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‘Äntligen hade korpen slagit ner på ett tak. “Ser du, att det är sant,
som jag säger, och att det är lärdomen, som är herre här i staden?”
hade han sagt, och pojken hade erkänt, att han hade haft rätt. “Om

jag inte vore en korp,” hade Bataki vidare sagt, “utan bara en
människa som du, så skulle jag slå mig ner här. Jag skulle sitta dag
ut och dag in i ett rum fullt av böcker och lära mig allt, som stod i

dem. Skulle du inte ha lust för sådant, du med?”’
— Nils Holgerssons underbara resa genom Sverige (Selma Lagerlöf)
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We investigate pion-pion scattering in two-flavour Nambu–Jona-Lasinio (NJL) models.
Mean-field methods are used to study chiral symmetry and spontaneous breaking thereof.
Mesons are introduced as effective degrees of freedom in the quark-antiquark channel via
the Bethe-Salpeter equation. In this work we include a vector-axial interaction channel
in addition to the usual scalar-pseudoscalar one. The scattering of pions is studied in
the vacuum and for finite temperature. We give a full momentum-dependent description
of pion-pion scattering in vacuum in leading order in 1/Nc. We also consider corrections
to the meson propagators beyond leading order in 1/Nc.
As an application we study the phase diagram of QCD matter within the NJL model.

Confined QCD matter is described as a gas of pions with their interaction determined
by the NJL matrix elements. With these we calculate the shear viscosity of such a pion
gas in a kinetic theory approach.

Wir studieren Pion-Pion-Streuung im Nambu–Jona-Lasinio-Modell (NJL-Modell). Chi-
rale Symmetrie und ihre spontane Brechung werden mit Hilfe von Molekularfeldmetho-
den untersucht. Mesonen werden als effektive Freiheitsgrade im Quark-Antiquark-Kanal
vermöge der Bethe-Salpeter-Gleichung eingeführt. In dieser Arbeit betrachten wir eine
Vektor-Pseudovektor-Wechselwirkung zusätzlich zu der üblichen Skalar-Pseudoskalar-
Wechselwirkung. Die Streuung von Pionen wird im Vakuum und für endliche Tem-
peratur erforscht. Wir entwickeln eine vollständig impulsabhängige Beschreibung von
Pion-Pion-Streuung im Vakuum in führender Ordung in 1/Nc. Wir betrachten auch
Korrekturen zu den Mesonenpropagatoren, die über führende Ordnung in 1/Nc hinaus-
gehen.
Als Anwendung studieren wir das Phasendiagramm von QCD-Materie im Rahmen des

NJL-Modells. Confinement unterliegende QCD-Materie wird als Pionengas beschrieben
und die Wechselwirkung zwischen den Pionen durch die NJL-Matrixelemente bestimmt.
Mit diesen berechnen wir die Scherviskosität eines solchen Pionengases im Rahmen der
kinetischen Gastheorie.
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Preface to the Extended Version

During the work on my Master’s thesis arose the idea to compile all the detailed deriva-
tions and calculations presented in this work into a guidebook on the NJL model. This
should serve future Bachelor’s and Master’s students as an easy-to-read introduction to
the main features of the NJL model.
After having handed in my thesis I became aware of several minor errors in the text,

mainly small calculation errors that showed up in tables and plots. For reasons of cor-
rectness, I removed these errors in the thesis, which I then dubbed “corrected version”.
Since I did not want to correct those errors in yet another text, I decided not to put
together an a additional document but rather to add additional sections at the end of
this thesis (see Chapter X), which I then called “corrected and extended version”. Those
new sections are partly sections that did not make it into the original thesis but are still
interesting to read, and partly texts that were written after completion of the original
thesis.

Sven Möller, April 30, 2013
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1. Introduction

Quantum chromodynamics (QCD) is today widely accepted as the quantum field theory
of strong interaction, i.e. the interaction between quarks and gluons based on their
colour charge [1]. More precisely, QCD is the SU(3) Yang-Mills theory of colour-charged
fermions (the quarks) with the gluons being the massless gauge bosons. In contrast to
quantum electrodynamics (QED), QCD is a non-abelian gauge theory. This results in
the gauge bosons themselves being charged, i.e. they carry colour.
The non-abelian nature of QCD is responsible for many interesting phenomena that

can be contrasted to QED or other abelian gauge theories. Frank Wilczek, David Gross
and David Politzer shared the 2004 Nobel Prize in physics for their prediction of asymp-
totic freedom in 1973 [2, 3]. Asymptotic freedom, one of the two most outstanding
phenomenological peculiarities of QCD (the other being confinement), is the property
of quarks and gluons to be weakly interacting in the high-energy regime [4]. As ener-
gies become large (or equivalently distances small) the colour-charged particles become
asymptotically free. For smaller energies however, quarks are very strongly coupled,
which is sometimes dubbed as infrared slavery.
A related phenomenon is (colour) confinement [5]. Confinement describes the absence

of free quarks in nature, stating that colour-charged objects are always clumped together
(confined) to colourless groups of quarks, so-called hadrons. Confinement is caused by
the fact that the force between two quarks which are gradually separated in space does
not become smaller with increasing distance.
Unfortunately, QCD is also computationally much more difficult because of its non-

abelianity. For example confinement has not been proven so far (but is seen in lattice
QCD calculations [6]). In general, QCD becomes difficult to handle in the low-energy
or strong-coupling regime where it cannot be accessed via a perturbational approach.

The QCD Phase Diagram
One of the major challenges remaining related to the study of the strong interaction is
the exploration of the QCD phase diagram [7, 8, 9], i.e. the phase diagram of QCD
matter. The term QCD matter refers collectively to the different states of matter which
has quarks and gluons as elementary degrees of freedom interacting via the strong force.
The thermodynamic variables for the description of QCD matter are often chosen to

be volume V , temperature T and the quark chemical potential µ, which is the chemical
potential related to the conservation of the net quark number1. This yields (the depen-
dence on V is trivial) a two-dimensional phase space for QCD matter, the T -µ plane.2

1Alternatively, one could speak of baryon number conservation and the related chemical potential µB.
2One can equally well use p and T as variables (like in [10]), which yields the usual p-T phase diagrams
most physicists are acquainted with.

10



A contemporary sketch of the QCD phase diagram is shown in Figure 1.1.

nuclear
matter

hadron gas
confined,
χ-SB

~170
MeV

T

few times nuclear
matter density

color
superconductor

quark-gluon
plasma

deconfined,
χ-symmetric

µ0 µ
vacuum

Figure 1.1.: Sketch of the present-day understanding of the QCD phase diagram in the
T -µ plane. The dashed line indicates a crossover region, solid lines are phase
transitions. Taken from [11] (with minor modifications).

For temperatures close to zero and small to intermediate quark chemical potential
we are in the domain of ordinary matter. At µ0 ≈ 310 MeV there is a gas-to-liquid
phase transition from vacuum to nuclear matter. Ordinary matter is a mixed phase
of droplets of nuclear matter, called nuclei, surrounded by vacuum. For even higher
chemical potential there is a phase transition to a colour-superconducting quark phase
[12, 13, 14].
Another major phase transition is the transition between the confined (or hadronic)

phase and the partonic phase, the quark-gluon plasma (QGP) [15]. For small T and µ
quarks are confined to hadrons, i.e. mesons and baryons (mainly pions for µ ≈ 0). If
one increases the temperature, keeping µ fixed at a small value, there is a crossover to
the deconfined phase at around T ≈ 170 MeV [16]. The pions are broken up by thermal
fluctuations and there is a gas of quarks, antiquarks and gluons, hence the name quark-
gluon plasma [17]. For larger chemical potentials some models predict that the crossover
becomes a phase transition.
There is also a transition between the chirally symmetric regime for large T or µ

and the phase which exhibits spontaneous chiral symmetry breaking [18, 19] for small
values of T and µ. Most recent calculations on the lattice [16] indicate that this transition
happens for temperatures around T ≈ 155 MeV (for µ = 0). We should keep in mind that
the critical temperature for a crossover is not uniquely defined, but this still suggests that
contrary to previous belief the chiral and the deconfinement crossover are not identical.
In this work we intend to study the properties of QCD matter along the µ = 0 axis.

In particular we will study the cross-over from broken to restored chiral symmetry for
increasing temperature (see Chapters 3 and 6).
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Theoretical Approach
Because QCD is strongly coupled at chemical potentials (or densities) and temperatures
of greatest physical interest, the phase structure of QCD matter remains mostly conjec-
tural. Obtaining theoretical predictions about the phase diagram of QCD is one of the
most difficult challenges in physics. With time, various techniques have been developed
to perform calculations in QCD (or models resembling QCD in some aspects). Each of
these approaches has a different region of applicability.
Often, one is only interested in a rough qualitative understanding of which phases

might occur. For this, one constructs models which share certain aspects of QCD but
are computationally much simpler. By doing so, one neglects other properties but hopes
that those features of QCD one wishes to study are nonetheless well-reproduced (at least
qualitatively).
The MIT Bag Model [20] is an example of a phenomenological model focusing on

confinement. In the Bag Model weakly interacting quarks (which can be treated pertur-
batively) are confined to a spherical cavity called bag.
For the purposes of this work we will investigate the properties of QCD matter in

Nambu–Jona-Lasinio models (NJL models) (see Chapters 2 and 5), named after the
inventors of the original NJL model, Yoichiro Nambu and Giovanni Jona-Lasinio [21,
22]. NJL models are an important class of models, which focus on the aspect of chiral
symmetry breaking in QCD, but fail to describe confinement. In that sense they can
be viewed as complementary to the MIT Bag Model. The main feature of the NJL
model is that it does not comprise gluons. Instead, the interaction between the fermions
(here quarks) is modelled by a four-fermion interaction. Depending on the nature of
this interaction one obtains different NJL models or NJL-like models. Comprehensive
reviews of the NJL model applied to QCD are found in [23, 24].
The NJL model is used as a phenomenological model of QCD since it shares some

features of QCD but is in many ways easier to manipulate. In particular, the NJL
model describes chiral symmetry breaking and chiral condensates. This is related to the
fact that the NJL Lagrangian has the same global symmetries as QCD. On the other
hand, due to the lack of gluons and their self-interaction, the NJL model fails to describe
confinement. Another shortcoming of the NJL model is its non-renormalisability in four
spacetime dimensions due to the fact that the interaction between the quarks is point-
like. To analyse the phases of QCD in NJL models, one often resorts to mean-field
methods. In the NJL model, mesons can be described as composite degrees of freedom
in the quark-antiquark channel.

Experimental Approach
To study the physical properties of the quark-gluon plasma and in particular the phase
transition between it and the confined phase, extremely high temperatures of more than
170 MeV (or 2 · 1012 K) have to be reached. This is accomplished in relativistic heavy-
ion collisions [25]. In these heavy-ion collisions (HIC) two large nuclei (typically lead or
gold nuclei) are accelerated to ultrarelativistic speeds and the particle beams are then
directed towards each other. As a result, some of the nuclei hit, producing an extremely
hot and dense fireball, in which the partons (i.e. quarks and gluons) are effectively free
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and interact through inelastic scattering until thermal equilibrium is reached (if it is
reached at all). This state of matter is then believed to be the quark-gluon plasma.
On the other hand the fireball starts expanding under its own pressure and cools due

to this expansion. Once the temperature drops below a certain value, hadronisation
of the partons sets in. The expansion of the hadronic matter continues and inelastic
reactions between the hadrons occur. Once these inelastic collisions cease, the ‘chemical’
composition of the system is fixed. This is referred to as chemical freeze-out. At even
later times, also elastic interactions cease and the momentum spectrum of the hadrons
is fixed (thermal or kinetic freeze-out). A variety of detectors placed around the collision
point measures the vast amount of different particles created during the collision and in
secondary decays. One then looks for example for signals indicating the formation of a
quark-gluon plasma. (Reviews of accelerator experiments related to the quest for the
quark-gluon plasma are found in [26, 27].)

Quark-gluon plasmaQuark-gluon plasma

Hadron gasHadron gas

T
E
M

P
E
R

A
T
U

R
E
 [

M
e
V

]

Early universe

LHC

RHIC

Neutron stars

Thermal freeze-out

Chemical freeze-out

SPS

Deconfinement &
chiral restoration

50
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200

250

0.2 0.4 0.6 0.8 1 1.2 1.4
BARYON CHEMICAL POTENTIAL [GeV] 

Nuclei

AGS

SIS

Figure 1.2.: A sketch of the QCD phase digram with the experimentally accessible re-
gions. Taken from [28, 29] with minor modifications. The red lines with
arrows indicate expansion trajectories of thermalised matter created in dif-
ferent environments.

Elliptic Flow
One of the experimental observables sensitive to the properties of the quark-gluon plasma
is the azimuthal angle distribution of particles in the plane orthogonal to the two beam
axes. Most of the collisions in a heavy-ion collider take place at non-zero impact pa-
rameter. In these non-central collisions, the geometric overlap-region is almond-shaped.
This spatial anisotropy of the collision region is eventually translated into an anisotropy
in the momentum distribution of the measured collision products [30, 31].
The azimuthal distribution of the particle flow can be studied by a Fourier expansion.
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The second Fourier coefficient v2 is the first non-trivial and non-vanishing one and called
elliptic flow. The mathematical methods employed to determine the elliptic flow are
rather involved because the reaction plane (spanned by the beam axis and the impact
parameter) is a different one in each collision [32].
The elliptic flow (and even higher Fourier coefficients) has been studied in a great

detail during the last years and particularly large values have been observed at RHIC and
LHC [32, 33]. It is argued that large values of v2 suggest that the state of matter created
during a heavy-ion collision behaves almost like a perfect fluid, i.e. has a particularly
low shear viscosity over entropy density ratio η/s.

Relativistic Hydrodynamics
To understand the phenomena related to a collective particle flow in heavy-ion collisions
one needs to be able to describe the time-evolution of such a system given certain initial
conditions. This is done in a hydrodynamical approach.
The first predictions were made with ideal hydrodynamics calculations (i.e. neglecting

dissipative effects) and showed a good agreement with data measured at RHIC [34].
This led to the conclusion that dissipative effects in the fireball fluid are rather small. In
viscous hydrodynamics these deviations from the ideal case are incorporated in the form
of the transport coefficients, one of which is the (shear) viscosity η. The dimensionless
ratio of shear viscosity η over entropy density s is usually taken as a measure for the
non-ideality of the hydrodynamical description. It is found that this ratio is indeed very
small for the quark-gluon plasma. Whether there is a lower bound for η/s as conjectured
based on the AdS/CFT correspondence [35] is currently debated.
It is possible to calculate the shear viscosity of a fluid based on a microscopic descrip-

tion [36] (kinetic theory of gases). From such considerations it is easily seen that a small
shear viscosity corresponds to particularly strongly interacting particles. This relation
suggests that the quark-gluon plasma at least close to the crossover region is strongly
coupled and this state of matter is referred to as strongly coupled quark-gluon plasma
(sQGP). See [37] for a recent review.

Pion Gas
One of the goals of this work is to determine the shear viscosity of QCD matter (for
µ = 0 as a function of temperature), especially in the vicinity of the chiral cross-over (see
Chapter 6). This will be done in a kinetic theory approach, which relates the microscopic
quantum description of the particles to bulk fluidity measures. For such a calculation to
be valid, it has to be required that the mean free path λ of the particles be much larger
than the range of interaction d. In [38] it is argued that for QCD matter such conditions
are found only in systems with small temperature and chemical potential. It is however
exactly that region, in which QCD exhibits confinement. Since the NJL model does
not incorporate confinement, we cannot expect it to give a reasonable description if we
consider quarks and antiquarks as relevant degrees of freedom, i.e. when dealing with a
quark gas.
It is proposed in [38] to consider a gas of pions instead. Within the framework of

the NJL model, these are obtained by studying collective modes in the quark-antiquark
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interaction channel. The thermodynamic properties of a system at not too large tem-
peratures or densities should be determined by the lightest degrees of freedom, which in
case of confined QCD matter are the pions. They are so light since they are the pseudo-
Goldstone bosons of the spontaneously broken approximate chiral symmetry. The more
general concept is that of a hadron resonance gas [39] where QCD matter is described
as a free gas of all possible hadrons and their resonant states. For the purposes of this
work we will restrict ourselves to a gas only consisting of pions, which implies a vanishing
baryon number B or equivalently µ = 0.
We have argued that the kinetic description of QCD matter as a pion gas will yield

sensible results for small temperatures and chemical potential. Small or vanishing µ
means that particle densities are only generated by thermal fluctuations which are sup-
pressed exponentially for small temperatures. This means that we are in the limit of a
dilute gas, where kinetic theory can be applied and the results for the shear viscosity we
obtain should be acceptable.

Pion-Pion Scattering
To calculate the shear viscosity of a pion gas in a kinetic theory approach we have to
calculate the interactions between the pions. This will be done in the framework of
the NJL model (see Chapters 4 and 5). Pion-pion scattering in the NJL model has
been studied extensively in the past (see for example [40, 41, 42, 43, 44, 45]). Transport
coefficients obtained from an NJL model approach were first calculated in [46, 38, 10, 47].
One goal of this work is to extend these results by incorporating an additional vector
interaction (see Chapter 5) into the model. Such a vector interaction was studied for
example in [48, 49].

