with the z-axis). Thus,

π± =
1
p

2
(π1 ∓ iπ2), π0 = π3. (2.52)

Likewise, expressing the isospin components in terms of the physical fields yields

π1 =
1
p

2
(π+ +π−)

π2 =
1

i
p

2
(π+ −π−).

(2.53)

For particles like the ∆-baryon with isospin 3/2, this formalism has yet to be extended. Following
2⊗ 2⊗ 2 = 4⊕ 2⊕ 2 we identify the ∆-baryon as the quadruplet. Its isospin basis states are clearly of
dimension 1×4, thus we need special transition matrices to couple a∆-baryon to an isospin 1/2 particle
like the nucleon. This transition matrices were derived in [11] and are given by

T1 =











−
q

1
2 0

0 −
q

1
6

q

1
6 0

0
q

1
2











T2 =











i
q

1
2 0

0 i
q

1
6

i
q

1
6 0

0 i
q

1
2











T3 =









0 0
q

2
3 0

0
q

2
3

0 0









(2.54)

2.6 Vector Meson Dominance

To couple the leptonic with the hadronic part of the process, we must focus on the electromagnetic
interaction of hadrons. Early measurements have shown, that the interaction between photons and
hadrons is more intense than what a direct interaction would predict. Vector Meson Dominance (VMD)
is the most commonly used model to account for the difference [2]. Sakurai was the first to propose
the idea that photons couple to hadrons through the exchange of vector mesons (VMD1) [12, 13]. This
idea was later refined by Kroll, Lee, and Zumino [14] in order to make it gauge invariant. Following the
convention of Bjorken and Drell [15], the Lagrangian describing ρ-mesons and pions is given by

L = −
1
4
ρµνρ

µν +
1
2

m2
ρρµρ

µ +
1
2

Dµπ · Dµπ−
1
2

m2
ππ ·π, (2.55)

where ρ and π are the isovector fields of the respective mesons and mρ/π are their respective masses.
Also

Dµπ= ∂µπ− gρππρµ ×π (2.56)

is the covariant derivative which gives rise to the interaction term. As we are only concerned with
the neutral ρ-meson, only the third component of the ρ-field contributes to the interaction. Plugging
Equation (2.56) into Equation (2.55), we find the pion kinetic term and its interaction with ρ-mesons
plus a four point interaction quadratic in g

L =
1
2

Dµπ · Dµπ=
1
2
(∂µπ)(∂

µπ) + g(∂ µπ) · (ρµ ×π) +
g2

2
(ρµ ×π)(ρµ ×π). (2.57)

The middle term is the desired interaction Lagrangian. We permute the parallelepipedial product cycli-
cally and rewrite the vector product so we find its dependence on the isospin components of the respec-
tive fields

Lρππ = gεabcπ
a(∂ µπb)ρµ

c . (2.58)
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γ

h1

h2

= γ

h1

h2

+ ρ γ

h2

h1

Figure 2.4.: The interaction between the photon and two generic hadrons according to the VMD2.

To find the interaction between the physical fields, we use Equation (2.53). Since we are only concerned
with the neutral ρ meson we let c = 3 because ρ0 = ρ3. We then find

Lint = gρππ
�

π1(∂ µπ2)−π2(∂ µπ1)
�

ρ3
µ

=
−igρππ

2

�

(π+ +π−)∂ µ(π+ −π−)− (π+ −π−)∂ µ(π+ +π−)
�

ρ0
µ

= −igρππ
�

π−(∂ µπ+)−π+(∂ µπ−)
�

ρ0
µ

= −gρππJµπρ
0
µ,

(2.59)

where Jπ is the pion current. Note that the ρ-meson must not decay into two neutral pions, which is
taken care of by the vector product. The first idea of Sakurai assumed, that the hadronic electromagnetic
current operator is proportional to the vector meson field, resulting in the interaction Lagrangian

L 1
ργ = −

em2
ρ

gρ
ρ0
µAµ. (2.60)

But this Lagrangian is not gauge invariant, thus we cannot add it to Equation (2.55). Instead, we will
use the Lagrangian proposed by Kroll et al., which, by construction, is gauge invariant:

L 2
ργ = −

e
2gρ

Fµνρ0
µν. (2.61)

However, by rewriting it in momentum space and using Equation (2.17)

L 2
ργ = −

e
gρ

p2Aµρµ, (2.62)

we find that the interaction vanishes for p2 = 0, e.g. real photons. Therefore, another term for di-
rect photon coupling is needed in this version of VMD (see Figure 2.4). This leaves us with the total
Lagrangians

L 1 = −e
m2
ρ

gρ
ρ0
µAµ − gρππρ

0
µJµ

L 2 =
e

2gρ
Fµνρ0

µν − eJµAµ − gρππρ
0
µJµ.