1.1. Overview
The primary goal of this thesis is the calculation of pion-pion scattering matrix elements
within the NJL model. We proceed as follows:
Chapter 2 gives a thorough introduction to the NJL model (in vacuum) in its version

applied to QCD. All necessary concepts for the understanding of the model will be
introduced. Starting from the Lagrangian density, we will derive the Feynman rules for
this quantum field theory, which we will use throughout this work. A first application
will be the derivation of a mass gap in Section 2.2. A few words will be said about the
regularisation of certain ‘elementary’ integrals, which form the basis of all NJL model
calculations and in Section 2.5 we finally turn to the description of mesons via a Bethe-
Salpeter equation. In Chapter 3 we will extend our considerations from the vacuum to
a thermal field theory scenario with finite temperature and chemical potential. Many of
the concepts we introduced in Chapter 2 will be transferred to the new setting.
Chapter 4 deals with the scattering of pions described in the NJL model based on

two basic scattering processes, the sigma propagation and the quark box diagram. In
this work we will for the first time present fully momentum-dependent matrix elements
corresponding to the two above mentioned diagrams. In Chapter 5 we will extend the
NJL Lagrangian with an additional vector-pseudovector interaction term, allowing for
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an additional rho propagation diagram in the pion-pion interaction channel.
In Chapter 6 we apply the insights gained in the preceding chapters to determine

transport properties of strongly interacting matter. More specifically, the obtained pion-
pion scattering matrix elements serve as input of kinetic theory calculations aimed at
determining the shear viscosity of QCD matter. The results are presented in Section 6.5.
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2. The NJL Model

The Nambu–Jona-Lasinio model was originally proposed in 1961 – QCD and even quarks
had yet to be discovered – as a model of interacting nucleons [21, 22]. Hence confinement
was obviously not relevant for the model. On the other hand, another important feature
of QCD, namely the (approximate) chiral symmetry of the Lagrangian was already
suggested on the level of nucleons.
The NJL model incorporates chiral symmetry into the Lagrangian density. This im-

plies however massless (or in the case of an approximate chiral symmetry very light)
nucleons. Nambu and Jona-Lasinio had to find a mechanism to account for the (experi-
mentally) large nucleon mass without destroying the chiral symmetry of the Lagrangian.
They saw an analogy to the energy gap in the excitation spectrum of the electrons of a
BCS superconductor [50] (developed in 1957) and explained the nucleon masses by the
spontaneous breaking of the chiral symmetry. The dynamically generated mass of the
nucleons is much larger than the so-called bare mass, which enters in the Lagrangian
density, and stays large even for a vanishing bare quark mass. They also found very
light (or massless) bosonic nucleon-antinucleon excitations. This discovery can be seen
as an important step towards the formulation of Goldstone’s theorem, which predicts
massless Nambu-Goldstone bosons in models exhibiting the spontaneous breaking of a
continuous symmetry [51, 52].
The NJL model was later reinterpreted as a model of interacting quarks [53, 54, 55],

keeping the original form of the Lagrangian and simply replacing the nucleonic fields
by quark fields. As the NJL model focuses on chiral symmetry, this aspect of QCD
is well-reflected. However, for quarks it has the severe shortcoming that confinement
is not described by the model. This restricts the applicability of the NJL model to
investigations where chiral symmetry and its spontaneous breaking is in the focus rather
than confinement.

2.1. The NJL Lagrangian
We will introduce the NJL model in its original, simplest version. In general we can
allow more complicated interaction terms (see Section 2.1.2) and one such extension is
studied in Chapter 5.
The nucleons of the original NJL model are an isospin (or flavour) doublet. Similarly

we will restrict ourselves to the two lightest quark flavours up (u) and down (d). Exten-
sions of the NJL model to three or more quark flavours exist (see [56, 57]) but will not
be considered in this work.
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The Lagrangian density of the two-flavour NJL model reads

L = ψ̄(i/∂ −m)ψ + g
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
. (2.1)

The quark and antiquark fields ψ and ψ̄ = ψ†γ0 are Dirac spinors and have indices in
the 4-dimensional Dirac space, the (Nf = 2)-dimensional flavour (or isospin) space and
the (Nc = 3)-dimensional colour space and are hence (4NcNf)-component objects. Here,
m is the current (or bare) quark mass matrix, which takes the form m = diag(mu,md).
We will assume that the u and d quarks have a degenerate mass m := mu = md and
hence we can replace m by the bare quark mass m in the above Lagrangian. ~τ stands
for the vector of Pauli matrices in isospin space.
The first term in the Lagrangian density

Lfree = ψ̄(i/∂ −m)ψ (2.2)

is the free (or Dirac) part and corresponds to the fact that the quarks are spin-1/2
fermions obeying the Dirac equation as free particles. The second part of the Lagrangian
density

Lint. = g
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
(2.3)

is the interaction part and consists of a scalar-isoscalar and a pseudoscalar-isovector four-
point interaction, both with coupling strength g. The coupling constant g is dimensionful
with dimension [mass]−2. We will later (see Section 2.5) find collective quark-antiquark
modes in the interaction channels and will relate a meson to each of the vertices, i.e. the
σ meson and the pion.
The more complicated interaction of quarks via gluons, which themselves may interact

with one another, found in QCD is replaced by a simple four-point vertex. This is
done in a way that the global symmetries of QCD, in particular chiral symmetry are
preserved. The above interaction Lagrangian Lint. is chirally symmetric making the
complete Lagrangian density chirally symmetric for m → 0. It is of course possible to
write down many more chirally symmetric four-point vertices and models incorporating
these are also referred to as NJL models (see Chapter 5). In the following section we
will study the global symmetries of the above simple NJL model with Lagrangian given
by (2.1).

2.1.1. Symmetries
The Lagrangian L of the NJL model exhibits a number of global symmetries, i.e. it is
invariant under certain spacetime-independent symmetry transformations, each of which
is related to a conserved quantity via a Noetherian current. In fact, the NJL Lagrangian
has the same global symmetries as the one for QCD (with Nf = 2). A treatment of the
symmetries of QCD and the NJL model can be found in [23]. One typically writes the
complete global symmetry as U(1)V ×SU(2)V ×SU(2)A and we shall discuss each single
symmetry below:
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• The first symmetry is a global U(1)V -phase invariance, i.e. an invariance of L
under

ψ 7→ exp(−iα)ψ and ψ̄ 7→ exp(iα)ψ̄ (2.4)
for α ∈ R. By Noether’s theorem this leads to the Noetherian current

jµ = ψ̄γµψ (2.5)
fulfilling ∂µjµ = 0 and hence gives the conserved quantity∫

d3xj0 =
∫

d3xψ†ψ (2.6)

(recall ψ̄ = ψ†γ0), which corresponds to the conservation of baryon number.

• We assumed that mu = md =: m. This limiting case is called isospin limit. In
that case the Lagrangian L is invariant under a vector SU(2)V -transformation

ψ 7→ exp(−i~τ · ~θ/2)ψ and ψ̄ 7→ ψ̄ exp(i~τ · ~θ/2) (2.7)
for ~θ ∈ R3. The field ψ is rotated in isospin space. The conserved current is

Jaµ = ψ̄γµτ
aψ (2.8)

and corresponds to the conservation of isospin.

• The last symmetry is only present in the chiral limit, i.e. in the case m = 0. Then
the Lagrangian L is also invariant under an axial SU(2)A-transformation

ψ 7→ exp(−iγ5~τ · ~θ/2)ψ and ψ̄ 7→ ψ̄ exp(−iγ5~τ · ~θ/2) (2.9)
for ~θ ∈ R3. Here, we transform in isospin and Dirac space. The Noetherian current
is

Ja5µ = ψ̄γµγ5τ
aψ. (2.10)

The chiral limit plays a particularly important role for NJL model studies. Many of the
features of QCD are solely based on the symmetries present in the chiral limit. These
can be well reproduced in the NJL model. Even if we consider non-vanishing but small
bare quark masses, many of these results are still approximately fulfilled and deviations
from the chiral limit can be studied systematically.
In the chiral limit there is an invariance of the Lagrangian density under

SU(2)V × SU(2)A ∼= SU(2)L × SU(2)R. (2.11)
The SU(2)A-symmetry is spontaneously broken by the quark condensate (see Chap-
ter 3). The Goldstone bosons, which correspond to the three broken generators of the
transformation, are the pions. We will describe pions in Section 2.5 and they indeed turn
out to be massless in the chiral limit. We will consider the case where m is non-zero but
small and hence the above symmetry is only an approximate symmetry. Consequently,
the pions, which are then called pseudo-Goldstone bosons, obtain a non-zero mass.
Studying the above symmetry transformations, one observes that the interaction terms

g(ψ̄ψ)2 and g(ψ̄iγ5~τψ)2 are transformed into one another by chiral transformations. One
says the two terms are chiral partners. In order to obtain a chirally symmetric Lagrangian
both terms have to appear with the same coupling strength g.
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2.1.2. Extended NJL Lagrangians
There exist a number of extensions of the NJL model. In this work, in addition to the
above simple NJL model, we will study a model with interaction Lagrangian given by

Lint. = gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
− gv

[
(ψ̄γµ~τψ)2 + (ψ̄γµγ5~τψ)2

]
. (2.12)

The additional terms describe a vector-isovector and a pseudovector-isovector interac-
tion channel. Both terms are again chiral partners and hence appear with the same
interaction strength −gv, where the minus sign is chosen in order to obtain a positive
value for gv for a physical choice of the parameters. The interaction strength g is now
called gs and is independent of gv. With the above extended Lagrangian the NJL model
exhibits the same global symmetries as those we described above for the simple model.
It furthers the clarity of our considerations to introduce a more general notation. We

write the NJL Lagrangian as

L = ψ̄(i/∂ −m)ψ +
∑
M

gM (ψ̄ΓMψ)2, (2.13)

where M runs over all interaction channels and the ΓM ’s are constant matrices in Dirac,
favour and colour space, i.e. ψ̄ΓMψ is a general quark bilinear. (We note here that ΓM
may also have an isospin index a or a Lorentz index µ or both. In that case (ψ̄Γµ,aM ψ)2 is
to be understood as (ψ̄Γµ,aM ψ)(ψ̄ΓaM,µψ) with summation over a and µ implied according
to Einstein convention.) We chose the letter M for the different interaction channels
since we will relate the different interaction channels to mesons (see Section 2.5). If we
write the Lagrangian in such a general form we must of course explicitly demand that
the Lagrangian density exhibit the above described symmetries.

2.1.3. Feynman Rules
All physical quantities are in principle determined by the Lagrangian density of the
NJL model (2.1) or (2.13) (and the choice of regularisation scheme, see Section 2.3). It
is convenient to use diagrammatic techniques to calculate and analyse many of these
quantities. In order to do this we will have to determine the Feynman rules [58] for this
particular fermionic quantum field theory.

General Lagrangian
From the Dirac part of the Lagrangian Lfree we read off the bare quark propagator

p

= iS0(p) = i
/p+m

p2 −m2 + iε
, (2.14)

which is the Feynman propagator for a Dirac fermion.
The interaction term of the general Lagrangian density (2.13) contains exclusively
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four-point interactions. These can be combined to a single vertex

= = iK =
∑
M

iKM , (2.15)

where the contribution from each interaction channel is given by

iKM = 2igMΓM ⊗ ΓM . (2.16)

(If ΓM comes with additional indices, we have to write iKM = 2igMΓµ,aM ⊗ ΓaM,µ in the
sum.) The wiggly line in the above Feynman diagram is used to emphasise the tensor
structure of the vertex. We will later often omit the tensor-product sign whenever this
simplifies the notation without causing ambiguities. The sign in front of the vertices
iKM depends on the convention used. Here, we chose +i rather than −i.
The other Feynman rules are the standard rules for a fermionic theory (including

symmetry factors, etc.). In particular we get

−
∫ d4k

(2π)4 Tr (2.17)

for a closed fermion loop labelled with momentum k.

Simple Model
Let us explicitly give the vertices for the simple NJL model as given in (2.1) since we
will begin our NJL model studies with that case. The Lagrangian density contains a
single scalar interaction channel called σ given by the term

(ψ̄Γσψ)g(ψ̄Γσψ) = (ψ̄ψ)g(ψ̄ψ) (2.18)

with
Γσ = 1Dirac ⊗ 1colour ⊗ 1flavour (2.19)

and three (a = 1, 2, 3) pseudoscalar interaction channels called π given by

(ψ̄Γaπψ)g(ψ̄Γaπψ) = (ψ̄iγ5τ
aψ)g(ψ̄iγ5τ

aψ) (2.20)

with
Γaπ = iγ5 ⊗ 1colour ⊗ τa. (2.21)

This corresponds to the vertices

iKσ = 2igΓσ ⊗ Γσ = 2ig1⊗ 1 (2.22)

and
iKπ = 2igΓaπ ⊗ Γaπ = 2igiγ5τ

a ⊗ iγ5τ
a. (2.23)

The above section shall serve us as a dictionary whenever we need to evaluate more
difficult diagrammatic expressions.
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2.2. Mass Gap
We already mentioned that the quarks, which are only equipped with a very small or
vanishing bare mass in the Lagrangian, obtain a higher effective mass through a self-
energy, which is caused by the interaction term in the Lagrangian. This phenomenon is
very similar to the energy gap in BCS theory and hence is called mass gap.

Hartree-Approximation
We define the dressed quark propagator via the Dyson equation

p

=
p

+
p p

k

. (2.24)

In this diagrammatic equation we only considered contributions of leading order in 1/Nc.
We refer to this approximation as Hartree or mean field approximation. We will see
shortly that this approximation already results in a larger effective quark mass. We
claim that the solution to the above equation, the dressed quark propagator, can be
again written as a Feynman propagator

p

= iS(p) = i
/p+M

p2 −M2 + iε
, (2.25)

i.e. takes the same form as the bare quark propagator but with an appropriately chosen
constituent quark mass M instead of the bare quark mass m. This effective mass M
turns out to be larger than the bare quark mass m and even in the limit m = 0 the
constituent mass M can be non-zero (if the coupling g is chosen sufficiently large).
To determine the massM , we have to solve the above self-consistency equation, which

reads
iS(p) = iS0(p) + iS0(p)(−iΣ)iS(p), (2.26)

where Σ is the quark self-energy corresponding to the diagram

− iΣ =

k

. (2.27)

Multiplying by S−1
0 (p) = /p−m from the left and by S−1(p) = /p−M from the right, we

get
iS−1

0 (p) = iS−1(p) + iΣ (2.28)
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or
i(/p−m) = i(/p−M) + iΣ (2.29)

and hence an M that solves
M = m+ Σ (2.30)

gives a solution to the Dyson equation (note that Σ of course also depends on M).
Finally we calculate the self energy Σ. Using the Feynman rules we evaluate the above

diagram and get

− iΣ = −i
∑
M

ΣM =
∑
M

2igMΓM
∫ d4k

(2π)4 (−1) Tr (ΓM iS(k)) (2.31)

and hence
Σ =

∑
M

ΣM =
∑
M

2gMΓM i
∫ d4k

(2π)4 Tr (ΓMS(k)) . (2.32)

(Again, for Γµ,aM we have ΣM = 2gMΓµ,aM i
∫ d4k

(2π)4 Tr(ΓaM,µS(k)) with summation over a
and µ implied.)

Simple Model
Let us study the case of the simple NJL Lagrangian (2.1). The self-energy is given by

Σ = 2g
(

Γσ
∫ d4k

(2π)4 Tr (ΓσiS(k)) + Γaπ
∫ d4k

(2π)4 Tr (ΓaπiS(k))
)

= 2g
(
1i

∫ d4k

(2π)4 Tr (1S(k))− γ5τ
ai

∫ d4k

(2π)4 Tr (γ5τ
aS(k))

)
.

(2.33)

The second term vanishes since the trace over τa is zero and hence we get

Σ = 2gi
∫ d4k

(2π)4 Tr
(

/p+M

p2 −M2 + iε

)
= 8NfNcgMi

∫ d4k

(2π)4
1

p2 −M2 + iε
, (2.34)

where we used that the trace over /p vanishes and sinceM comes with a 1 in Dirac, flavour
and colour space, we get an additional factor of 4NfNc. We define the elementary integral

iI1 = iI1(M) := i

∫ d4k

(2π)4
1

p2 −M2 + iε
, (2.35)

which appears in the above expression. It is shown in Appendix C.1 that this integral
can be brought into the form

iI1 = 1
2

∫ d3k

(2π)3
1
E~k

= 1
4π2

∫ ∞
0

dk k2
√
k2 +M2

(2.36)

by application of the residue theorem, where we define E~k :=
√
~k2 +M2. Unfortunately,

the integral iI1 is divergent and needs to be regularised. The regularisation technique
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will be discussed in Section 2.3. Let us assume we have found a method to make the
value of the integral finite. Then we have

Σ = 8NfNcgMiI1(M) (2.37)

for the self-energy and plugging this in into (2.30) yields the gap equation

M = m+ 8NfNcgMiI1(M). (2.38)

This equation can now be solved for the constituent mass M = M(g,m). A priori we
do not know whether a solution to this equation exists and if so whether it is unique. It
turns out that for m 6= 0 there is only one positive solution. For m = 0 there is always
the trivial solution M = 0 in addition to a possible positive and negative solution. We
will of course always choose M to be non-negative. In Chapter 3 we will encounter the
gap equation again for finite temperature and chemical potential. In that case there may
be several (positive) solutions and the one physical solution would have to be determined
by minimising the grand potential. However, for the purposes of this work we will only
consider the case of vanishing quark chemical potential µ, in which case the solution is
always unique.

2.3. Regularisation
We stated in Section 2.2 that the integral

iI1 = i

∫ d4k

(2π)4
1

k2 −M2 + iε
, (2.39)

which appeared in the expression for the self-energy, does not converge to a finite value.
In fact it diverges quadratically. This can be seen simply from counting the powers of
k in the numerator and in the denominator. In order to get a finite integral value, we
must regularise it by suppressing the large-momentum contributions. There exist several
methods of doing so. We will employ Pauli-Villars regularisation for the purposes of this
thesis and shall present it for the example of iI1.

Pauli-Villars Regularisation
A commonly used regularisation method is Pauli-Villars regularisation [59]. Instead of
introducing a sharp momentum cutoff, the asymptotic behaviour of the integrand is
changed such that the integral converges. This can be achieved by subtracting functions
which have a small contribution for small momenta but asymptotically behave like the
integrand itself. For the Pauli-Villars regularisation we replace the original integrand
f(k,M) by a weighted sum of modified integrands with different masses, i.e.

i

∫ d4k

(2π)4 f(k,M)→ i

∫ d4k

(2π)4

n∑
i=1

fi(k,Mi). (2.40)
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In order to regularise the integral iI1(M) (which is quadratically divergent) from the
previous section (at least) two regularisation functions are needed. We will regularise it
by the replacement

i

∫ d4k

(2π)4 f(k,M)→ i

∫ d4k

(2π)4

(
f(k,M)− 2f(k,

√
M2 + Λ2) + f(k,

√
M2 + 2Λ2)

)
(2.41)

with a (soft) cutoff scale Λ. The integral iI1 exhibits the highest order of divergence of
any momentum integral that will appear in this work. We will later encounter momentum
integrals which are only logarithmically divergent or convergent without the need for
regularisation but for consistency we will use the above regularisation scheme for all
appearing momentum integrals.
For practical calculations we can make use of the linearity of the integral and convert

each of the three integrands via the residue theorem as we did for the unregularised
integrand (see (2.36)). For the given example, we get

iI1 = 1
2

∫ d3k

(2π)3

 1√
~k2 +M2

− 2 1√
~k2 +M2 + Λ2

+ 1√
~k2 +M2 + 2L2


= 1

4π2

∫ ∞
0

dk
(

k2
√
k2 +M2

− 2 k2
√
k2 +M2 + L2

+ k2
√
k2 +M2 + 2L2

)
.

(2.42)

The latter integral can be calculated analytically and gives

iI1 = 1
16π2

(
M2 ln(M2)− 2(M2 + Λ2) ln(M2 + Λ2) + (M2 + 2Λ2) ln(M2 + 2Λ2)

)
= 1

16π2

(
M2 ln

(
M2

M2 + Λ2

)
+ (M2 + 2Λ2) ln

(
M2 + 2Λ2

M2 + Λ2

))
.

(2.43)

As mentioned before, we will use Pauli-Villars regularisation for all the calculations
performed in this thesis. We will later encounter integrals which are Lorentz scalars
depending on one or more external momentum. Pauli-Villars regularisation preserves
the Lorentz invariance in contrast to other regularisation methods (like introducing a
three-momentum cutoff). Moreover, using a sharp momentum cutoff we would have to
take care of the domain of integration when making substitutions in the integrals, which
we will do on numerous occasions in this work. With Pauli-Villars regularisation, the
integration is over all four-momenta and hence this problem does not occur.

2.4. Constituent Quark Masses
In the following, some numerical results for the gap equation in the simple NJL model
using Pauli-Villars regularisation will be presented. Our choice of the model parameters
m, g and Λ is taken from [60]. The parameters are chosen such that the pion mass (see
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Param. Set [A] [B] [C] [D] [E]
m [MeV] 6.13 6.40 6.77 6.70 6.54
Λ [MeV] 800 800 800 820 852
gΛ2 2.90 3.07 3.49 3.70 4.16

M [MeV] 260.5 303.1 395.0 446.3 549.4

Table 2.1.: The model parameters (m, g and Λ) using Pauli-Villars regularisation and
the resulting value of the constituent quark mass M .

Section 2.5.1) is mπ = 140.0 MeV. The parameter sets are labelled [A] - [E] and are
shown in Table 2.1.
Solving the gap equation (2.38) amounts to finding the root(s) of the function f(x),

where
f(x) = m̃+ x

[
g̃

(
x2 ln

(
x2

x2 + 1

)
+ (x2 + 2) ln

(
x2 + 2
x2 + 1

))
− 1

]
(2.44)

with x = M/Λ, m̃ = m/Λ and g̃ = 8NfNcgΛ2/(16π2). The (non-zero) solution to the
above transcendental equation can only be found numerically.
For m > 0 there is a unique solution M > m. In the chiral limit, i.e. for m = 0 the

situation is more complicated. For g̃ < g̃crit. ≈ 0.721 there is only the trivial solution
M = 0 (hence there is no dynamic mass generation) and for g̃ > g̃crit. the gap equation
has the trivial solution M = 0, which we discard, and a proper solution M > 0. The
situation is depicted in Figure 2.1. For the choice of parameters [A] - [E] we get the

g

M/Λ

0.05

0.10

0.15

0.20

0.25

~
0.2 0.4 0.6 0.8

Figure 2.1.: Value of the constituent M quark mass for different values of m̃ and g̃. The
different lines correspond to m̃ = m/Λ = 0, 0.005, 0.01, 0.015, 0.02 (from
bottom to top).

values of M shown in Table 2.1.
In the chiral limit (m = 0) a non-zero constituent quark mass is a result of spontaneous

chiral symmetry breaking, which leads to a dynamical mass generation. This symmetry
breaking sets in for sufficiently large coupling g (in units of 1/Λ2). For a small bare
quark mass m the mechanism is in principle the same, but only approximate.
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2.5. Mesons
In the following we want to present the description of mesons in the NJL model. The NJL
model does not confine, but we can still describe mesons as collective modes appearing in
the quark-antiquark interaction channel. This is common practice in NJL model studies
and can be achieved via the Bethe-Salpeter equation3 (BSE) describing the bound states
of a two-body quantum field theoretical system.
The Bethe-Salpeter equation (BSE) in random phase approximation (RPA) reads

= +
k

(2.45)

or in explicit form

= +
k

+
k1 k2 + . . .

(2.46)

Again, we only consider diagrams of leading order in 1/Nc. We will later (see Section 5.5)
also include diagrams of higher order in 1/Nc.

General Model
Let us first discuss the Bethe-Salpeter equation for the general Lagrangian (2.13). We
call the left hand side of the equation scattering matrix denoted by iT (p), where p is
the four-momentum transported by the double shaded line (later to be interpreted as
the momentum of the exchanged meson). To evaluate the right hand side we define the
polarisation loop

JM,N (p) := i

∫ d4k

(2π)4 Tr (ΓMS(k + p)ΓNS(k)) . (2.47)

(or more generally Jµν,abM,N (p) := i
∫ d4k

(2π)4 Tr(Γµ,aM S(k + p)Γν,bN S(k)), where not all of the
indices have to be present.) Diagrammatically the polarisation loop is represented by

− iJM,N (p) = . (2.48)

3The Bethe-Salpeter equation is named after Hans Bethe and Edwin Salpeter [61], but was actually
first mentioned in a paper by Nambu [62].
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After a careful evaluation of the Feynman diagrams the explicit equation (2.46) reads

iT (p) = iK + i
∑
M,N

(2gM )(2gN )ΓM ⊗ ΓNJM,N (p)

+ i
∑

M,K,N

(2gM )(2gK)(2gN )ΓM ⊗ ΓNJM,K(p)JK,N (p) + . . .
(2.49)

We write

iK = i
∑
M

KM = i
∑
M

2gMΓM ⊗ ΓM = i
∑
M,N

2gMδMNΓM ⊗ ΓN , (2.50)

which together with the above shows that we can write T (p) as

T (p) =:
∑
M,N

TM,N (p) =: −
∑
M,N

ΓM ⊗ ΓNDM,N (p) (2.51)

(or more generally TM,N (p) = −ΓaM,µ ⊗ ΓbN,νD
µν,ab
M,N (p)), where the minus sign is again a

convention. All the matrix structure is in the ΓM ’s and hence DM,N (p) is a scalar-valued
function, which we call a generalised meson propagator. It is in explicit form given by

DM,N (p) = −2gMδM,N − (2gM )(2gN )JM,N (p)
−
∑
K

(2gM )(2gK)(2gN )JM,K(p)JK,N (p)− . . . (2.52)

Either by summing up the above equation or by directly evaluating the implicit dia-
grammatic equation, we obtain the implicit equation for DM,N (p)

DM,N (p) = −2gMδM,N +
∑
K

2gMJM,K(p)DK,N (p). (2.53)

(More generally, Dµν,ab
M,N (p) = −2gMδM,Nδabη

µν +
∑
K 2gMJac,µλM,K (p)Dcb, ν

K,Nλ (p), where
each of the Lorentz or isospin indices might or might not appear. If DM,N (p) has
only one Lorentz or isospin index, then necessarily M 6= N and δM,N = 0, which means
that the corresponding term in the equation vanishes, even though δab and ηµν are not
well-defined for only one index.)
If we consider DM,N (p) as entry of the matrix (DM,N (p))M,N , the above equation

becomes a matrix equation, which can easily be solved:

DK,N (p) =
[
2 (gMJM,K(p))− (δM,K)

]−1

K,M
2gMδM,N , (2.54)

where [ · ]−1 denotes the matrix inverse. The solution DM,N (p) one obtains is in general
a matrix with non-vanishing off-diagonal entries. By a change of basis (depending on p)
we can bring it into a diagonal form.
Let us for the moment without loss of generality assume that DM,N (p) is already

diagonal, i.e.
DM,N (p) =: δM,NDM (p). (2.55)
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This is the case if and only if the polarisation loop JM,N (p) is diagonal, i.e.

JM,N (p) =: δM,NJM (p). (2.56)

In that case equation (2.53) simplifies to

DM (p) = −2gM + 2gMJM (p)DM (p), (2.57)

which yields
DM (p) = −2gM

1− 2gMJM (p) . (2.58)

DM (p) is referred to as the propagator of the meson M , which is justified in view of the
definition of DM (p) via the scattering matrix TM (p). This is however a bit misleading
since in fact DM (p) not only is the propagator for the mesons but it also contains the
coupling of the quarks to the meson. So, we can write

DM (p) = gMqq(p)DM (p)gMqq(p), (2.59)

where gMqq(p) is the quark-meson coupling and DM (p) is the actual meson propagator
(see below for a more detailed discussion). However, since often only DM (p) appears in
the calculations, we will mainly use the first definition but one should keep the above
said in mind for the evaluation of Feynman diagrams. To be exact, the shaded double
line in equation (2.45) corresponds to

= iDM (p) (2.60)

and the quark-meson vertex ΓMqq(p) is given by

= iΓMqq(p) = iΓMgMqq(p). (2.61)

Simple Model
Let us now turn to the discussion for the case of the simple NJL model with only a scalar
and a pseudoscalar interaction channel with coupling strength g. The meson index M
runs over {σ, π}. It is apparent that JM,N (p) vanishes for M 6= N since the trace over
one Pauli matrix τa vanishes. Hence JM,N (p) and DM,N (p) are indeed diagonal in that
case. We will refer to Dσ(p) as the propagator of the σ meson and to Dab

π (p) as the pion
propagator.
In order to calculate the meson propagators, we first need to calculate the polarisation
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loop JM (p) for M ∈ {σ, π}. The calculation can be found in Appendix B.1 and yields

Jσ(p) = 4NcNf iI1 − 2NcNf(p2 − 4M2)iI2(p)

= 1
2g

(
1− m

M

)
− 2NcNf(p2 − 4M2)iI2(p),

Jabπ (p) = δab
(
4NcNf iI1 − 2NcNfp

2iI2(p)
)

= δab

( 1
2g

(
1− m

M

)
− 2NcNfp

2iI2(p)
)

=: δabJπ(p),

(2.62)

where
iI1 = i

∫ d4k

(2π)4
1

k2 −M2 + iε
=
∫ d3k

(2π)3
1

2E~k
(2.63)

is the elementary integral we already defined in Section 2.2 and

iI2(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε) ((k + p)2 −M2 + iε) . (2.64)

By application of the residue theorem (see Appendix C.2) we can write the latter
integral as

iI2(p) =
∫ d3k

(2π)3
1
E~k

1
p2

0 − (E~k + E
~p+~k)2 + iε

. (2.65)

This integral also needs to be regularised and we will apply the same regularisation
scheme as for iI1, i.e Pauli-Villars regularisation with two regulators. The integral
can even be computed analytically. The calculation and its result (C.35) are given in
Appendix C.3). The integral iI2 only depends on p2 rather than the four-vector p.
Therefore also Jπ and Jσ only depend on p2.
With the polarisation functions we can calculate the meson propagators according to

(2.58). For the sigma meson this yields

Dσ(p2) = −2g
1− 2gJσ(p2) . (2.66)

For the pions, we also have to consider the isospin structure of Jabπ (p2). Since this is just
δab, the propagator is also diagonal in isospin space and we get

Dab
π (p2) = δab

−2g
1− 2gJπ(p2) =: δabDπ(p2), (2.67)

which means that the different pion species do not mix.
We can now calculate the (inverse) pion and sigma-meson propagators using the ex-

pressions for Jπ and Jσ. The result is shown in Figure 2.2. A discussion of these
propagators and how to parametrise them is given in the next section.
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Figure 2.2.: The inverse pion propagator D−1
π (p2) (left) and the inverse sigma-meson

propagator D−1
σ (p2) (right) for parameter set [A].

2.5.1. Meson Masses
In the following section we will devise a way to determine the masses of the sigma meson
and the pions from the corresponding propagators. Analogous ideas can be applied to
other mesons in an extended NJL model.
We saw that the meson propagatorDM (p) only depends on p2 forM ∈ {σ, π}. Since we

constructed DM (p2) to play the role of a propagator we also expect it to have according
properties. In particular the propagator should have a pole at the mass of the meson. So
conversely, we should be able to determine the meson masses mM as zeros of the inverse
propagators, i.e.

D−1
M (p2 = m2

M ) != 0. (2.68)

Following the decomposition in (2.59) we should be able to write the meson propagator
as

DM (p2) =
g2
Mqq(p2)
p2 −m2

M

, (2.69)

where the denominator is the inverse of the free meson propagator DM (p2) and the
numerator is the square of the momentum-dependent quark-meson coupling gMqq(p2).
Evaluating the quark-meson coupling at the meson mass (i.e. determining the residue
of the first order pole of the above function) we obtain the on-shell coupling constant

gMqq := gMqq(p2 = m2
M ). (2.70)

We can use this to write the meson propagator in pole approximation as

DM (p2) ≈
g2
Mqq

p2 −m2
M

, (2.71)

which is nothing else but an expansion of DM (p2) around its pole.
So far we have completely neglected the fact that the inverse propagators also have

an imaginary part. This imaginary part occurs for p2 > 4M2 (see Figure 2.2) and is
related to the energetically allowed M → qq̄ decay channel. This is of course related to
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the fact that the NJL model does not confine and we interpreted mesons as collective
modes in the quark-antiquark scattering matrix. For p2 < 4M2 these are bound states
but at larger p2 the meson will decay into an unconfined quark-antiquark pair.
For the pion, we will get a mass mπ � 2M and there will still be a pole of the

propagator. However, for the sigma meson we will get a mass mσ slightly above 2M
and hence there will be no (real) pole because of a non-vanishing imaginary part of the
inverse propagator.
More generally we will need to write

DM (p2) =
g2
Mqq(p2)

p2 −m2
M + iΥM (p2)

(2.72)

where ΥM (p2) = Θ(p2 − 4M2) . . . is the imaginary part of the inverse propagator. This
leads to the so-called resonance approximation of the propagator

DM (p2) ≈
g2
Mqq

p2 −m2
M + iΥM

(2.73)

where gMqq and ΥM are evaluated at p2 = m2
M .

Taking the above into consideration we define the meson mass more generally as the
zero of the real part of the inverse propagator, i.e. by

ReD−1
M (p2 = m2

M ) = 1− 2gReJM (p2 = m2
M ) != 0. (2.74)

This way we can speak of a meson mass even in the case, where the meson propagator
does not have a pole.4
Using the above definition of the meson mass and the propagators in (2.66) and (2.67),

we can determine the pion and sigma-meson masses for parameter sets [A] - [E]. The
result is shown in Table 2.2. As already mentioned, the parameters are chosen such that

Param. Set [A] [B] [C] [D] [E]
M [MeV] 260.5 303.1 395.0 446.3 549.4
mπ [MeV] 140.0 140.0 140.0 140.0 140.0
mσ [MeV] 530.2 613.4 794.7 896.3 1101.4
gπqq 2.713 2.955 3.507 3.768 4.324

Table 2.2.: The masses M , mπ and mσ and the quark-pion coupling gπqq for parameter
sets [A] - [E].

the pion mass is mπ = 140 MeV.