(2.63)

Using these we can now calculate the pion form factor, by regarding the transition γ → π+π−. The
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matrix elements are given by

M 1
γ→ππ = gρππ(pπ+ − pπ−)

µ
ηµν

p2
ρ −m2

ρ

em2
ρ

gρ
ηνξεγ,ξ

= −e(pπ+ − pπ−)
µεγ,µF1

π(p
2
ρ)

M 2
γ→ππ = e(pπ+ − pπ−)

µ

�

−εγ,µ + gρππ
ηµν

p2
ρ −m2

ρ

em2
ρ

gρ
ηνξεγ,ξ

�

= −e(pπ+ − pπ−)
µεγ,µF2

π(p
2
ρ)

(2.64)

From there we can read off the pion form factor, which gives the deviation from a point-like interaction:

F1
π(p

2
π) = −

m2
ρ

p2
ρ −m2

ρ

gρππ
gρ

F2
π(p

2
π) = 1−

p2
ρ

p2
ρ −m2

ρ

gρππ
gρ

(2.65)

For zero momentum transfer the pion "sees" the interaction as point-like, therefore Fπ(0) = 1. In VMD2
this is immediately apparent, while in VMD1 we have to demand gρππ = gρ, which leads to the argument
of universal couplings, i.e. the coupling of the ρ-meson is the same with all particles. In this thesis we
will use VMD2 to describe the coupling between hadrons and photons. This allows us to have more
control over the coupling constants, because we can fix them independently (for photon and ρ-meson
coupling).

2.7 Relativistic QFT II: Rarita-Schwinger-Field and Consistent Cou-

plings

This section is based on the work of Pascalutsa [16] [17]. Higher spin fields need additional degrees of
freedom compared to the Dirac field. We therefor introduce the Rarita-Schwinger equation for a spin-3/2
particle with mass m (note that also a general version for spin-n/2 particles exists)

L =ψµΛ
µνψν, (2.66)

where
Λµν = iγµνα∂α −mγµν

γµν =
1
2
[γµ,γν]

γµνα =
1
2
{γµν,γα}.

(2.67)

The corresponding field equations are given by

Λµνψν = 0= γµΛ
µνψν = ∂µΛ

µνψν. (2.68)

A Rarita-Schwinger vector-spinor ψµ has 16 components, but only needs (2s+1) = 4 to describe its spin
states. It can be concluded, that the remaining components contribute to the lower spin background.
For free particles this is attuned with the constraints in Equation (2.68), which eliminate the unphysical
DoF. However, in the interaction case we may have non-trivial couplings which make the treatment of
the lower spin background more complex. This can lead to a difference in the number of DoF for the free
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and interacting particle and as such make the theory inconsistent. The kinetic term is invariant under
the gauge transformation

ψµ→ψµ + ∂µε (2.69)

up to a total derivative, with ε being a spinor. We now consider a linear coupling of the form

Lint = gψµ jµ + h.c., (2.70)

where g is a coupling constant and jµ is a current that may depend on other fields than ψ. To be
consistent with the free theory i.e. invariant under Equation (2.69), jµ has to be divergenceless i.e.
∂µ jµ = 0. Thus any interaction with a non conserved current violates DoF counting. Pascalutsa has
shown that a redefinition of the Rarita-Schwinger field can make any inconsistent interaction consistent.
For a detailed derivation see [16] [17]. We can guarantee a consistent interaction by replacingψµ→ Ψµ,
with

Ψµ = iγν∂[µψν]. (2.71)

The general propagator for a 3/2-spin particle is given by

PµνΨ (p) =
iPµν

p2 −m2
, (2.72)

where

Pµν(p) = −(/p+m)

�

ηµν −
γµγν

3
−

2pµpν

3m2
+

p[µγν]

3m

�

, (2.73)

which in our case simplifies to

Pµν(p) = −(/p+m)
�

ηµν −
γµγnu

3

�

. (2.74)

2.8 Propagator Dressing

The propagators we have given are all for free, non interacting particles. However, in our case, the
intermediate particles can interact and therefore we have to consider these deviations from the free
(bare) propagator. By dressing the propagator, we take various processes into account (see for example
Figure 2.5). For the ρ we will simply use its decay width

Pρ(p)∝
1

p2 −m2
ρ + iΓ 2

ρ

. (2.75)

For the nucleon resonance we use the parametrization of the width as in [18]

PR(p)∝
1

p2 −m2
R +
p

p2ΓR(p2)
, (2.76)

where

ΓR(p
2) = Γ (m2

R)
mR
p

p2

�

q
qR

�2l+1
�

q2
R+δ

2)

q2 +δ2

�l+1

. (2.77)

The angular momentum of the pion is given by l, q denotes the incoming momentum of the pion for
the off-shell resonance while qR is the same quantity for an on-shell resonance. The cutoff parameter is
given by

δ2 = (mR−mN −mπ)
2 +
Γ 2(m2

R)

4
(2.78)

We will not dress the virtual photon, as we expect the QED correction to be fairly small.
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= + + . . .

Figure 2.5.: Scheme for propagator dressing. The dressed propagator is the sum of the bare propagator
and self interacting terms.

π

NN
R

γ

s-channel

NN

π

γ

t-channel

NN

π

γ

u-channel

Figure 2.6.: Possible processes for πN→ Nγ. N denotes the outgoing nucleon.

2.9 Interactions

The hadronic part can be divided in three channels s, t and u, distinguished by the momentum transport.
For the process π,N→ γ, N, where N denotes the outgoing nucleon, these are shown in Figure 2.6 and
given by

s = (pπ + pN)
2 = (pN + pγ)

2

t = (pπ − pγ)
2 = (pN − pN)

2

u = (pπ − pN)
2 = (pγ − pN)

2.