4One should note that there exist several definitions of the meson masses in the case where the propa-
gator does not have a real pole. For example in [48] the authors determine the mass of the mesons
as a pole in the complex plane.
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Expanding the real part of the inverse propagator in p2 around m2
M gives

1− 2ReJM (p2) = −2g dReJM (p2)
d(p2)

∣∣∣∣∣
p2=m2

M

(p2 −m2
M ) +O

((
p2 −m2

M

)2
)

(2.75)

and hence we obtain
g−2
Mqq = dReJM (p2)

d(p2)

∣∣∣∣∣
p2=m2

M

(2.76)

for the on-shell coupling constant in resonance approximation (which for the pion is
the same as the pole approximation). For parameter sets [A] - [E] the value of gπqq is
calculated and presented in Table 2.2. Analogously, ΥM can be obtained via

ΥM = g2
MqqImJM (p2 = m2

M ). (2.77)

Alternative Representation of the Meson Propagator
We show in Appendix B.2 that in the simple model the meson propagator forM ∈ {σ, π}
can be written as

DM (p2) = − 1
2NcNf

(
(p2 − ε2

M )iI2(p2)−m2
πiI2(mπ)

) . (2.78)

with επ := 0 and εσ := 4M2. Here we read iI2(mπ) as iI2 evaluated at some four-
momentum p with p2 = m2

π (since iI2 only depends on p2).

Quark-Pion Coupling Constant
Using the above representation of the meson propagator, we can give a simple expression
for the quark-pion coupling constant. We write the pion propagator as

Dπ(p2) = − 1
2NcNf (p2iI2(p2)−m2

πiI2(mπ)) . (2.79)

and hence

g−2
πqq = lim

p2→m2
π

D−1
π (p)

p2 −m2
π

= −2NfNc lim
p2→m2

π

p2iI2(p)−m2
πiI2(mπ)

p2 −m2
π

= −2NfNc
d
(
p2iI2(p2)

)
d(p2)

∣∣∣∣∣
p2=m2

π

.

(2.80)

Calculating the above expression amounts to computing the derivative of iI2(p2) w.r.t.
p2, which is done in Appendix C.4. The result can be expressed in terms of more general
elementary integrals5 (iI(p), iI(p) and iK(p)), which will be introduced in Section 4.1
(see (4.22) and (4.23)). For the coupling constant this yields

g−2
πqq(mπ) =: g−2

πqq = −NcNf
(
iI(0) + iI(mπ)−m2

πiK(mπ)
)

(2.81)

in accordance with [43]. The elementary integrals only depend on p2 and we again wrote
I(mπ), etc. for I(p) evaluated at some p with p2 = m2

π.
5The integral iI(p) is in fact identical to the integral iI2(p) and is simply given another name in the
context of the yet to be introduced static limit.
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2.6. Chiral Theorems
An important feature of the NJL model is that it focuses on chiral symmetry and its
spontaneous breaking. Consequently we should be able to verify the following chiral
theorems in the simple NJL model. Since they are solely based on symmetry principles
they remain correct in mean field and random phase approximation (leading order in
1/Nc), which do not violate these symmetries.

Goldstone’s Theorem
Equation (2.62) for m = 0 implies directly that

1− 2gJπ(p2 = 0) = 0 (2.82)

and hence we find that the pion mass vanishes in the chiral limit. The pions can be
identified with the massless Nambu-Goldstone bosons predicted by Goldstone’s theorem
[51, 52] related to the fact that the gap equation describes the dynamic generation of a
constituent quark mass which spontaneously breaks the chiral symmetry.
If however m 6= 0 (but small), then the chiral symmetry is only an approximate

symmetry and the pions get a (small) mass as we calculated in the previous section (see
Table 2.2).

Pion Decay Constant
The pion decay constant fπ is the square root of the coefficient of the kinetic term for
the pion in the low-energy effective action of chiral perturbation theory [63]. It can be
viewed as measure for the strength of chiral symmetry breaking. In our model it can be
obtained from the one-pion-to-vacuum matrix element [64] in RPA via

fπp
µδab = gπqq

∫ d4k

(2π)4 Tr
(
γµγ5

τa

2 S(k + p)iγ5τ
bS(k)

)
. (2.83)

Performing the above integration explicitly (see Appendix B.3) one obtains

fπ = −gπqq2NfNcMiI2(mπ), (2.84)

which can also be written as

f2
π = 4NfNcM

2 iI(mπ)2

iI(0) + iI(mπ)−m2
πiK(mπ) , (2.85)

were we used the expression (2.81) for gπqq obtained in the previous section.

Goldberger-Treiman Relation
The pion decay constant should fulfil the following generalised Goldberger-Treiman re-
lation [65]

gπqqfπ = M +O(m), (2.86)

which implies fπ = M/gπqq in the chiral limit.
The pion decay constant is calculated for parameter sets [A] - [E] (see Table 2.3).

Parameter set [A] was chosen to approximately reproduce the literature value fπ =
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Param. Set [A] [B] [C] [D] [E]
m [MeV] 6.13 6.40 6.77 6.70 6.54
fπ [MeV] 93.64 100.50 111.03 116.99 125.88

M − gπqqfπ [MeV] 6.45 6.15 5.73 5.45 5.04

Table 2.3.: The bare quark mass m, the pion decay constant fπ and M − gπqqfπ for
parameter sets [A] - [E].

92.21 MeV = 130.41/
√

2 MeV [66]. It is apparent from the calculated values that the
generalised Goldberger-Treiman relation is fulfilled. If we put m = 0, relation fπ =
M/gπqq can be easily shown to be correct in the NJL model.

Gell-Mann–Oakes–Renner Relation
We stated that for non-vanishing bare quark mass m, pions will not be massless (and
are called pseudo-Goldstone bosons). This statement can be formalised by a systematic
expansion around the chiral limit, which yields the Gell-Mann–Oakes–Renner relation
[67]

m2
π = −m〈ψ̄ψ〉

f2
π

+O(m2). (2.87)

Here, 〈ψ̄ψ〉 denotes the quark condensate, which we will not study in this work (but
it is discussed in Section X.2 of the extension) and is given by 〈ψ̄ψ〉 = −Σ/(2g) =
(m−M)/(2g). In Table 2.4 we verify that the Gell-Mann–Oakes–Renner relation is
fulfilled by our NJL model results. For a better comparison with literature values we

Param. Set [A] [B] [C] [D] [E]
m [MeV] 6.13 6.40 6.77 6.70 6.54
〈ψ̄ψ〉 [MeV3] −(303.90)3 −(313.88)3 −(328.97)3 −(341.82)3 −(361.80)3

〈ψ̄ψ〉/Nf [MeV3] −(241.20)3 −(249.13)3 −(261.10)3 −(271.31)3 −(287.13)3

f2
π + m〈ψ̄ψ〉

m2
π

[MeV2] −10.96 8.51 33.08 38.68 43.78

Table 2.4.: The table shows the values for the chiral condensate 〈ψ̄ψ〉 and the correctness
of the Gell-Mann–Oakes–Renner relation for parameter sets [A] - [E].

also give 〈ψ̄ψ〉/Nf = 〈ψ̄ψ〉/2, the quark condensate per flavour, which is often simply
called quark condensate.
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3. The NJL Model in Medium

So far we have studied quarks and mesons in the NJL model in vacuum, i.e. at zero
temperature. In view of the goal of exploring the phase diagram of QCD, we are however
interested in the medium properties of these particles, which means that we have to
make our calculations in the setting of thermal or finite temperature field theory [68, 69].
Such calculations were made for the NJL model in [70, 71] and in [41, 43] for pion-pion
scattering in particular. It has been suggested that medium effects like temperature-
dependent masses are particularly important [72, 73] in the description of pion-pion
scattering, which we will discuss in Chapter 4.
We have already argued in the introduction that the relevant thermodynamic variables

for the description of QCD matter are temperature T and quark chemical potential µ
corresponding to the conservation of the net quark (or baryon) number, i.e. the number
of quarks minus the number of antiquarks. Since for the moment we will only deal with
this one single chemical potential, we will simply refer to it as ‘the’ chemical potential.
In this chapter we will study the medium properties of the simple NJL model with

Lagrangian given in (2.1).

Thermal Field Theory
Thermal field theory is aimed at the calculation of the expectation value of physical
observables in a quantum field theory at finite temperature. The most commonly used
method is the Matsubara or imaginary-time formalism [74]. The basic principle of the
theory is that the expected value of an operator O in a thermal ensemble

〈O〉 = Tr (O exp(−βH))
Tr (exp(−βH)) (3.1)

(where β = 1/T is the inverse temperature) is identical to the ordinary quantum field
theoretic expectation value with a configuration evolved by an imaginary time t = iβ.
The trace Tr in the above expression leads to the additional requirement that bosonic
fields be periodic and fermionic fields be antiperiodic in the imaginary time direction.
The usual quantum field theoretic tools such as path integrals and diagrammatic tech-
niques may be employed but live now on the ‘tube’ R3×S1 with a compactified imaginary
time coordinate. This compactification in coordinate space leads to a discretisation in
momentum space where a continuous energy coordinate is replaced by discrete imagi-
nary frequencies, the Matsubara frequencies. Finally, to obtain results for observables at
real energies (or real times) an analytic continuation has to be made.
Since the fields we are dealing with are quark fields it suffices to replace the energy

integration in the appearing four-momentum integrals by a sum over fermionicMatsubara

36



frequencies iωj = (2j + 1)πiT (j ∈ Z), i.e.

i

∫ d4k

(2π)f(k)→ −T
∑
j∈Z

∫ d3k

(2π)3 f(iωj + µ,~k) (3.2)

in order to move the description from the vacuum to the medium. The quark chemical
potential µ has been directly incorporated as a real shift in the imaginary energy variable.
If we set µ = 0 and let T → 0 the Matsubara sum becomes again an integration over

the imaginary axis and hence

T
∑
j∈Z

∫ d3k

(2π)3 f(iωj ,~k)→
∫ i∞

−i∞

d(iω)
2π

∫ d3k

(2π)3 f(iω,~k) = −i
∫ d4k

(2π)4 f(k), (3.3)

where we performed a Wick rotation in the last step. This shows that the vacuum
description in Chapter 2 can be recovered from the medium description.

3.1. Mass Gap
Let us study the gap equation in the new setting. It will be formally identical to (2.38)
but with the integral iI1 replaced by an integral iI1(T, µ) according to the above re-
placement scheme (3.2), i.e.

M = m+ 8NfNcgMiI1(T, µ;M), (3.4)

where
iI1(T, µ) = iI1(T, µ;M) = −T

∑
j∈Z

∫ d3k

(2π)3
1

(iωj + µ)2 − E2
~k

. (3.5)

This corresponds to writing the self-energy Σ = 8NfNcgMiI1(T, µ;M) as

Σ = T
∑
j∈Z

∫ d3k

(2π)3 Tr
(
2gS(iωj + µ,~k)

)
. (3.6)

The mass M will then be given as the solution M = M(T, µ;m) of the above equa-
tion (3.4).
The calculation of the integral iI1(T, µ) involves the multiple use of the residue theorem

and is performed in Appendix D.1. The result can be written as

iI1(T, µ) = iIvac1 + iImed
1 (T, µ) (3.7)

with
iIvac1 =

∫ d3k

(2π)3
1

2E~k
(3.8)

where iIvac1 is identical to the vacuum result iI1 obtained in Chapter 2 and

iImed
1 (T, µ) = −

∫ d3k

(2π)3
1

2E~k

(
n~k + n̄~k

)
, (3.9)
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where we defined the quark and antiquark occupation number density

n~k = n~k(T, µ;M) = 1
1 + exp

(
E~k−µ
T

) = nF(E~k − µ) (3.10)

and
n̄~k = n̄~k(T, µ;M) = 1

1 + exp
(
E~k+µ
T

) = nF(E~k + µ) (3.11)

with the Fermi distribution function nF(z) = (1 + exp(z/T ))−1. The medium contri-
bution iImed

1 (T, µ) is finite in contrast to the vacuum contribution iIvac1 . We will hence
regularise the vacuum but not the medium contribution of iI1(T, µ) using Pauli-Villars
regularisation with two regulators (see Appendix D.1 for a more detailed discussion).
The medium contribution iImed

1 (T, µ) vanishes for µ = 0 and T → 0.
We can also define the net quark (number) density

n(T, µ;M) := 2NfNc

∫ d3k

(2π)3

(
n~k(T, µ;M)− n̄~k(T, µ;M)

)
, (3.12)

which is the number density of quarks minus that of the antiquarks.
Plugging in the expression for the integral iI1(T, µ;M) into the gap equation (3.4)

yields M = M(T, µ;m). The results are shown in Section 3.3.

3.2. Mesons
We can of course also move our NJL model description of mesons to the medium. The
Bethe-Salpeter equation will be formally the same, i.e.

DM = −2g + 2gJMDM (3.13)

in the diagonal case (and without isospin or Lorentz indices) with the only difference
being that the contribution from the polarisation loop JM will be calculated in the
Matsubara formalism, i.e.

JM (iωn, ~p) = −T
∑
j∈Z

∫ d3k

(2π)3 Tr
(
S(iωj + µ,~k)ΓMS(iωj + iωn + µ,~k + ~p)ΓM

)
, (3.14)

where the outer Matsubara frequency iωn = 2πinT is a bosonic frequency (related to
~p) and iωj = (2j + 1)πiT is a fermionic frequency (related to ~k). Note that the sum of
a fermionic and a bosonic Matsubara frequency gives a fermionic Matsubara frequency.
The Bethe-Salpeter equation then gives the Matsubara propagator of the meson M

DM (iωn, ~p) = −2g
1− 2gJM (iωn, ~p)

. (3.15)
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As for the vacuum case, we write the polarisation loop JM in terms of elementary
integrals:

Jσ(iωn, ~p) = 4NcNf iI1 − 2NcNf(iω2
n − ~p2 − 4M2)iI2(iωn, ~p),

Jabπ (iωn, ~p) = δab
(
4NcNf iI1 − 2NcNf(iω2

n − ~p2)iI2(iωn, ~p)
)

= δabJπ(iωn, ~p).
(3.16)

Here, iI1 = iI1(µ, T ) (see Section 3.1) and

iI2(iωn, ~p) := −T
∫ d3k

(2π)3

∑
j∈Z

1
(iωj + µ)2 − ~k2 −M2

1
(iωj + iωn + µ)2 − (~k + ~p)2 −M2

(3.17)

are the medium versions of the respective vacuum integrals. It is shown in Appendix D.3
how to further simplify the expression for iI2(iωn, ~p) in analogy to the calculations for
iI1 in Appendix D.1. The result reads

iI2(iωn, ~p) =
∫ d3k

(2π)3

( 1
E~k
−
nF(E~k + µ) + nF(E~k − µ)

2E~kE~k+~p
s~k,~q

)
1

(iωn)2 − s2
~k,~q

−
nF(E~k + µ) + nF(E~k − µ)

2E~kE~k+~p
d~k,~q

1
(iωn)2 − d2

~k,~q

 (3.18)

with s~k,~q := E~k+~p + E~k and d~k,~q := E~k+~p + E~k.

Analytic Continuation
The next step in our description of mesons in the medium will be the analytic contin-
uation of the Matsubara propagator DM (iωn, ~p) to real momenta. Depending on the
nature of this analytic continuation we get the advanced, retarded or Feynman version
of the propagator.
The retarded propagator D+

M (p0, ~p) is obtained from the Matsubara propagator by
the substitution iωn 7→ p0 + iε while the advanced propagator D−M (p0, ~p) is obtained by
substituting iωn 7→ p0 − iε and only differs from the retarded propagator in the sign of
the imaginary part. For definiteness we choose to use the retarded propagator from now
on, keeping in mind the close relation between the two propagators.
The retarded polarisation loops J+

M are

J+
π (p0, ~p) = 4NcNf iI1 − 2NcNf(p2

0 − ~p2)iI2(p0 + iε, ~p),
J+
σ (p0, ~p) = 4NcNf iI1 − 2NcNf(p2

0 − ~p2 − 4M2)iI2(p0 + iε, ~p).
(3.19)

Here, the retarded integral iI+
2 := iI2(p0 + iε, ~p) takes the form

iI+
2 (p0, ~p) =

∫ d3k

(2π)3

( 1
E~k
−

n~k + n̄~k
2E~k+~pE~k

s~k,~p

)
1

(p0 + iε)2 − s2
~k,~p

−
n~k + n̄~k
2E~k+~pE~k

d~k,~p
1

(p0 + iε)2 − d2
~k,~p

 .
(3.20)
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As described in Appendix D.3 we can again split the integral into a vacuum and a
medium contribution

iI+
2 (p0, ~p) = iI+,vac

2 (p0, ~p) + iI+,med
2 (p0, ~p). (3.21)

The vacuum contribution is obtained from iI+
2 (p0, ~p) for T, µ→ 0 and given by

iI+,vac
2 (p0, ~p) =

∫ d3k

(2π)3
1
E~k

1
(p0 + iε)2 − s2

~k,~p

=
{
iI2(p2), if p0 > 0(
iI2(p2)

)∗
, if p0 < 0

, (3.22)

which is just the integral iI2(p2) we obtained in the vacuum discussion (see (2.65)) mod-
ulo a possible complex conjugation depending on the fact that we calculated the retarded
rather than the Feynman expression of the integral. The vacuum part is divergent and
will be regularised as described in the previous chapter.
The rest of the integral is the medium part

iI+,med
2 (p0, ~p) = −

∫ d3k

(2π)3
n~k + n̄~k
2E~k+~pE~k

 s~k,~p
(p0 + iε)2 − s2

~k,~p

+
d~k,~p

(p0 + iε)2 − d2
~k,~p

 , (3.23)

which is convergent and will not be regularised. The medium part explicitly depends
on p0 and ~p (see also comment below). The real and imaginary part of iI+,med

2 (p0, ~p)
are conveniently treated separately. The imaginary part can be integrated analytically
and the calculations as well as the rather lengthy result are given in Appendix D.3. The
real part can then be obtained from the imaginary part using a Kramers-Kronig relation
[75, 76] as is also described there.