(2.79)

We find the same type of interactions for the s- and u- channel, where we will only focus on resonant
contributions, not considering the Born terms. The interaction Lagrangians are taken from Zétényi and
Wolf [18] and were derived in an effective field theory approach. The derivation of the corresponding
Feynman rules is shown in Appendix A. Here and thereafter Γ = γ5 for resonances with J P ∈ {1/2+, 3/2−}
and Γ = 1 otherwise, and Γ̃ = γ5Γ . We find the following interactions for the γNR, ρNR and πNR
vertices:

LρNR1/2
=

gρNR

2mρ

ψRτσ
µνΓ̃ ΨN ·ρµν + h.c., (2.80)

LρNR3/2
= −i

gρNR

mρ

ψ
µ

RT γνΓ̃ψN ·ρµν + h.c., (2.81)

LγNR1/2
=

gρNR

2mρ

ψRσ
µνΓ̃ ΨNFµν + h.c., (2.82)

LγNR3/2
= −i

gρNR

mρ

ψ
µ

Rγ
νΓ̃ψNFµν + h.c., (2.83)

LπNR1/2
= −

gπNR

mπ

ψRΓγ
µτψN · ∂µπ+ h.c., (2.84)

LπNR3/2
=

gπNR

mπ

ψ
µ

RΓT ψN · ∂µπ+ h.c.. (2.85)
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Here pseudo-vector (Γγµ) couplings are employed in the case of spin-1/2 resonances. T = τ for R= N∗

and T = T for R = ∆. The isospin structure accounts for all possible processes of Nπ → Nρ0, which
easily can be seen. Let’s consider the processes

1) nπ0→ n∗→ nρ0

2) nπ0→ n∗→ pρ0.

Clearly the second process is forbidden for charge and isospin conservation reasons. Plugging in the
isospin indices into Equation (2.80) and Equation (2.84) we find

M 1∝ τ3
22τ

3
22 = (−1)2 (2.86)

M 2∝ τ3
22τ

3
21 = 0, (2.87)

thus the second process is indeed forbidden by the interaction Lagrangians. When deriving the Feynman
rules one has to consider the spin consistency transformation Equation (2.71) for the higher spin-case.
The following interactions are found in the t-channel [18]:

LπNN = −
gπNN

mπ

ψNγ
5γµτψN · ∂µπ (2.88)

LρNN =
gρ
2
ψN

�

/ρ − κρ
σµν

4mNρµν

�

·τψN (2.89)

La1NN = ga1NNψNγ
µγ5τψNa1µ (2.90)

Lππρ = −gππρ[(∂
µπ)×π]ρµ (2.91)

Lππγ = −eAµJµπ (2.92)

Lρπγ = e
gπργ
4mπ

εµναβF
µνραβ ·π (2.93)

La1πγ
= −ie

ga1πγ

mπ

a1µF
µν · ∂νπ (2.94)

(2.95)

The coupling constants can be computed from the corresponding decay widths. This will be done in
Section 3.2.
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3 Calculations
3.1 Kinematics

z

z′

ϑγ∗

Nπ

ρ

N

Figure 3.1.: Kinematics of the πN→ ρN reaction in the CM frame

We use the same kinematics as seen in Figure 2.3 which we show again in Figure 3.1 for convenience.
The direction of incoming momentum was chosen along the z-axis. We use p for the four-momenta and
q for the modulus of the three-momenta.

pπ =









q

m2
π + q2

in
0
0

qin









, pN =









q

m2
N + q2

in
0
0
−qin









. (3.1)

The calculation of the incoming momentum is straightforward. We use that s = (pπ + pN)2. Thus the
CM-energy is simply given by

p
s. Now

qin =

q

λ(s, m2
π, m2

N)

2
p

s
, (3.2)

where λ(x , y, z) = x2 + y2 + z2 − 2(x y + yz + zx) is the Källén function.
We choose the production plane to be at ϕ = 0, which results in the following outgoing momenta

pρ =









q

m2
inv + q2

out

0
qout sinϑγ∗
qout cosϑγ∗









, pN =









Æ

m2
N + q2

out
0

−qout sinϑγ∗
−qout cosϑγ∗









. (3.3)

Here, minv denotes the invariant mass of the lepton pair and N the outgoing nucleon. Likewise

qout =

q

λ(s, m2
inv, m2

N)

2
p

s
. (3.4)

The polarisation tensor of the photon has been regarded in its rest frame. It decays into the lepton pair,
whose momenta have to be transformed from its very CM-system to the CM-system of the incoming pion
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and nucleon. We first boost along the z′ axis with momentum qout, and then inversely rotate around the
scattering angle ϑγ∗ . A boost along the z-axis can be represented by the matrix

Bµν(q, m) =







γ(q, m) 0 0 γ(q, m)β(q, m)
0 1 0 0
0 0 1 0

γ(q, m)β(q, m) 0 0 γ(q, m)







µν

, (3.5)

with γ(q, m) =
Æ

q2+m2

m and β(q, m) = q
m . To align the z′-axis with the z-axis, we have to rotate around

the y-axis. Such a rotation is represented by

R µν(α) =







1 0 0 0
0 cosα 0 sinα
0 0 1 0
0 − sinα 0 cosα







µν

. (3.6)

Thus, we find the transformation for the polarisation vectors from the photon rest frame to the πN CM
frame to be

ε′µ(λ) = R µν(−ϑγ∗)Bνξ(qout, minv)ε
ξ(λ). (3.7)