Meson Masses
The following considerations will be analogous to the vacuum description (see Sec-
tion 2.5.1). The retarded meson propagator should have a singularity at the meson’s
mass mM . In pole approximation we write

D+
M (p0, ~p) ≈

g2
Mqq

p2
0 − ~p2 −m2

M

(3.24)

(treating p0 and ~p separately in contrast to the vacuum case). This corresponds to the
inverse propagator having a zero at the meson mass. More generally, to account for a
possible imaginary part of the inverse propagator, we will again focus on the real part
of the inverse propagator and define the meson mass via

1− 2gReJ+
M

(
p0 = ±

√
m2
M + ~p2, ~p

)
!= 0. (3.25)

We could have equally well used the advanced or the Feynman propagator. They are
related via complex conjugation depending on the sign of p0 an hence they will all yield
the same mass according to the above definition.
The resulting mass mM will of course depend on T and µ but also on the three-

momentum ~p, which is the momentum of the meson relative to the thermal medium.
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This is different to the vacuum case, where JM only depends on p2 because all expressions
had to be Lorentz covariant due to the lack of a special frame of reference. The meson
masses in the medium show in fact a slight dependence on |~p| and in calculations we will
set ~p = 0 (and hence p2 = p2

0) for the determination of the meson masses. The integral
iI+

2 (p0, ~p) for the special case ~p = 0, which is needed in the calculations, is calculated in
Section D.2 of the Appendix and yields a much simpler result than the one for general
~p calculated in Appendix D.3.

Quark-Pion Coupling Constant
Generalising formula (2.81) for the quark-pion coupling from the vacuum to the medium
case (with vanishing three-momentum ~p) yields

g−2
πqq = −NcNf

(
iI+(0, 0) + iI+(mπ, 0)−m2

πiK
+(mπ, 0)

)
. (3.26)

Here we use the expressions for the elementary integrals iI+ and iK+ calculated in
Appendix D.2.

3.3. Results
Calculating all the medium quantities as described in the preceding sections of this
chapter, we can present numerical results for the constituent quark mass and the meson
masses depending on T . The results are in agreement with [46, 38] and shall only serve
as a starting point for the following chapters.

Constituent Quark Mass
Let µ = 0. We observe that the constituent quark mass is maximal for T = 0 and
takes the vacuum value we calculated in Section 2.4 corresponding to the spontaneous
breaking of the (approximate) chiral symmetry. Hence the constituent quark mass M is
much larger than the bare quark mass (which explicitly breaks chiral symmetry). For
increasing temperature, M becomes smaller corresponding to the restoration of chiral
symmetry. This happens via a crossover (i.e. M is a smooth function of T ). The result
for parameter set [C] is shown in Figure 3.1. The plot also shows the result in the chiral
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Figure 3.1.: Constituent quark mass M at µ = 0 as function of T for parameter set [C]
(solid line) and in the chiral limit (dashed line).
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limit, i.e. for the modified parameter set [C] with m = 0. In that case there is a second
order phase transition (i.e. M is a continuous but not differentiable function of T ) at a
critical temperature of Tc = 207.7 MeV.

Meson Masses
We finally calculate the masses of the π and σ mesons as functions of temperature T
for µ = 0. The results are shown in Figure 3.2. Let us first discuss the results in the
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Figure 3.2.: Masses of π and σ mesons for µ = 0 as a function of T for parameter set [A]
(left) and in the chiral limit (modified parameter set [A], right). They are
compared with twice the constituent quark mass M .

chiral limit. For small T , chiral symmetry is spontaneously broken and the pions are
the corresponding massless Goldstone bosons. At T ≈ 160 MeV there is a second-order
phase transition to the chirally symmetric phase. The pions become massive and their
mass becomes larger with increasing T . The σ meson is massive in the broken phase
and has exactly twice the constituent quark mass M . Since M drops to zero at the
temperature of the phase transition, the σ meson is here massless as well. Whilst the
constituent mass is zero in the chirally symmetric phase, the mass of the π and the σ
are degenerate and hence the σ becomes heavier again for larger T .
For a non-vanishing bare quark mass m, the chiral symmetry is only approximate and

hence the pion is not massless at zero temperature, however much lighter than two times
the constituent quark mass, which is approximately the mass of the σ meson. For larger
T there is a crossover to the chirally symmetric phase: the pion becomes heavier and the
constituent quark mass drops. The sigma meson and the pion become nearly degenerate
in mass for large T .
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4. Pion-Pion Scattering

In the following we want to study the scattering of pions in the simple NJL model,
which incorporates pions and sigma mesons [41, 43, 40]. We will consider diagrams in
lowest order of a 1/Nc expansion scheme. We will for the first time give fully momentum
dependent solutions of the invariant matrix elements for these diagrams in vacuum (see
(4.21) and (4.37)). The following derivations will be made in the vacuum case but the
generalisation to finite temperatures (see Section 4.4) is achieved by calculating medium
expressions for the appearing elementary integrals. However, in order to do so we will
have to make some simplifications.

Scattering Theory
We are interested in the invariant matrix element iMab;cd

ππ describing the reaction

πa + πb → πc + πd (4.1)

where a, b, c, d are the isospin indices of the pions. The pions are on-shell (i.e. p2
i = m2

π)
and have four-momenta p1, p2, p3 and p4 with pi = (

√
m2
π + ~p2

i , ~pi)t where ~p1, ~p2, ~p3 and
~p4 are the corresponding three-momenta. The invariant matrix element is related to the
T -matrix in scattering theory via [58]

〈πc, ~p3;πd, p4|iT |πa, ~p1;πb, ~p2〉 = (2π)4δ(4)(p1 +p2−p3−p4)iMab;cd
ππ (p1, p2, p3, p4). (4.2)

The vacuum matrix elements iMab;cd
ππ are Lorentz scalars (which is why they are called

invariant matrix elements). The δ-distribution in the above expression suggests that we
need to calculate the invariant matrix elements for momenta with p1 + p2 = p3 + p4, i.e.
with four-momentum conservation.
As the matrix elements are Lorentz invariant we can calculate them in any frame of

reference. It is advantageous to work in the center-of-mass frame (see Figure 4.1), in
which ~p1 = −~p2 =: ~p and by momentum conservation ~p3 = −~p4 =: ~p′. The zeroth
components of the four-momenta are determined by the on-shell condition and given by
E =

√
~p2 +m2

π and E′ =
√
~p′2 +m2

π, respectively. Energy conservation E = E′ then
requires ~p2 = ~p′2. Hence the matrix elements only depend on the two quantities ~p2 and
cosϑ := ~p·~p′

~p2 .

Mandelstam Variables
Another convenient description of the kinematics can be obtained using the Mandelstam
variables [77]

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (4.3)

They are by definition Lorentz invariant quantities and again encode all the necessary
information for the invariant matrix elementsMab;cd

ππ of the scattering process 1 + 2 →
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Figure 4.1.: Scattering process 1 + 2→ 3 + 4 in the center-of-mass system (CMS).

3 + 4. We can hence writeMab;cd
ππ =Mab;cd

ππ (s, t, u). Considering on-shell particles with
masses m1, . . . ,m4 the Mandelstam variables fulfil the relation

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4 (4.4)

and so in case of pion-pion scattering

s+ t+ u = 4m2
π. (4.5)

This means also that only two of the three Mandelstam variables are independent.
The situation is however even more restricted. A simple calculation shows that in our

case (with all masses equal) the Mandelstam variables obey

s ≥ 4m2
π, t ≤ 0, u ≤ 0. (4.6)

The situation is depicted in Figure 4.2. There is a certain physically accessible region
in the s-t-u-plane. If the masses of the involved particles are not the same, the picture
will be similar but the physical region will have a more complicated shape.
If we are in the center-of-mass frame as described above, one easily calculates

s = 4m2
π + 4~p2, t = −4~p2 sin2(ϑ/2), u = −4~p2 cos2(ϑ/2). (4.7)

Parametrisation of the Matrix Elements
In general the invariant matrix element for pion-pion scattering can be written in terms
of three unknown functions

Mab;cd
ππ (s, t, u) = A(s, t, u)δabδcd +B(s, t, u)δacδbd + C(s, t, u)δadδbc, (4.8)

where each function corresponds to a different isospin channel [41]. Making use of perfect
crossing symmetry even yields

A(s, t, u) = B(t, s, u) = C(u, t, s). (4.9)
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Figure 4.2.: Mandelstam variables plotted into the s-t-u-plane with the condition s+ t+
u = 4m2

π. The physically accessible region is shaded grey.

Moreover, one can project out the amplitudes MI
ππ of definite total isospin I = 0, 1, 2

[78]. This gives

M0
ππ = 3A(s, t, u) +B(s, t, u) + C(s, t, u),

M1
ππ = B(s, t, u)− C(s, t, u),

M2
ππ = B(s, t, u) + C(s, t, u).

(4.10)

Large Nc Expansion
We want to calculate the invariant matrix elements by evaluating the simplest possible
diagrams for pion-pion scattering in the NJL model. These are shown in Figure 4.3. The

σ

Figure 4.3.: Pion-pion scattering via the box diagram (left) and via a sigma-meson ex-
change (right).

first diagram is called box diagram for obvious reasons. The interaction takes place via a
quark box. The second diagram is called sigma-propagation diagram since the scattering
process is mediated by a sigma meson (in RPA) as described in the previous chapters.
The pions are coupled to the sigma meson via a quark triangle. Since two pions cannot
scatter into one single pion because of parity and angular momentum conservation there
is no ‘pion propagation diagram’.
In principle there are of course many more diagrams contributing to pion-pion scat-

tering in the NJL model. By doing a systematic 1/Nc expansion [79] one finds that these
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two diagrams are indeed the two leading order diagrams in 1/Nc [46, 38]. The advan-
tage of such an expansion is that taking all diagrams up to a given order preserves the
symmetry properties of the theory, which will be very useful in the following discussions.
The ingredients for describing pion-pion scattering are the quark propagator S, the

quark-meson vertex ΓMqq and for the sigma-propagation diagram also the meson prop-
agator DM . We have computed these quantities in Chapter 2.

4.1. Sigma-Propagation Diagram
We will begin by calculating the contribution from the sigma-propagation diagram. In
fact, there are three different Feynman diagrams, each of which is characterised by the
Mandelstam variable associated to the momentum of the intermediary sigma meson.
Accordingly, we name them s-, t- and u-channel diagram (see Figures 4.4, 4.5 and 4.6).
These diagrams are all related by a relabelling of momenta and isospin indices. There are
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Figure 4.4.: s-channel.
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Figure 4.5.: t-channel.
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Figure 4.6.: u-channel.

four external momenta p1, . . . , p4 and two internal momenta k1, k2 (one for each quark
triangle), over which we integrate. In the evaluation of the Feynman diagrams there is
an additional factor of 2 for each quark triangle since in each quark triangle one could
have drawn the quark lines with arrows in the opposite direction. This would give the
same contribution since the minus sign arising from the Dirac trace will be cancelled by
another minus sign arising from flavour factors.
In the following we will evaluate the diagram for the s-channel and subsequently

obtain the expressions for the other channels by an appropriate relabelling of indices
(see (4.20)).
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s-Channel
For the s-channel we straightforwardly get

iMab;cd
ππ,s = (−2)

∫ d4k1
(2π)4 Tr (iΓaπgπqq(p1)iS(k1 + p1)iΓσgσqq(p1 + p2)iS(k1 − p2) ×

×iΓbπgπqq(p2)iS(k1)
)

(iDσ(p1 + p2))(−2)
∫ d4k2

(2π)4 Tr×

×
(
iΓdπgπqq(p4)iS(k2 − p4)iΓσgσqq(p1 + p2)iS(k2 + p3)iΓcπgπqq(p3)iS(k2)

)
,

(4.11)

which we can simplify to

Mab;cd
ππ,s = −g4

πqq2i
∫ d4k1

(2π)4 Tr
(
γ5τ

aS(k1 + p1)S(k1 − p2)γ5τ
bS(k1)

)
×

× (Dσ(p1 + p2))2i
∫ d4k2

(2π)4 Tr
(
γ5τ

dS(k2 − p4)S(k2 + p3)γ5τ
cS(k2)

)
,

(4.12)

where we replaced gπqq(pi), which only depends on p2
i = m2

π by the corresponding on-
shell expression gπqq (see Section 2.5.1).
As a next step we calculate the trace over flavour and colour space. Using

tr(τaτ b) = 1
2 tr({τaτ b}) = 1

2 tr(2δab1) = Nfδab (4.13)

we get

Mab;cd
ππ,s = −δabδcd(2NfNc)2g4

πqqi

∫ d4k1
(2π)4 tr (S(k1 + p1)S(k1 − p2)S(−k1))×

× (Dσ(p1 + p2))i
∫ d4k2

(2π)4 tr (S(k2 − p4)S(k2 + p3)S(−k2)) ,
(4.14)

where we also eliminated the γ5-matrices via γ5S(p)γ5 = S(−p) for arbitrary p.
The most cumbersome part of our calculations will be the evaluation of the Dirac

traces and momentum integrals in the above expressions for the quark triangles. In
general we have to deal with an integral of the form

i4p,q := i

∫ d4k

(2π)4 tr (S(−k)S(k + p)S(k + q)) , (4.15)

where p and q are arbitrary four-momenta. We call i4p,q the quark triangle. Evaluating
the traces and making clever substitutions in the integrals, one finds after some steps
(see Appendix E.1) that the quark triangle can be written in the form

i4p,q = −4MiI2(p− q) + 4M(p · q)iI3(p, q), (4.16)

47



where we defined the elementary integral6

iI3(p, q) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε) (4.17)

and iI2(p) is the integral we defined in Section 2.5.
The integral iI3(p, q) is in principle of the same kind as iI1 and iI2(p) but more

difficult to evaluate due to its more complicated momentum dependence. It depends on
the Lorentz scalars p2, q2 and p · q. A general treatise on the so-called scalar one-loop
integrals can be found in [80, 81, 82]. The main ideas and results will be described in
Appendix C.5. The integral iI3(p, q) (and also the integral iI4(p, q, r), which we will
define later) are implemented in the LoopTools package [83], which can be obtained
from [84].
Putting all our findings together we can write down the s-channel matrix element in

the form

Mab;cd
ππ,s = −δabδcd(2NfNc)2g4

πqqi4p1,−p2 Dσ(p1 + p2)i4−p4,p3 . (4.18)

As we are studying on-shell pions, p2 = q2 = m2
π for each of the quark-triangles we

evaluated above. Hence I3(p, q) = I3(p2, q2, p · q) only depends on p · q or alternatively
(p − q)2 = 2(m2

π − p · q). We can therefore also write i4p,q = i 4
(
(p− q)2). This

means in particular that both quark triangles evaluate to the same result. Similarly, the
sigma-meson propagator Dσ(p2) only depends on p2 and using Mandelstam variables we
can write the above result as

Mab;cd
ππ,s = −δabδcd(2NfNc)2g4

πqq(i4 (s))2Dσ(s). (4.19)

Further Channels
There is a general replacement scheme which allows us to write down the results for
the other two channels without further calculations. To get from the s-channel to the
t-channel or the u-channel, we need to perform the following replacements:

Channel Quantity
s p1 p2 p3 p4 s t u a b c d
t p1 −p3 −p2 p4 t s u a c b d
u p1 −p4 p3 −p2 u t s a d c b

(4.20)

The table is to be read in the sense that to get from one channel to another we have to
replace all the quantities in the corresponding row by those in the other row.

6The integral iI3(p, q) is convergent in contrast to iI1 and iI2(p) and hence does not need to be
regularised. We will nonetheless also apply the Pauli-Villars regularisation scheme to this integral
for reasons of consistency. Note however that the difference between the regularised version and the
original iI3(p, q) is rather negligible. The same is true for the integral iI4(p, q, r) (see (4.36)) where
we will also apply the Pauli-Villars regularisation scheme with two regulators.

48



In the above case the replacement is rather simple, yielding

Mab;cd
ππ,s = −δabδcd(2NfNc)2g4

πqq(i4 (s))2Dσ(s),

Mab;cd
ππ,t = −δacδbd(2NfNc)2g4

πqq(i4 (t))2Dσ(t),
Mab;cd

ππ,u = −δadδbc(2NfNc)2g4
πqq(i4 (u))2Dσ(u).

(4.21)

All matrix elements are identical functions of one variable, where in each channel the
result depends on the Mandelstam variable giving the channel its name.

Static Limit
So far in most other publications on NJL pion-pion scattering only the limiting case for
s = 4m2

π and t = u = 0 has been studied. In this case, it is easy to show that all the
momenta of the incoming and outgoing particles have to be equal, i.e. p1 = p2 = p3 =
p4 =: p. Hence, in the center-of-mass frame all (incoming and outgoing) pions are at
rest, which is the reason why this limiting case is called static limit.
We will study the static limit because we will only be able to give the medium ex-

pressions for the elementary integrals iI1 and iI2(p) and for special cases (corresponding
to the static limit) of the integrals iI3(p, q) or iI4(p, q, r). For the latter two a general
temperature-dependent expression has yet to be found.
To obtain the static limit matrix elements we begin from (4.21) and evaluate i4 (p2)

and Dσ(p2) at p2 = 4m2
π for the s-channel and at p2 = 0 for the t- and u-channel. We

first calculate i4 (4m2
π) = i4p,−p and i4 (0) = i4p,p, which now only depend on one

external momentum p.
Following [40] we define the elementary integrals7

iI(p) := iI2(p) = i

∫ d4k

(2π)4
1

(k2 −M2 + iε)
1

((k + p)2 −M2 + iε) ,

iK(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)2
1

((k + p)2 −M2 + iε) ,

iL(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)2
1

((k + p)2 −M2 + iε)2 .

(4.22)

The integrals iI, iK and iL only depend on p2 rather than the four-vector p. In fact,
by performing the k0-integration these integrals can be written as the following radial
momentum integrals [41]

iI(p2) = 1
2π2

∫ ∞
0

dk k2

E~k(p2 − 4E2
~k

+ iε)
,

iK(p2) = 1
8π2

∫ ∞
0

dk
k2(12E2

~k
− p2)

E3
~k
(p2 − 4E2

~k
+ iε)2 ,

iL(p2) = 1
4π2

∫ ∞
0

dk
(20E2

~k
− p2)k2

E3
~k
(p2 − 4E2

~k
+ iε)3 .

(4.23)

7The integral iL(p) will only be needed later for the evaluation of the box diagram in the static limit
(see Section 4.2).

49



We performed this calculation for iI(p2) in Appendix C.2. The above integrals can
then be calculated analytically for which some care is needed to take care of the pole
structure of the integrand. The calculations and the rather lengthy results are given in
Appendix C.3.
The results for the special cases of the quark triangles i4p,p and i4p,−p can be ex-

pressed in terms of these elementary integrals and one finds (see Appendix E.2)

i4p,p = −4M
(
iI(0)− p2iK(p)

)
i4p,−p = −4MiI(p)

(4.24)

in agreement with [40]. For an on-shell momentum with p2 = m2
π one obtains i4(4m2

π) =
i4p,−p and i4 (0) = i4p,p.
Next, we calculate Dσ(4m2

π) and Dσ(0). We saw in Section 2.5.1 that we can write
the meson propagator as

DM (p) = − 1
2NcNf

(
(p2 − ε2

M )iI(p2)−m2
πiI(mπ)

) , (4.25)

which yields

Dσ(2p) = − 1
2NcNf ((4m2

π − 4M2)iI(2mπ)−m2
πiI(mπ)) ,

Dσ(0) = − 1
2NcNf (−4M2iI(0)−m2

πiI(mπ))

(4.26)

and for an on-shell momentum p we get Dσ(4m2
π) = Dσ(2p) and Dσ(0) = Dσ(0).

Finally, in equation (2.81) we wrote the quark-pion coupling constant as

g−2
πqq = −NcNf

(
iI(0) + iI(mπ)−m2

πiK(mπ)
)
. (4.27)

Inserting the expression for i4, Dσ and gπqq into (4.21) we obtain

Mab;cd
ππ,s = −δabδcd

8
NfNc

(iI(mπ))2

(iI(0) + iI(mπ)−m2
πiK(mπ))2

((
1− m2

π
M2

)
iI(2mπ) + m2

π
4M2 iI(mπ)

) ,
Mab;cd

ππ,t = −δacδbd
8

NfNc

(
iI(0)−m2

πiK(mπ)
)2

(iI(0) + iI(mπ)−m2
πiK(mπ))2

(
iI(0) + m2

π
4M2 iI(mπ)

) ,
Mab;cd

ππ,u = −δadδbc
8

NfNc

(
iI(0)−m2

πiK(mπ)
)2

(iI(0) + iI(mπ)−m2
πiK(mπ))2

(
iI(0) + m2

π
4M2 iI(mπ)

)
(4.28)

for the matrix elements for pion-pion scattering via sigma-meson exchange in the static
limit, i.e. with s = 4m2

π and t = u = 0.
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Semi-Static Limit
We argued that we make the static limit approximation in order to obtain simpler
expressions for the invariant matrix elements which can also be calculated in a medium
approach. However, completely ignoring the momentum dependence of the sigma-meson
propagator is certainly not a very good approximation, especially when studying the
temperature dependence of the matrix elements (see Section 3.3). On the other hand
only the quark triangles depend on iI3(p, q) while the meson propagator only contains iI1
and iI2(p). The two latter integrals can be calculated in the medium (see Appendices D.1
and D.3). As a compromise between the full momentum dependence and the static limit
it is therefore suggested in [10, 47] to apply the static limit only to the quark triangles
while exactly calculating the sigma-meson propagator. We will call this approximation
semi-static limit. The matrix elements are given by

Mab;cd
ππ,s = −δabδcd(2NfNc)2g4

πqq(i4 (4m2
π))2Dσ(s),

Mab;cd
ππ,t = −δacδbd(2NfNc)2g4

πqq(i4 (0))2Dσ(t),
Mab;cd

ππ,u = −δadδbc(2NfNc)2g4
πqq(i4 (0))2Dσ(u),

(4.29)

where all appearing expressions have been calculated in the two preceding subsections.

4.2. Box Diagram
In the second type of diagram we consider the pion-pion scattering occurring via a quark
quadrilateral or quark box. The box diagram also exists for three different momentum
configurations as shown in Figure 4.7. We label them with 1, 2 and 3. It is apparent that
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Figure 4.7.: All possible box diagrams for pion-pion scattering.

the momentum structure is more complicated than for the sigma exchange diagram but
it is again possible to obtain the expressions for the different channels by an appropriate
relabelling:

Channel Quantity
1 p1 p2 p3 p4 s t u a b c d
2 p1 p2 p4 p3 s u t a b d c
3 p1 −p4 p3 −p2 u t s a d c b

(4.30)
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We evaluate the contribution from the first diagram to be

iMab;cd
ππ,1 = −2

∫ d4k

(2π)4 Tr(igπqq(p1)ΓaπiS(p1 + k)igπqq(p3)ΓcπiS(p1 − p3 + k)×

× igπqq(p4)ΓdπiS(−p2 + k)igπqq(p2)ΓbπiS(k))

= −2g4
πqq

∫ d4k

(2π)4 Tr(γ5τ
aS(p1 + k)×

× γ5τ
cS(p1 − p3 + k)γ5τ

dS(−p2 + k)γ5τ
bS(k)),

(4.31)

where the factor of 2 again comes from the fact that we could have drawn the internal
quark lines also in the opposite direction. Again, we can evaluate the trace in isospin
and colour space. We use the relation

tr(τaτ cτdτ b) = Nf(δabδcd + δacδdb − δadδcb) (4.32)

and get

Mab;cd
ππ,1 = 2NcNf(δabδcd + δacδdb − δadδcb)g4

πqq×

× i
∫ d4k

(2π)4 tr (S(p1 + k)S(−p1 + p3 − k)S(−p2 + k)S(−k)) .
(4.33)

We have to deal with an integral of the form

i�p,q,r := i

∫ d4k

(2π)4 tr (S(p+ k)S(−p+ q − k)S(−r + k)S(−k)) , (4.34)

which we will call quark box. A rather tedious calculation (see Appendix E.3) leads to
the following expression in terms of elementary integrals

i�p,q,r = 2
[
2(r · p)(p · q)− (r · p)q2 + r2(p · q)− (r · q)p2

]
iI4(p, q, r + p)

− 2r · (p− q + r)iI3(q − p, r) + 2(p · r)iI3(p,−r)
− 2(p · q)iI3(p, q) + 2 (q · (p+ r − q)) iI3(q, r + p)
+ 2iI2(p− q) + 2iI2(p+ r),

(4.35)

where we defined the integral8

iI4(p, q, r) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)
1

((k + p)2 −M2 + iε)×

× 1
((k + q)2 −M2 + iε)

1
((k + r)2 −M2 + iε)

(4.36)

(for general p, q and r) in analogy to iI2(p) and iI3(p, q). We can evaluate this integral
similar to iI3(p, q) (see Appendix C.5) and will again rely on the LoopTools package in
8As already mentioned for iI3(p, q) we will also regularise this already convergent integral iI4(p, q, r)
with the Pauli-Villars regularisation scheme we applied to iI1 and iI2(p) for reasons of consistency.
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order to do so. The integral iI4(p, q, r) depends on the Lorentz scalars p2, q2, r2, p ·q, p ·r
and q · r. In the situation of pion-pion scattering the momenta p, q and r are on-shell for
the pion and hence the dependence is only on p ·q, p ·r and q ·r since p2 = q2 = r2 = m2

π.
With the quark box i�p,q,r we can write the matrix elements for the contribution from

the box diagram in the following simple way:

Mab;cd
ππ,1 = 2NcNf(δabδcd + δacδdb − δadδcb)g4

πqqi�p1,p3,p2 ,

Mab;cd
ππ,2 = 2NcNf(δabδcd − δacδdb + δadδcb)g4

πqqi�p1,p4,p2 ,

Mab;cd
ππ,3 = 2NcNf(−δabδcd + δacδdb + δadδcb)g4

πqqi�p1,p3,−p4 .

(4.37)

Static Limit
We can also evaluate the box diagrams in the simplified situation of the static limit, i.e.
for p1 = p2 = p3 = p4 =: p. In order to do so we have to calculate the quark boxes i�p,p,p
and i�p,p,−p. We again use the integrals iI, iK, iL. The calculation in Appendix E.4
yields

i�p,p,p = −2p2iK(p) + 2iI(0) + 2iI(p),
i�p,p,−p = 2p4iL(p)− 8p2iK(p) + 4iI(0).

(4.38)

Also plugging in the expression (2.81) for gπqq one obtains

Mab;cd
ππ,1 = 4

NcNf
(δabδcd + δacδdb − δadδcb)

1
iI(0) + iI(mπ)−m2

πiK(mπ) ,

Mab;cd
ππ,2 = 4

NcNf
(δabδcd − δacδdb + δadδcb)

1
iI(0) + iI(mπ)−m2

πiK(mπ) ,

Mab;cd
ππ,3 = 4

NcNf
(−δabδcd + δacδdb + δadδcb)

(
2iI(0)− 4m2

πiK(mπ) +m4
πiL(mπ)

)
(iI(0) + iI(mπ)−m2

πiK(mπ))2 .

(4.39)

4.3. Results
We summarise the results obtained for the invariant matrix elements. We can write our
results as

Mab;cd
ππ,1 = (δabδcd + δacδdb − δadδcb)Mππ,1,

Mab;cd
ππ,2 = (δabδcd − δacδdb + δadδcb)Mππ,2,

Mab;cd
ππ,3 = (−δabδcd + δacδdb + δadδcb)Mππ,3

(4.40)

and

Mab;cd
ππ,s = δabδcdMππ,s,

Mab;cd
ππ,t = δacδbdMππ,t,

Mab;cd
ππ,u = δadδbcMππ,u

(4.41)
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with

Mππ,s = −(2NfNc)2g4
πqq (i4 (s))2Dσ(s),

Mππ,t = −(2NfNc)2g4
πqq (i4 (t))2Dσ(t),

Mππ,u = −(2NfNc)2g4
πqq (i4 (u))2Dσ(u)

(4.42)

and

Mππ,1 = 2NcNfg
4
πqqi�p1,p3,p2 ,

Mππ,2 = 2NcNfg
4
πqqi�p1,p4,p2 ,

Mππ,3 = 2NcNfg
4
πqqi�p1,p3,−p4 .

(4.43)

Recalling the decomposition of Mab;cd
ππ into the different isospin channels (see (4.8))

we can identify the components A, B and C. We get

A =Mππ,1 +Mππ,2 −Mππ,3 +Mππ,s,

B =Mππ,1 −Mππ,2 +Mππ,3 +Mππ,t,

C = −Mππ,1 +Mππ,2 +Mππ,3 +Mππ,u.

(4.44)

Using (4.10) we then get

M0
ππ = 3Mππ,1 + 3Mππ,2 −Mππ,3 + 3Mππ,s +Mππ,t +Mππ,u,

M1
ππ = 2Mππ,1 − 2Mππ,2 +Mππ,t −Mππ,u,

M2
ππ = 2Mππ,3 +Mππ,t +Mππ,u

(4.45)

for the different isospin channels.

Static Limit
In the static limit we obtained

Mππ,1 =Mππ,2 = 4
NcNf

1
iI(0) + iI(mπ)−m2

πiK(mπ) ,

Mππ,3 = 4
NcNf

(
2iI(0)− 4m2

πiK(mπ) +m4
πiL(mπ)

)
(iI(0) + iI(mπ)−m2

πiK(mπ))2

(4.46)

and

Mππ,s = − 8
NfNc

(iI(mπ))2

(iI(0) + iI(mπ)−m2
πiK(mπ))2

((
1− m2

π
M2

)
iI(2mπ) + m2

π
4M2 iI(mπ)

) ,
Mππ,t =Mππ,u = − 8

NfNc

(
iI(0)−m2

πiK(mπ)
)2

(iI(0) + iI(mπ)−m2
πiK(mπ))2

(
iI(0) + m2

π
4M2 iI(mπ)

) .
(4.47)
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Since some of the above matrix elements are the same the results for the different
isospin channels simplifies to

M0
ππ = 6Mππ,1 −Mππ,3 + 3Mππ,s + 2Mππ,t,

M1
ππ = 0

M2
ππ = 2Mππ,3 + 2Mππ,t.

(4.48)

We see that in particular the contribution from the I = 1 channel vanishes in the static
limit, i.e. for zero relative momentum between the scattering particles.

Scattering Amplitudes
With the expressions for the matrix elements obtained in the above sections we can
calculate scattering amplitudes and related quantities like scattering lengths and effective
range parameters. For pion-pion scattering in the NJL model this has been done in [41]
but only for l = 0. Their convention for the scattering amplitudes is from [78] while
we will use slightly different definitions following [85], from where we also take the
experimental data we compare with.
The invariant matrix elementsMI

ππ(s, t) determine the T -Matrix according to (4.2):

〈πc, ~p3;πd, p4|iT |πa, ~p1;πb, ~p2〉 = (2π)4δ(4)(p1+p2−p3−p4)iMab;cd
ππ (p1, p2, p3, p4). (4.49)

The T -Matrix is in turn related to the scattering matrix S via S = 1 + iT (where S
should be a unitary operator). The elements of the S-matrix are given by

Sl(s) = 1 + 2i|~p|fl(s) (4.50)

(recall |~p| =
√
s/4−m2

π), where the fl(s) are defined via the partial wave decomposition
of the scattering amplitude

f(s, t) =
∞∑
l=0

(2l + 1)fl(s)Pl(cosϑ). (4.51)

We conclude that the scattering amplitude f(s, t) is directly proportional to the invariant
matrix elementM(s, t) with a real and possibly momentum dependent proportionality
factor. As further complication, the scattering amplitude f(s, t) is related to the ‘mea-
sured’ scattering amplitude F (s, t) (which in turn is related in the usual way to the
differential cross section) by the relation9 F (s, t) = 2f(s, t).
The correct proportionality factor between f(s, t) andM(s, t) is easiest obtained from

the formula for the differential cross section in the center-of-mass system (CMS) for a

9The factor of 2 can be understood from the fact that for example in a scattering process π+ + π− →
π+ + π− the pions might have changed their identity or not. Those two cases are as a matter of
principle undistinguishable and the scattering amplitudes for both processes add (for fermions there
would be a relative minus sign). To be even more exact: When adding these amplitudes, for obvious
geometrical reasons [86] one has to add the amplitudes at angle ϑ and π − ϑ but these are the same
in our case.
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scattering process A + B → C + D where all particles have the same mass. The cross
section is given by [58]

dσ
dΩ(s, t) = |M(s, t)|2

64π2s
. (4.52)

On the other hand
dσ
dΩ(s, t) = |F (s, t)|2 = |2f(s, t)|2 (4.53)

and hence we get
f(s, t) = M(s, t)

16π
√
s
. (4.54)

With the help of this relation we get the scattering amplitudes f I(s, t) from the matrix
elements and performing the partial wave decomposition (4.51) we obtain the partial
amplitudes f Il (s).