3.2 Coupling Constants

q, M

q1, m1

q2, m2

Figure 3.2.: Two particle decay kinematics as used in [19]

The total decay width for a two particle decay is given by

Γ =
1

32π2

q1

M2

∫

dΩ |M |2 , (3.8)

where q =
Ç

λ(M2,m2
1,m2

2)
2M and dΩ = dϕ1dcosϑ1. The kinematics are shown in Figure 3.2. This allows us

to fix the various coupling constants from the interaction Lagrangians. The necessary data is shown in
Table 3.1 and was accumulated from “Review of Particle Physics” (2018) [19]. The value for the decay
width was calculated from the total decay width value times the average of the lower and upper value
for the branching ratio of the respective decay channel. For the decay ratio of a nucleon resonance into
a ρ-meson, we followed the assumptions of [2] and taken his values as were the values for the 3/2
resonances. The branching ratios N → γp and N → γn have been added together and treated as the
decay N→ γN. The value of the a1 resonance width was taken from “Review of Particle Physics” (2014,
updated 2015) [20].
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particle X J P mass Γ (X → ππ) gXππ Γ (X → ρπ) gXρπ Γ (X → γπ) gXγπ

N 1/2− 938.27 - - - - - -
π 0− 138.04 - - - - - -
ρ 1− 775.26 149.1 5.998 - - 0.067 0.058
a1 1+ 1230 n/a - - - 0.64 0.083

particle X J P mass Γ (X → πN) gXπN Γ (X → ρN) gXπN Γ (X → γN) gXγp

N(1440) 1/2+ 1440 227.5 0.329 40 - 0.0578 -
N(1520) 3/2− 1515 66 0.148 22 17.166 0.242 -
N(1535) 1/2− 1530 63 0.134 3 1.480 0.293 -
∆(1600) 3/2+ 1570 40 0.045 31.25 44.4 0.045 -

Table 3.1.: Masses and decay widths for numerous particles in units of MeV. The coupling constants are
dimensionless.

3.3 Invariant Amplitudes

To write down the invariant matrix element we start from the outgoing fermion line and trace it back
to the incoming one. We acquire a factor for each vertex V , internal lines represent the propagators,
denoted by P . From Fig. 2.6 we see, that the amplitudes are given by

M prod
S (λ) = u f ε

∗
µ(λ)
�

VRNγPRVNπR

�µ
ui

M prod
T (λ) = u f

�

VNMNPM VMπγ

�µ
ε∗µ(λ)ui

M prod
U (λ) = u f

�

VNπRPRVRNγ

�µ
ε∗µ(λ)ui,

(3.9)

where f and i denote the final and initial fermion respectively and M ∈ {π,ρ, a1}. Implementing the
VMD model, we aquire an extra factor FVMD(p2) for the ργ vertex and the dressed ρ propagator from
Equation (2.62) and Equation (2.75)

FVMD(p
2) = −

ep2

gργ(p2)−m2
ρ + i
p

p2Γρ
. (3.10)

Comparing the Lagrangians for the interactions with a ρ and a γ we find a very similar structure, which
makes sense, since both are J P = 1− particles. Of course, the ρµν has been substituted by Fµν. Fur-
thermore, since the electromagnetic force violates isospin (only I , not Iz), there is no isospin structure
in its Lagrangian. So a proton can not become a neutron or vice versa by emitting a photon, since
ψpψn = ψnψp = 0. Since both Fµν and ρµν only contribute with their four-momentum, which for mo-
mentum conservation reasons is equal, and only the neutral ρ-meson can couple to a photon (with no
other particles involved) we can use the direct photon coupling Lagrangian and multiply it with factor
(1+τ3 FVMD(p2)) to account for both diagrams.

We see, that each matrix element has the same structure

MX(λ) = u f Ξ
µ
Xε
∗
µ(λ)ui. (3.11)

Thus, to calculate the effects of interferences between the different channels, we can simply add the
different Ξµ together, i.e.

Mstu = u f

�

Ξµs +Ξ
µ
t +Ξ

µ
u

�

ε∗µ(λ)ui. (3.12)

To calculate the squared matrix element, we use Casimir’s Trick Eq. (2.10)
∑

|M |2 =
∑

MM † = Tr
¦

Ξ(/pi +m)Ξ(/p f +m)
©

. (3.13)
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3.4 Numerics

By summing and averaging over the particle spins, we have established in Equation (2.10) that we have
to calculate a trace of a matrix product. Usually, one can solve the Dirac traces by using the Dirac algebra
from which follows that

Tr {γµγν}= 4ηµν. (3.14)

First we want to remind the reader of some trace properties. For the following part, let us consider four
quadratic matrices A, B, C and D:

Tr {A+ B}= Tr {A}+ Tr {B}
Tr {αA}= αTr {A} α ∈ C

Tr {ABC}= Tr {BCA}
= Tr {CAB}

(3.15)

Applying the anticommutator (Equation (2.5)) we can calculate the trace of two gamma matrices, using
that the trace is invariant under cyclic permutation:

Tr {γµγν}= Tr {γνγµ}= Tr
§

1
2
{γµ,γν}
ª

= Tr {1}ηµν = 4ηµν. (3.16)

For four gamma matrices, by using the anticommutator relations

{A, BC}= {A, B}C − B[A, C] (3.17)

{A, BC D}= {A, BC}D− BC{A, D}+ B{A, C D}, (3.18)

we find:

Tr
�

γκγλγµγν
	

= Tr
§

1
2
{γκ,γλγµγν}
ª

=
1
2

Tr
�

{γκ,γλγµ}γν − γλγµ{γκ,γν}+ γλ{γκ,γµγν}
	

=
1
2

Tr
�

{γκ,γλ}γµγν − γλγµ{γκ,γν}+ γλ{γκ,γµ}γν
	

= Tr
�

ηκλγµγν −ηκνγλγµ +ηκµγλγν
	

= 4
�

ηκληµλ −ηκνηλµ +ηκµηλν
�

.