Scattering Lengths and Effective Range Parameters
The behaviour of the scattering amplitudes f Il (s) for small |~p| can be parametrised by
the scattering length10 aIl and an effective range parameter bIl . Following [85] we write

√
s

2mπ~p2lRef Il (s) = aIl + bIl ~p
2 +O(~p4). (4.55)

In the following discussion we will drop the Re in front of the scattering amplitudes
because they are purely real for small enough |~p| and in particular for |~p| → 0.
Let us first determine the usual S-wave scattering lengths. They are given by

aI0 = lim
|~p|→0

√
s

2mπ
f I0 (s) = f I0 (s = 4m2

π) (4.56)

since s = 4m2
π if ~p = 0. For s = 4m2

π it follows that t = u = 0 and hence f I(s = 4m2
π, t)

does not depend on the scattering angle ϑ. In that case the partial wave decomposition
is trivial and yields f I0 (s = 4m2

π) = f I(s = 4m2
π, t = 0). Obviously

f I(s = 4m2
π, t = 0) = 1

16π
√
s
MI,sl.

ππ = 1
32πmπ

MI,sl.
ππ , (4.57)

where MI,sl.
ππ denotes the matrix element in the static limit (see (4.48)). Taking the

above observations together we get

aI0 = 1
32πmπ

MI,sl.
ππ . (4.58)

The l = 0 scattering length for the I = 1 channel vanishes since M1,sl.
ππ does. This is

related to the more general statement that due to the symmetries of the wave function

10This scattering length is for l = 0 up to a minus sign identical to the usual scattering length defined
in the effective range expansion: k cot δ0 = −1/a+ (1/2)reff.k2 +O(k4).
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of two pions the partial wave decomposition for I = 1 only contains terms for odd l,
whereas for I = 0, 2 only even l contributes.
We calculate these scattering lengths (for I = 0, 2) and compare them to the Weinberg

scattering lengths [87] (obtained from leading-order chiral perturbation theory)

a0,Wein.
0 = 7mπ

32πf2
π

and a2,Wein.
0 = − 2mπ

32πf2
π

, (4.59)

where we will use the values for mπ and fπ we obtained in the NJL model calculations.
The results are shown in Table 4.1 together with the values for the matrix elements in
the static limit.

Param. Set [A] [B] [C] [D] [E]
Msl.

ππ,1 -29.44 -34.92 -49.18 -56.79 -74.79
Msl.

ππ,3 -32.46 -37.83 -52.08 -59.60 -77.56
Msl.

ππ,s 34.01 38.31 51.22 58.37 75.77
Msl.

ππ,t 30.26 35.91 50.51 58.18 76.33
M0,sl.

ππ 18.40 15.08 11.66 10.35 8.75
M2,sl.

ππ -4.40 -3.83 -3.15 -2.83 -2.45
a0

0 [m−1
π ] 0.183 0.150 0.116 0.103 0.087

a2
0 [m−1

π ] -0.0438 -0.0381 -0.0313 -0.0282 -0.0244
mπ [MeV] 140.0 140.0 140.0 140.0 140.0
fπ [MeV] 93.64 100.50 111.03 116.99 125.88

a0,Wein.
0 [m−1

π ] 0.156 0.135 0.111 0.100 0.086
a2,Wein.

0 [m−1
π ] -0.0445 -0.0386 -0.0316 -0.0285 -0.0246

Table 4.1.: Results for the pion-pion scattering lengths aI0 in the NJL model compared to
the Weinberg results. The matrix elements in the static limit are also given.

We see that the results we obtained from the NJL calculations are in a rather good
agreement with the Weinberg predictions. However, only the values obtained for pa-
rameter set [A] are physically meaningful since this choice of parameters reproduces the
correct pion decay constant.
In order to calculate the scattering lengths for l > 0 or the effective range parameters

we need to consider the full dependence of the matrix elements on s and t. In general,
the scattering length aIl is given by

aIl = lim
|~p|→0

√
s

2mπ~p2l f
I
l (s) = lim

|~p|→0

1
~p2l f

I
l (s) (4.60)

and the effective range parameter can be obtained as

bIl = lim
|~p|→0

d
d(~p2)

( √
s

2mπ~p2l f
I
l (s)

)
. (4.61)
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We calculate the parameters aIl for I = 0, 2 and l = 0 as well as I = 1 and l = 1. We
compare these results to those given in [85]. The authors obtain reliable ππ-scattering
amplitudes by fitting to experimental low energy phase shifts. The results are shown in
Table 4.2. The values for parameter set [A] are remarkably close to the experimental

Param. Set Experiment [85] [A] [B] [C] [D] [E]
a0

0 [m−1
π ] 0.230± 0.015 0.183 0.150 0.116 0.103 0.087

a1
1 [10−3m−3

π ] 38.4± 0.8 34.55 29.29 23.37 20.79 17.66
a2

0 [m−1
π ] −0.0480± 0.0046 -0.0438 -0.0381 -0.0313 -0.0282 -0.0244

b00 [m−3
π ] 0.312± 0.014 0.243 0.185 0.134 0.118 0.0988

b11 [10−3m−5
π ] 4.75± 0.16 3.7 2.6 1.2 1.6 0.8

b20 [m−3
π ] −0.090± 0.006 -0.080 -0.071 -0.060 -0.055 -0.048

Table 4.2.: Results for the pion-pion scattering lengths aIl and effective range parameters
bIl in the NJL model compared to experimental results [85].

values. In particular all the signs of the amplitudes and effective range parameters are
correct.

Chiral Theorems
When examining the matrix elements in the static limit (see Table 4.1) one observes
that the matrix elements for the isospin channels I = 0, 2 are rather small compared to
the matrix elements for the different diagrams (s, t, u, 1, 2, 3). This is due to a ‘delicate
cancellation’ between the sigma-exchange and box diagrams. In fact, in the chiral limit
these matrix elements (and hence the S-wave scattering lengths) vanish. This agrees
well with the behaviour of the Weinberg scattering lengths (4.59), which vanish because
mπ = 0 in the chiral limit. These observations can be understood in the context of
low-energy chiral theorems.

4.4. Pion-Pion Scattering in the Medium
To conclude this chapter about pion-pion scattering we will investigate the medium
effects on the quantities we calculated above. As described at the beginning of Chapter 3
we have to replace the vacuum integrals by the corresponding medium integrals obtained
in the Matsubara formalism. The result for iI+

2 (p0, ~p) is given in Appendix D.3. For
the three- and four-point integrals, we are only able to calculate the medium versions
iK+(p0, ~p = 0) and iL+(p0, ~p = 0) of the static limit integrals for the special case of
vanishing three-momentum ~p (see Appendix D.2). For I3(p, q) and I4(p, q, r) we only
have the vacuum expressions.
This means that we cannot keep the full momentum dependence of the matrix elements

when going from the vacuum to the medium description. Let us consider the sigma-
meson exchange contribution

Mππ,v = −(2NfNc)2g4
πqq (i4 (v))2Dσ(v) (4.62)
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where v stands for one of the Mandelstam variables s, t and u. The quark-pion coupling
constant gπqq is not momentum dependent and can be expressed in terms of iI(0), iI(mπ)
and iK(mπ). It can therefore be easily made temperature dependent. The propagator
Dσ(v) is momentum dependent but only depends on the integrals I1 and I2(v). Hence
it can be moved to the medium while keeping the full momentum dependence. The
problematic term is the quark triangle i 4 (v). It contains the integral iI3 for which
we do not have a medium version. However, one observes that the quark triangle in
the vacuum does not depend strongly on v (see Figure 4.8). This suggests that it is a
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Figure 4.8.: Momentum dependence of the vacuum quark triangle i4 (v) for v = s, i.e.
v ≥ 4m2

π (left) and v = t or v = u, i.e. v ≤ 0 (right) for parameter set [A].

rather good approximation to evaluate the quark triangles for the special momentum
configuration of the static limit. The resulting expression i4 (0) and i4 (4m2

π) only
depend on the integrals iI and iK and can be moved to the medium. For the quark
box diagram we proceed accordingly and approximate the quark box i� in the static
limit such that we can calculate it in the medium. Figure 4.9 shows the temperature
dependence of the quark triangles and quark boxes in the static limit. The plots show
that the quark loops show indeed a rather strong temperature dependence, which should
not be neglected (and is discussed at the end of this section).
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Figure 4.9.: Left: Temperature dependence of the quark triangles in the static limit for
parameter set [A]. Solid line: t-, u-channel. Dashed line: s-channel. Right:
Analogous plot for quark boxes. Solid Line: Channel 1, 2. Dashed line:
Channel 3.
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The above approximations correspond to the semi-static limit in the case of the sigma
propagation diagram and the static limit in the case of the quark box diagram. Moreover
we have to take into account that we only have the medium versions of iK and iL with
vanishing three-momentum while iI can be calculated for arbitrary p = (p0, ~p)t. In our
medium calculations we will hence evaluate all the integrals iI+(p0, ~p), iK+(p0, ~p) and
iL+(p0, ~p) at ~p = 0 and p2

0 = p2 except for the I2(v) (v = s, t, u) in the sigma-meson
propagator, which we will for simplicity evaluate at p = (

√
s, 0)t in the s-channel and at

p = (0, ~p)t with ~p2 = −t,−u in the t- and u-channel.

Static Limit
In the following we want to calculate the medium dependent scattering lengths a0

0 and a2
0.

For those we only need to consider the static limit. Since we can only evaluate iK+(p0, ~p)
and iL+(p0, ~p) for ~p = 0 the pions need to have momenta p1 = p2 = p3 = p4 = (mπ, 0)t,
i.e. they are at rest relative to each other and to the thermal medium. The static limit
approximation is obtained from our general medium description by also evaluating the
sigma-meson propagator in the static limit. The quark triangles and boxes are evaluated
in the static limit in any case. The expressions for the invariant matrix elements are
identical to those for the vacuum static limit with the vacuum integrals replaced by the
corresponding medium versions with ~p = 0. For M and mπ we have to take the T - and
µ-dependent results from Section 3.3.
We set µ = 0 and calculate the l = 0 scattering lengths a0

0 and a2
0 as a function of T .

Before we discuss the results, let us return to the plot of the quark and meson masses
(Figure 4.10). We have also included a line for the constituent quark mass M and for
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Figure 4.10.: Constituent quark mass and masses of π and σ mesons for µ = 0 as func-
tions of T for parameter set [A].

the half sigma-meson mass. Three temperatures (marked by dotted lines in the plot) are
of particular interest. The following discussion uses the results from parameter set [A].
Note that in the chiral limit all these temperatures would be identical and coincide with
the chiral second order phase transition. Away from the chiral limit these temperatures
mark the corresponding chiral crossover.

• For temperatures larger than T ≈ 153 MeV the pion mass mπ is larger than the
constituent quark mass M . This means that the energy of the intermediate sigma
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meson in the s-channel is larger than two times the constituent quark mass, which
opens the σ ↔ qq̄ channel (or ππ ↔ qq̄ channel) resulting in an imaginary part of
Dσ(s) and hence in an imaginary part for the matrix elements.

• At the dissociation temperature Tdiss ≈ 157 MeV we have 2mπ = mσ. This means
that the real part of the inverse of Dσ(2mπ) = Dσ(mσ) vanishes. Due to a non-
vanishing (but small) imaginary part of the inverse propagator, Dσ(2mπ) exhibits
a sharp peak (instead of a divergence) and hence the same is true for the s-channel
contribution to the static limit sigma-propagation diagram, where Dσ(2mπ) enters.
This results in a peak in the I = 0 scattering length (but not in that for I = 2). The
physical interpretation is that the ππ → σ process becomes resonant at threshold.

• At TMott ≈ 174 MeV we have mπ = 2M . This opens the decay channel of one pion
decaying into two quarks (π ↔ qq̄). At threshold this leads to a divergence of the
quark loops (see Figure 4.9) and since these enter in both isospin channels, both
a0

0 and a2
0 diverge. The decay into two quarks is an unphysical artefact of the NJL

model, at least in the confined phase. But as the chiral and the deconfinement
crossover happen at roughly the same temperature, one could argue that at TMott
the decay into free quarks should be indeed permitted.

The results for a0
0 and a2

0 are plotted in Figure 4.11 (see also [43]). We see that the
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T [MeV]

Re(a0/2) [mπ,vac
-1]

-2
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a2

T [MeV]
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Figure 4.11.: Temperature-dependent medium solutions for the scattering lengths a0
0 and

a2
0 at µ = 0 for parameter set [A] in units of the inverse vacuum pion mass.

scattering lengths are almost constant over a large temperature region (up to about 100
MeV) and are close to the Weinberg value (see Table 4.1) for T = 0. As expected there
are singularities at T = Tdiss and T = TMott.
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5. Extended NJL Model

In the following Chapter we will study the implications of an extended NJL model,
which in addition to the scalar and pseudoscalar interaction channels also includes a
vector and a pseudovector four-point interaction. Such an extended setting is studied
for example in [48, 88, 89]. The extended model will allow the scattering of pions via an
intermediate rho meson (see Section 5.2). It is argued for example in [48] that the pion-
pion scattering cross section has important contributions from the rho-meson exchange
diagram, especially in the s-channel. The interaction Lagrangian is given by

Lint. = gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
− gv

[
(ψ̄γµ~τψ)2 + (ψ̄γµγ5~τψ)2

]
. (5.1)

The first two and the latter two terms are chiral partners, i.e. they transform into each
other via chiral transformations. As in Chapter 2 we denote the first and second term
by σ and π, respectively. The vector-isovector and the pseudovector-isovector terms are
called ρ and a1, respectively. Writing the Lagrangian as

L = ψ̄(i/∂ −m)ψ +
∑
M

gM (ψ̄ΓMψ)2 (5.2)

we identify

Γσ = 1, Γaπ = iγ5τ
a, Γµ,aρ = γµτa and Γµ,aa1 = γµγ5τ

a (5.3)

and
gσ = gπ = gs and gρ = ga1 = −gv. (5.4)

Gap Equation
We consider again the gap equation

M = m+
∑
M

ΣM (5.5)

with
ΣM = 2gMΓM i

∫ d4k

(2π)4 Tr (ΓMS(k)) . (5.6)

The only contribution comes from the scalar term since for the others the trace over τa
vanishes. Hence the result for the gap equation is exactly the same as for the simple
NJL Lagrangian (see Section 2.2), i.e.

M = m+ 8NfNcgsMiI1(M). (5.7)

62



5.1. Mesons
The study of the Bethe-Salpeter equation (2.45) in RPA will turn out to be more com-
plicated than in the case with only scalar and pseudoscalar interactions since we will
observe a mixing between some interaction channels.

Polarisation Functions
To begin with, we calculate the polarisation loops

JM,N (p) = i

∫ d4k

(2π)4 Tr (ΓMS(k + p)ΓNS(k)) . (5.8)

First, we consider the diagonal terms JM,M (p) =: JM (p). We have

Jσ(p) = Jσ(p2) and Jabπ (p) = δabJπ(p2) (5.9)

with

Jπ(p2) = 2NcNf
(
2iI1 − p2iI2(p2)

)
,

Jσ(p2) = 2NcNf
(
2iI1 − (p2 − 4M2)iI2(p2)

)
,

(5.10)

which are the results from Section 2.5.
We introduce Tµν(p) and Lµν(p), the projectors11 onto the transverse and the longi-

tudinal part:
Tµν(p) := ηµν − pµpν

p2 and Lµν(p) = pµpν

p2 . (5.11)

For the ρ-channel we get

Jµν,abρ (p) = δabT
µν(p)Jρ(p2) (5.12)

with
Jρ(p2) = 4

3NcNf
(
−2iI1 +

(
p2 + 2M2

)
iI2(p2)

)
. (5.13)

The polarisation function in the a1-channel has a longitudinal and a transverse part:

Jµν,aba1 (p) = δab
(
Tµν(p)J trans

a1 (p2) + Lµν(p)J long
a1 (p2)

)
(5.14)

with
J trans
a1 (p2) = 4

3NcNf
(
−2iI1 +

(
p2 − 4M2

)
iI2(p2)

)
(5.15)

and
J long
a1 (p2) = −8NcNfM

2iI2(p2). (5.16)
11These projectors fulfil the relations Tµν(p)T νλ(p) = Tµλ(p), Lµν(p)Lνλ(p) = Lµλ(p) and

Tµν(p)Lνλ(p) = Lµν(p)T νλ(p) = 0 as well as Tµν(p) + Lµν(p) = ηµν , which makes them orthog-
onal projectors. Moreover Tµν(p)pν = 0 and Lµν(p)pν = pµ, which is why they are called transverse
and longitudinal projectors.

In addition, the projectors fulfil the trace identities Tµν(p)Tµν(p) = 3, Lµν(p)Lµν(p) = 1 and
Tµν(p)Lµν(p) = 0.
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The calculations of the above polarisation functions can be found in Appendix F.1.
Next, we consider the off-diagonal terms JM,N (p) with M 6= N . All combinations of

σ with another channel vanish because a trace over τa is to be taken, i.e.