(3.19)

The commutator terms that would arise from Equation (3.17) have been neglected since their trace
vanishes. Note that we are able to express a trace of four gamma matrices in terms of traces of two
gamma matrices. From here we can conclude the recursive formula for the trace of an even number of
gamma matrices [21]:

Tr {γν1 . . .γνn}=
n
∑

k=2

(−1)kην1νk Tr
�

γν2 . . .��Z
Zγ
νk . . .γνn
	

. (3.20)

The trace of an odd number of gamma matrices vanishes, as follows with the γ5 anticommutator relation
(Equation (2.6)) and the trace properties (Equation (3.15)):

Tr
�

γλγµγν
	

= Tr
�

γλγµγνγ5γ5
	

= Tr
�

−γ5γλγµγνγ5
	

= −Tr
�

γλγµγν
	

(3.21)
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Note that the trace length increases with (n−1)!!= (n−1)(n−3) . . . 1, where n is the number of gamma
matrices, due to the recursion formula. Therefore a trace of for example 16 gamma matrices, as later
found in the amplitudes, yields 2027 025 terms. Obviously this can not be done by hand in reasonable
time. The Mathematica package FeynCalc can solve these traces using this Dirac Algebra. However
for complicated traces, this takes quite a long time. Therefore we calculate these traces by choosing a
representation for the gamma matrices and summing over the indices explicitly. A further speed bonus
can be obtained by forcing Mathematica to compute with floating point numbers only (i.e. adding a
decimal point to every numerical value). An example can be found in Appendix B.

For later calculations (Section 3.4) we choose the Dirac representation [10]

γ0 =
�

1 0
0 −1

�

γk =

�

0 σk

−σk 0

�

. (3.22)

Here, σk are the Pauli matrices, where we use the representation of Equation (2.50).
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4 Results
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Figure 4.1.: The anisotropy coefficient for hypothetical on-shell resonances for the s-channel, for
p

s =
1.49GeV.

We calculate the anisotropy coefficients Equation (2.39) of the transition Nπ→ Ne+e− using the model
described above. We set the CM energy to

p
s = 1.49GeV in accordance with the HADES experiment. As

validation and for later comparisons of the impact of the t-channel, we first reproduce the data of [2] in
Figure 4.1. Therefore we also assume a hypothetical resonance mass that coincides with the CM energy,
i.e. is on-shell. For the regarded transition, we can expand the incoming particles in their eigenstates of
orbital angular momentum, following [2]:

|π(q);N(−q)〉 ∝
∑

l,m

Y ∗lm(ϑ,ϕ) |lm〉 , (4.1)

where the kinematic parameters were discussed in Section 3.1 and Y ∗lm are the spherical harmonic func-
tions. But Y ∗lm(ϑ = 0,ϕ) 6= 0 only for m = 0, so the z-component of the orbital angular momentum
vanishes in the initial state. This means, that the total angular momentum of the resonance state only
depends on the spin of the incoming nucleon. Thus, only the resonance’s Jz = ±1 states are populated.
This implies, that for an unpolarised nucleon the J = 1/2 resonance is also unpolarised, so we expect
the anisotropy coefficient in the CM-frame to be independent of ϑγ∗ . Higher spin particles have a non
trivial polarisation, which can be non-zero even though the initial states have no preferred direction.
This implies an angular anisotropy in the CM mass [2]. Indeed we are able to reproduce the results of
Speranza [2] in Figure 4.1. The red lines describe the spin-1/2 and the blue lines the spin 3/2 reso-
nance. Solid lines indicate positive parity while dashed lines mean negative parity. The lines are labelled
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with the regarded channel(s), the rest mass of the intermediate particle and finally the parity sign. We
find that in the spin-1/2± case the anisotropy coefficient is independent of the scattering angle. For the
spin-3/2± resonances, we find the anisotropy coefficient to be symmetric around π/2, where it also has
a maximum. In both cases, the resonance with positive parity leads to a higher coefficient.

Speranza [2] has concluded that the N(1440) and N(1535) dominate the process in the combined s-
and u-channel diagrams for this centre of mass energy. We can now calculate the anisotropy coefficient
for various dilepton masses. However, we do not know the relative phase between the two diagrams.
For a relative minus sign between the two resonances, we reproduce the result from [2] in Figure 4.2.
We see that with decreasing lepton mass the anisotropy coefficient progresses towards λϑ = 1. The
interpretation is, that for m→ 0 the photon becomes real and thus is only allowed to have transversal
polarisations.

We now study the effect of the t-channel. As in the work of Speranza, the phase between the diagrams
is unknown, therefore we include all intermediate mesons with varying signs for the limit cases where
the phase difference is either 0 or π. Figure 4.3 shows the anisotropy coefficient, for the combined inter-
ference between the N(1440) and N(1535) in the s- and u-channel and π, ρ and a1 in the t-channel. For
comparison, the anisotropy coefficient from Figure 4.2 for a dilepton mass minv = 500MeV is also shown
(black dotted line). We find, that the impact of the ρ is negligible, that is, the coefficient does not differ
visibly in varying the sign of the corresponding coupling constant. The other two t-channel mesons lead
to a splitting up in four curves (two for each meson and sign, as we again do not know the phase differ-
ence), which generally share the same shape of the initial curve. Each curve has two intersection points
with the reference curve, meaning that the effect of the t-channel interference cancels at this point. We
note, that the difference between the individual curves is highest for ϑγ∗ = π, i.e. transversally emitted
photons. The highest deviation from the reference curve is obtained by choosing a relative sign for the
coupling constants. A negative sign for the intermediate π-diagram in the t-channel leads to a deviation
to higher values for lower (ϑγ∗ ® π/4) and higher (ϑγ∗ ¦ 19/32π) values of the scattering angle. In
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Figure 4.2.: The anisotropy coefficient for the combined N(1440) and N(1535) resonances with s- and
u-channel diagrams for various invariant dilepton masses, with

p
s = 1.49GeV.
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Figure 4.3.: Comparison between the signs for the different intermediate particles in the t-channel for
minv = 500MeV. The reference is the black dotted curve from Figure 4.2 for minv = 500MeV,
without t-channel interference.

p
s = 1.49GeV.

between it has a slightly lower value. For a positive sign of the intermediate π-diagram the roles of
lower and upper values are reversed. The a1 resonance leads to an even smaller deviation, that is best
observable for high scattering angles. A negative sign for the a1-diagram leads to a small offset to lower
values in the outer bounds, and shifts the anisotropy coefficient slightly up in between the intersection
points.

We now consider varying dilepton masses. We exclude the ρ-meson from the plots to improve clarity
as it again has no visible impact. Now the red lines refer to a positive sign for the π-diagrams and
the blue lines for a negative one. Solid lines indicate a positive sign for the a1, dashed ones a negative
sign. We find, that for decreasing invariant dilepton mass, the anisotropy coefficient follows the initial
shape of the N(1440) and N(1535) interference. This suggests that the s- und u-channel interference
dominate the process, while the t-channel only leads to minor variation. Furthermore the intersection
points with the reference curve shift to the left with decreasing invariant lepton mass. The impact of the
a1-resonance also decreases with decreasing invariant dilepton mass, as we can see clearest in Figure 4.6
and Figure 4.7, where the difference between the solid and dashed curves is nearly indistinguishable.
The biggest deviation for low invariant dilepton masses (minv = 100MeV) comes for pions with a positive
phase. Following the assumption, that λϑ → 1 for minv → 0 i.e. as the virtual photons approaches zero
rest mass, its longitudinal polarisation must vanish, we can conclude that the positive phase of the
π-diagram seems to produce unphysical results.
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Figure 4.4.: Comparison between the signs for the different intermediate particles in the t-channel for
minv = 400MeV. The reference is the black dotted curve from Figure 4.2 for minv = 400MeV,
without t-channel interference.
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Figure 4.5.: Comparison between the signs for the different intermediate particles in the t-channel for
minv = 300MeV. The reference is the black dotted curve from Figure 4.2 for minv = 300MeV,
without t-channel interference.
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Figure 4.6.: Comparison between the signs for the different intermediate particles in the t-channel for
minv = 200MeV. The reference is the black dotted curve from Figure 4.2 for minv = 200MeV,
without t-channel interference.
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Figure 4.7.: Comparison between the signs for the different intermediate particles in the t-channel for
minv = 100MeV. The reference is the black dotted curve from Figure 4.2 for minv = 100MeV,
without t-channel interference.

p
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5 Summary and Outlook
In this thesis we have investigated the dilepton anisotropy of the process πN → Ne−e+. Therefore we
have introduced the anisotropy coefficients which depend on the components of the hadron tensor.We
have only considered λθ , because the total cross section σ∝ 1+λϑ cosϑ . We developed a powerful and
fast script in Mathematica in order to calculate the invariant matrix elements needed for the anisotropy
coefficient and extended the existing results of Speranza [2] who discussed the anisotropy coefficient for
resonant s- and u-channels. We now implemented the t-channel for intermediate π, ρ-mesons and a1.
We found that the impact of the ρ is negligible. Overall, the process is still dominated by the s- and u-
channel diagrams. The contribution of the t-channel leads to a minor shift in the shape of the original s-
and u-channel interference. The t-channel is rather dominated by the π while the a1 leads to more subtle
changes. The phase between the diagrams can take a value between 0 and π. We have considered the
two extreme cases, leading to a plus or minus sign between the diagrams. Since a real photon can only
be transversally polarised, we assume that λϑ→ 1 for minv→ 0. Following this assumption, we conclude
that choosing no phase (leading to a positive sign) for the intermediate π-diagram in the t-channel yields
unphysical results.
Interesting points left to investigate are the dependencies on the CM-energy, which would like cause a
shift in the dominant resonances and the effects of the t-channel on the cross section, which we could
not investigate due to time constraints. It would also be compelling to test the model dependency of
this effective Lagrangian approach with a different set of Lagrangians. Another point for future research
would be the consideration of the ω-meson which also contributes to the VMD in the dilepton creation
process. Finally, Speranza also considered dilepton production and anisotropy in heavy ion collision in
the s- and u-channel. One could also implement the t-channel in those computations to give a fuller
picture.
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A Feynman Rules
Here we will give the Feynman rules necessary for calculating the matrix elements. We use the method
of [9]. To get −iM we multiply the interaction Lagrangian term by i, transform into momentum space
by using ∂µ = −ipµ and finally removing all the fields. Keep in mind that we may arbitrarily relabel
contracted terms (that is aµbµ = aξbξ). For better readability we will temporarily omit constants. We
will also rewrite vector and matrix multiplication with explicit indices to allow for easier manipulation.

πkγ

ρk

Lπργ = e
gρπγ
4mπ

εµναβF
µνραβ ·π

(·i)∝−iεµναβ(∂ µAν − ∂ νAµ)(∂ αρk β − ∂ βρkα)πk

(∂ → ip) = εµναβ(p
µ
γAν − pνγA

µ)(pαρρ
k β − pβρρ

kα)πk

(remove fields)→
−iegρπγ

mπ

εµναβ pµγ pνρ

(A.1)

πkγ

ak
1

Lπa1γ
= −ie

ga1πγ

mπ

a1µF
µν · ∂νπ

(·i)∝ a1
k
µ(∂

µAν − ∂ νAµ)∂νπk

(∂ → ip) = −a1
k
µ(p

µ
γAν − pνγA

µ)pπνπ
k

(remove fields)→ (pµγ pνπ − (pγ · pπ)η
µν)

(A.2)

NbNa

πk

LNNπ = −
fNNπ

mπ

ψNγ
5γµτψN · ∂µπ

(·i)⇒−iψ
a

Nγ
5γµτ

k
abψ

b
N∂µπ

k

(∂ →−ip)∝−ψ
a

Nγ
5γµτ

k
abψ

b
Npπµπ

k

(remove fields)∝−γ5
/pπτ

k
ab

⇒
fNNπ

mπ
/pπγ

5τ
k
ab

(A.3)

The other rules are given by

NbRa

πk

−
gRNπ

mπ

Γτk
ab/pπ (A.4)

NbRa

ρk
µ

gRNρ

mρ

Γ̃σαµpρατ
k

ab (A.5)
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NbRa
µ

πk

− i
gRNπ

m2
π

�

γµ(pR · pπ)− pµπ/pR

�

Γτk
ab (A.6)

NbRa
µ

ρk
ν

i
gRNρ

4m2
ρ

�

pαργ
ν −ηαν/pρ
�

�

pRαγµ −ηαµ/pR

�

Γ̃τk
ab (A.7)

NbNa

ρk
µ

gρNN

2

�

γµ −
κρ

2mN
σµνpρν

�

τk
ab (A.8)

NbNa
µ

a1
k
ν

ga1NNγ
µγ5τk

ab (A.9)

π+π−

γµ

e(p+π − p−π)
µ (A.10)

33



B Mathematica Code
Here we provide a sample code for the simple transition in the s-channel. Since we do the summation
explicitly, we have to pay attention to the contra- and covariant position of the indices. An appended
C to the variable name indicates that it is covariant, while no suffix means it is contravariant. We first
define the explicit covariant formalism:

In[1]:= GA[0] = ArrayFlatten [{{PauliMatrix[0], 0}, {0, -PauliMatrix[0]}}];
GA[1] = ArrayFlatten[{{0, PauliMatrix[1]}, {-PauliMatrix[1], 0}}];
GA[2] = ArrayFlatten[{{0, PauliMatrix[2]}, {-PauliMatrix[2], 0}}];
GA[3] = ArrayFlatten[{{0, PauliMatrix[3]}, {-PauliMatrix[3], 0}}];
GA[5] = I GA[0].GA[1].GA[2].GA[3];
metricTensor = DiagonalMatrix[{1, -1, -1, -1}];
MT[0, 0] = 1;
MT[1, 1] = MT[2, 2] = MT[3, 3] = -1;
MT[a_, b_] = 0;
GS[a_] := Sum[a[[i + 1]] GA[i] MT[i, i], {i, 0, 3}] // Quiet;
GAC[a_] := MT[a, a] GA[a];
dotP[a_, b_] := a.metricTensor.b;
commutator[a_, b_] := a.b - b.a;
diracSigma[a_, b_] := I/2 commutator[a, b];
matrix[a_] := DiagonalMatrix[{a, a, a, a}];
FV[p_, a_] := p[[a + 1]] // Quiet;
FVC[p_, a_] := (metricTensor.p)[[a + 1]] // Quiet;
diracConjugate[m_] := GA[0].ConjugateTranspose[m].GA[0];
diracDelta[mu_, nu_] := If[mu == nu, 1, 0, 0];
epsTensor[a_, b_, c_, d_] :=
LeviCivitaTensor[4][[a + 1, b + 1, c + 1, d + 1]];

We use the same momenta as in Section 3.1 and polarisation vectors from Section 2.2.

In[2]:= pNucleonIn[qIn_] := {Sqrt[massNucleon^2 + qIn^2], 0, 0, -qIn};
pPionIn[qIn_] := {Sqrt[massPion^2 + qIn^2], 0, 0, qIn};
pNucleonOut[qOut_] := {Sqrt[massNucleon^2 + qOut^2], -Sin[tgs] qOut,

0, -Cos[tgs] qOut}; (* tgs is theta gamma star, the photon \
polarization and scattering angle *)
pResonanceS[mandelstamS_] := {Sqrt[mandelstamS], 0, 0, 0};
epsRF[-1] = 1/Sqrt[2] {0, 1, -I, 0};
epsRF[0] = {0, 0, 0, 1};
epsRF[1] = 1/Sqrt[2] {0, -1, -I, 0};

Where the transformation matrix has been defined by
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In[3]:= lorentzRotate = {{1, 0, 0, 0}, {0, Cos[-tgs], 0, Sin[-tgs]}, {0, 0, 1,
0}, {0, -Sin[-tgs], 0, Cos[-tgs]}};

lorentzGamma[qOut_, massInvariant_] :=
Sqrt[massInvariant^2 + qOut^2]/massInvariant // Simplify;
lorentzBeta[qOut_,
massInvariant_] := -qOut/Sqrt[massInvariant^2 + qOut^2] // Simplify;
lorentzBoost[qOut_,
massInvariant_] := {{lorentzGamma[qOut, massInvariant], 0, 0,

lorentzBeta[qOut, massInvariant] *
lorentzGamma[qOut, massInvariant]}, {0, 1, 0, 0}, {0, 0, 1,
0}, {lorentzBeta[qOut, massInvariant] *
lorentzGamma[qOut, massInvariant], 0, 0,
lorentzGamma[qOut, massInvariant]}} // Simplify;

transformRFtoCM[qOut_, massInvariant_] :=
Inverse[lorentzBoost[qOut, massInvariant].lorentzRotate] //
Simplify;

Finally the actual computation for the anisotropy coefficient Equation (2.39).

In[4]:= lambdaTheta[mandelstamS_, invariantMass_, lmbd_, massResonance_] :=
Module[{s = mandelstamS, invM = invariantMass, lambda,

mR = massResonance, qIn, qOut, eps, rhoProd},

qIn = Sqrt[kallenLambda[s, massNucleon^2, massPion^2]]/(2 Sqrt[s]);
qOut = Sqrt[kallenLambda[s, massNucleon^2, invM^2]]/(2 Sqrt[s]);
lambda[0] = lmbd[0, s, mR, qIn, qOut, invM];
lambda[1] = lmbd[1, s, mR, qIn, qOut, invM];
lambda[2] = lmbd[2, s, mR, qIn, qOut, invM];
lambda[3] = lmbd[3, s, mR, qIn, qOut, invM];
eps[1] = Chop[transformRFtoCM[qOut, invM].epsRF[1]];
eps[-1] = Chop[transformRFtoCM[qOut, invM].epsRF[-1]];
eps[0] = Chop[transformRFtoCM[qOut, invM].epsRF[0]];
rhoProd[k_] :=
Tr[Sum[FVC[Conjugate[eps[k]], mu] FVC[eps[k],
nu] lambda[
mu].(GS[{Sqrt[qIn^2 + massNucleon^2], 0, 0, -qIn}] +
matrix[massNucleon]).diracConjugate[
lambda[nu]].(GS[{Sqrt[

qOut^2 + massNucleon^2], -qOut Sin[tgs],
0, -qOut Cos[tgs]}] + matrix[massNucleon]), {mu, 0,
3}, {nu, 0, 3}]];

rhoProdP = rhoProd[1];
rhoProdM = rhoProd[-1];
rhoProdZ = rhoProd[0];

Return[ (rhoProdP + rhoProdM - 2 rhoProdZ)/(rhoProdP + rhoProdM +
2 rhoProdZ)];
];

We can now define our vertex factors and propagators. Pay attention to the covariant and contravariant
matrices and vectors.
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In[5]:= vertexRNPi12p[mR_, qIn_] := -gRNPi[mR]/massPion GA[5].GS[pPionIn[qIn]];
vertexRNRho12p[mu_, mR_, qOut_, massInvariant_] :=
gRNRho[mR]/
massRho diracSigma[GS[pRhoOut[qOut, massInvariant]], GA[mu]];
resonanceDelta[mR_] := (mR - massNucleon - massPion)^2 +
decayWidth[mR]^2/4;
resonanceWidth[p_, mR_, qIn_, l_] :=
decayWidth[mR] mR/
Sqrt[dotP[p, p]] (qIn/(
Sqrt[kallenLambda[mR^2, massNucleon^2,
massPion^2]]/(2 mR)))^(2 l + 1)

propagator12[p_, m_, qIn_] := (GS[p] + matrix[m])/(
dotP[p, p] - m^2 + I Sqrt[dotP[p, p]] resonanceWidth[p, m, qIn, 0])

To finally calculate the anisotropy coefficient, simply write down the matrix element.

In[6]:= matrixS12p[mu_, s_, mR_, qIn_, qOut_, massInvariant_] :=
vertexRNRho12p[mu, mR, qOut, massInvariant].propagator12[
pResonanceS[s], mR, qIn].vertexRNPi12p[mR, qIn];
lambdaTheta[mandelstamS, massInvariant, matrixS12p, massResonance];
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