Jaσ,π = Jaπ,σ = Jµ,aσ,ρ = Jµ,aρ,σ = Jµ,aσ,a1 = Jµ,aa1,σ = 0. (5.17)

It is moreover possible to show (see Appendix F.1) that also

Jµ,abπ,ρ = Jµ,abρ,π = Jµν,abρ,a1 = Jµν,aba1,ρ = 0. (5.18)

The only off-diagonal terms that do not vanish are Jµ,abπ,a1 (p) and Jµ,aba1,π(p). One calculates
(see Appendix F.1)

Jµ,abπ,a1 (p) = iδab4NcNfMpµiI2(p2) =: δab
pµ√
p2Jπ,a1(p2) (5.19)

with
Jπ,a1(p2) = i4NcNfM

√
p2iI2(p2) (5.20)

and

Jµ,aba1,π(p) = Jµ,baπ,a1 (−p) = −iδab4NcNfMpµiI2(p) =: δab
pµ√
p2Ja1,π(p2) (5.21)

with
Ja1,π(p2) = −i4NcNfM

√
p2iI2(p2). (5.22)

Comment on the Transversal Parts of the ρ- and a1-Meson Propagators
We should note that our choice of regularisation is not without complication. We chose
Pauli-Villars regularisation, where we regularised the elementary integrals by adding
integrands with different masses. However, we tacitly decided not to regularise possible
factors of M in front of these integrals. This implies that the equation

I1 = M2I2(0), (5.23)

which is ‘correct’ before regularisation, becomes incorrect after applying Pauli-Villars
regularisation. It is argued in [90] that it is impossible to obtain reasonable results
for M and fπ and at the same time fulfil relation (5.23), which is why we follow the
recommendation not to regularise factors of M in front of the elementary integrals.
The problem with this relation being violated is that the rho-meson polarisation func-

tion
Jρ(p2) = 4

3NcNf
(
−2iI1 +

(
p2 + 2M2

)
iI2(p2)

)
(5.24)

does not vanish for p = 0, which it should due to vector current conservation [60]. To
repair this unphysical behaviour we have to change Jρ(p2) and replace I1 with M2I2(0)
by hand. The polarisation function then reads

Jρ(p2) = 4
3NcNf

(
−2M2I2(0) +

(
p2 + 2M2

)
iI2(p2)

)
(5.25)
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and it is obvious that this vanishes for p = 0. To preserve the symmetries of the model
we need to treat the a1 on the same footing as the ρ and hence we also rewrite

J trans
a1 (p2) = 4

3NcNf
(
−2M2iI2(0) +

(
p2 − 4M2

)
iI2(p2)

)
. (5.26)

Meson Propagators
Now that all the polarisation functions are determined, we can calculate the meson
propagators. First, we consider the σ and ρ since they decouple from the other channels.
We use the notation DM,M (p) = DM (p). We have

Dσ(p) = −2gs
1− 2gsJσ(p2) (5.27)

(as in Section 2.5) and

Dµν,ab
ρ (p) = δab

(
Lµν(p)2gv + Tµν(p) 2gv

1 + 2gvJρ(p2)

)
=: δab

(
Lµν(p)2gv + Tµν(p)Dρ(p2)

) (5.28)

with
Dρ(p2) = 2gv

1 + 2gvJρ(p2) (5.29)

(the calculation is found in Appendix F.2). Except for the trivial longitudinal part, the
ρ-meson propagator is purely transversal.
The determination of the propagators in the π and a1 sector is more complicated as

the off-diagonal polarisation functions are non-zero. As a result, in addition to Dab
π,π(p)

and Dµν,ab
a1,a1 (p) there will also be mixed propagators Dµ,ab

π,a1(p) and Dµ,ab
a1,π(p).

We write the solutions as

Dab
π (p) := Dab

π,π(p) =: δabDπ(p2) (5.30)

and
Dµν,ab
a1 (p) =: δab

(
Tµν(p)Dtrans

a1 (p2) + Lµν(p)Dlong
a1 (p2)

)
(5.31)

as well as

Dµ,ab
π,a1(p) = δab

pµ√
p2Dπ,a1(p2) and Dµ,ab

a1,π(p) = δab
pµ√
p2Da1,π(p2). (5.32)

We then solve for the introduced scalar-valued functions. The transversal part of the
a1-propagator decouples and is given by

Dtrans
a1 (p) = 2gv

1 + 2gvJ trans
a1 (p2) . (5.33)
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The longitudinal part of the a1-propagator, the pion propagator and the mixed propa-
gators are coupled via the matrix equation(

Dπ Dπ,a1

Da1,π Dlong
a1

)
=
(
−2gs 0

0 2gv

)
+
(

2gs 0
0 −2gv

)(
Jπ Jπ,a1

Ja1,π J long
a1

)(
Dπ Dπ,a1

Da1,π Dlong
a1

)
.

(5.34)
The solution is given by

Dπ(p2) = 2gs
−2gvJ long

a1 (p2)− 1
D(p2) , Dπ,a1(p2) = 4gsgvJπ,a1(p2)

D(p2) ,

Dlong
a1 (p2) = 2gv

−2gsJπ(p2) + 1
D(p2) , Da1,π(p2) = 4gsgvJa1,π(p2)

D(p2)

(5.35)

with the determinant

D(p2) =
(
1− 2gsJπ(p2)

) (
1 + 2gvJ long

a1 (p2)
)

+ 4gsgvJπ,a1(p2)Ja1,π(p2). (5.36)

The complete calculation is found in Appendix F.2.
In analogy to the alternative representation of the meson propagator in Section 2.5.1

we will in the following rewrite the above determinant D(p2). Inserting the expressions
for the polarisation functions in terms of elementary integrals gives

D(p2) =
(
1− 2gs2NcNf

(
2iI1 − p2iI2(p2)

)) (
1− 2gv8NcNfM

2iI2(p2)
)

+ 4gsgv(4NcNf)2M2p2
(
iI2(p2)

)2
,

(5.37)

which, using the gap equation (5.7), can be written as

D(p2) =
(
m

M
+ 4gsNcNfp

2iI2(p2)
)(

1− 16gvNcNfM
2iI2(p2)

)
+ 64gsgv(NcNf)2M2p2

(
iI2(p2)

)2

= m

M
+ (4gsp2 − 16gvMm)NcNf iI2(p2).

(5.38)

Mixing of Pion and a1
At this point we should remark on the interpretations of the different propagators. We
obtained a transversal and a longitudinal part of the a1-propagator, where the longitu-
dinal part mixes with the pion propagator and the transversal part decouples. However,
we in fact interpret the transversal part of the a1 meson as the physical a1 (which has 3
polarisation degrees of freedom) while the physical pion consists the pion and the longi-
tudinal part of the a1. In the following we want to describe the full pion in the extended
NJL model. The scattering matrix T for the pion sector is given by

T = −ΓaπDab
π (p)Γbπ − ΓaπDµ,ab

π,a1(p)Γba1,µ − Γaa1,µD
µ,ab
a1,π(p)Γbπ − Γaa1,µD

µν,ab
a1 Γba1,ν

= −(iγ5τ
a)δabDπ(p2)(iγ5τ

b)− (iγ5τ
a) pµ√

p2 δabDπ,a1(p2)(γµγ5τ
b)

− (γµγ5τ
a) pµ√

p2 δabDa1,π(p2)(iγ5τ
b)− (γµγ5τ

a)δab
pµpν

p2 Dlong
a1 (p2)(γµγ5τ

b)

(5.39)
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and can be written in short as

T = −(τaδabτ b)(iγ5,
/p√
p2γ5)

(
Dπ(p2) Dπ,a1(p2)
Da1,π Dlong

a1

) iγ5
/p√
p2
γ5

 . (5.40)

Observe that we omitted the tensor product sign in (τaδabτ b) = (τaδab ⊗ τ b) and also
between the row and the column vector containing the γ5-matrices.
The propagator matrix has a D(p2) in the denominator of each component. The mass

of the pion corresponds to the pole of T and hence to a zero of D(p2), i.e.

D(p2 = m2
π) != 0. (5.41)

We determine the pion mass for modified parameter sets [A] - [E], where we set gs to
the value previously assigned to g and let gv vary from 0 to 2gs. The results are shown
in Figure 5.1. As expected, for gv = 0 we obtain the result for the simple model (see

0 0.5 1 1.5 2
gv/gs

mπ [MeV]

160

140

180

200

200

Figure 5.1.: Pion mass mπ for parameter sets [A] - [E] (lower to upper) with gs = g as a
function of gv.

Table 2.2). The fact that the pions are massless in the chiral limit is not affected by
introducing an additional vector interaction channel.
Using the pion mass we can write D(p2) as

D(p2) = D(p2)−D(m2
π)

= NfNc
[
4gs

(
p2iI2(p2)−m2

πI2(m2
π)
)
− 16gvMm

(
iI2(p2)− iI2(m2

π)
)]
,

(5.42)

were the zero for p2 = m2
π is now obvious.

In the following we want to investigate the pole structure of T in the pion sector.
To this end we write the T in pole approximation. A straightforward calculation in
Appendix F.3 yields

T = −(τaδabτ b)
1

p2 −m2
π

(
gpsiγ5 − igpv

/p√
p2γ5

)
⊗
(
gpsiγ5 − igpv

−/p√
p2γ5

)
, (5.43)
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where we introduced the pseudoscalar and the pseudovector quark-pion couplings gps and
gpv corresponding to the vertices iγ5 and i/p/

√
p2 (or −i/p/

√
p2 for outgoing momenta).

The coupling strengths are calculated to be

g2
ps = a2(a+ d)

(a2 + b2)D′(m2
π) and g2

pv = b2(a+ d)
(a2 + b2)D′(m2

π) (5.44)

with

a = −2gs − 4gsgvJ long
a1 (m2

π) = −2gs + 32NcNfgsgvM
2iI2(m2

π),

d = 2gv − 4gsgvJπ(m2
π) = 2gv − 8NcNfgsgv

(
2iI1 −m2

πiI2(m2
π)
)
,

b = −i4gsgvJπ,a1(m2
π) = 16NcNfgsgvMmπiI2(m2

π)

(5.45)

and

D′(m2
π) = NfNc

[
2gs

(
iI(0) + iI(m2

π)−m2
πK(m2

π)
)

− 8gv
Mm

m2
π

(
iI(0)− iI(m2

π)−m2
πK(m2

π)
) ]
.

(5.46)

We present them in Figure 5.2. For gv = 0 the result for gps coincides with gπqq in the
simple model (see Table 2.2).
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Figure 5.2.: Coupling constants gps (left) and gv (right) for parameter sets [A] - [E] (lower
to upper) with gs = g as a function of gv.

For comparison we look at the ratio of the two coupling strengths, which is given by
the simple expression

gpv
gps

= b

a
= 8NcNfgvMmπiI2(m2

π)
−1 + 16NcNfgvM2iI2(m2

π) . (5.47)

The results are shown in Figure 5.3.
We see that for values of gv not too large the coupling gpv is about one order of

magnitude smaller than gps. If we wanted to include both vertices (iγ5 and i/p/
√
p2) for

the pion, the calculation of the matrix elements for pion-pion scattering would become
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Figure 5.3.: Ratio of the coupling constants gps and gv for parameter sets [A] - [E] (upper
to lower) with gs = g as a function of gv.

extremely more difficult, especially for the quark box, since each of the four pions has
two instead of one vertex contribution. We will therefore neglect12 the pseudovector
contribution to the pion for future calculations in the extended NJL model.

Rho-Meson Mass
So far, we did not fix the value of the vector coupling gv. We will determine it by fitting
the vacuum rho-meson mass to the literature value mρ = 775.45 MeV [66]. If we were
to include the full description of the pion as discussed above, a global fit to the pion
mass and decay constant as well as the rho-meson mass would be necessary since all
these observables depend on the vector coupling. Since we however chose to ignore the
pseudovector contribution to the pion, its properties will be determined exactly as in
Section 2.5 and therefore do not depend on gv.
The mass of the rho meson is determined by the pole of the propagator Dµν,ab

ρ (p) and
consequently by a pole of Dρ(p2). The real and imaginary parts of the inverse propagator
D−1
ρ (p2) are shown in Figure 5.4. Due to our choice of Tµν = ηµν − pµpν

p2 (we could have
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Figure 5.4.: The inverse rho-meson propagator −D−1
ρ (p2) for parameter set [C] with

gv = 1.018gs.

12A full description of the pion is used for example in [48] where the authors calculate the contribution
from the s-channel ρ-meson exchange to the pion-pion scattering matrix elements.
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defined it also as Tµν = pµpν

p2 − ηµν) we expect −D−1
ρ (p2) (rather than D−1

ρ (p2)) to be
shaped similarly like D−1

π (p2) and D−1
σ (p2) (see Figure 2.2).

We observe that the real part of −D−1
ρ (p2) has a negative slope after the p2 = 4M2

threshold (seen as kink). This means that −D−1
ρ (p2) can only have zeroes at all (except

for larger momenta as artefact of Pauli-Villars regularisation) if it has a zero before the
p2 = 4M2 threshold. In that case this first zero is interpreted as the mass of the rho
meson. This implies that in our model mρ < 2M .
For parameter sets [A] and [B] this cannot be fulfilled if we try to reproduce the

physical rho meson mass since 2M < 775.45 MeV, which is why we do not use these
parameter sets for our description of the rho meson. For parameter sets [C] - [E] we
determine gv such that mρ = 775.45 MeV. One obtains the parameter sets shown in
Table 5.1. We will use these choices of parameters for the following calculations.

Param. Set [C] [D] [E]
Λ [MeV] 800 820 852
m [MeV] 6.77 6.70 6.54
gsΛ2 3.49 3.70 4.16
gv/gs 1.02 1.54 2.29

M [MeV] 395.0 446.3 549.4
mπ [MeV] 140.0 140.0 140.0
mσ [MeV] 794.7 896.3 1101.4
mρ [MeV] 775.45 775.45 775.45

Table 5.1.: The model parameters (Λ, m, gs and gv) using Pauli-Villars regularisation
and the resulting value of the constituent quark and meson masses.

The determination of temperature-dependent rho-meson masses runs into problems
since for all parameter sets already for rather small values of T the real part of the inverse
rho-meson propagator does not have a zero at all (discarding artefacts of Pauli-Villars
regularisation). This means that our method of determining the rho-meson mass fails.
This is not a problem since we only needed the vacuum rho-meson mass to determine
the model parameter gv.

5.2. Pion-Pion Scattering
Our goal remains to calculate the pion-pion scattering amplitudes in the NJL model. In
the extended NJL model there are two changes to the calculations. The first one is the
fact that the pion also has a contribution from the a1-channel, which we discarded in
the previous section to keep our calculations manageable. This means we will calculate
the pion propagator, mass and coupling to the quarks as we did in Chapter 2.
The second change we have to consider is the emergence of a new diagram. In addition

to the quark-box diagram and the sigma-propagation diagram there will also be a rho-
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propagation diagram where we consider the scattering of two pions via an intermediate
rho meson. These diagrams are analogous to the ones in Figures 4.4, 4.5 and 4.6 with
the intermediate sigma meson replaced by a rho meson. The s-channel diagram is shown
in Figure 5.5.

p
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p
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p
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c

p
4

d

k1 k2ρ

Figure 5.5.: Rho propagation diagram in the s-channel.

The calculation of the diagrams is analogous to those for the sigma meson but the
Lorentz index structure is more complicated. By a straightforward evaluation of the
diagram we get for the s-channel

iMab;cd
ππρ,s = (−2)

∫ d4k1
(2π)4 Tr

(
iΓaπgπqq(p1)iS(k1 + p1)iΓeρ,µiS(k1 − p2) ×

×iΓbπgπqq(p2)iS(k1)
)

(iDµν,ef
ρ (p1 + p2))(−2)

∫ d4k2
(2π)4 Tr×

×
(
iΓdπgπqq(p4)iS(k2 − p4)iΓfρ,νiS(k2 + p3)iΓcπgπqq(p3)iS(k2)

)
,

(5.48)

which we further simplify to

Mab;cd
ππρ,s = −g4

πqq2i
∫ d4k1

(2π)4 Tr
(
γ5τ

aS(k1 + p1)γµτ eS(k1 − p2)γ5τ
bS(k1)

)
×

×Dµν,ef
ρ (p1 + p2)2i

∫ d4k2
(2π)4 Tr

(
γ5τ

dS(k2 − p4)γντ fS(k2 + p3)γ5τ
cS(k2)

)
.

(5.49)

Using
tr
(
τaτ bτ c

)
= Nf iεabc (5.50)

we get

Mab;cd
ππρ,s = g4

πqq(2NfNc)2εaebεdfci

∫ d4k1
(2π)4 Tr (S(k1 + p1)γµS(k1 − p2)S(−k1))×

×Dµν,ef
ρ (p1 + p2)i

∫ d4k2
(2π)4 Tr (S(k2 − p4)γνS(k2 + p3)S(−k2)) ,

(5.51)

where we also eliminated the γ5-matrices via γ5S(p)γ5 = S(−p).
We introduce the quark triangle

i4µ
p,q := i

∫ d4k

(2π)4 tr (S(−k)S(k + p)γµS(k + q)) . (5.52)
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With this we can write the invariant matrix element as

Mab;cd
ππρ,s = εebaεfcd(2NfNc)2g4

πqq(p1, p2, p3, p4)i4µ
p1,−p2 D

ef
ρ,µν(p1 + p2)i4ν

−p4,p3 . (5.53)

The quark triangle i4µ
p,q is a Lorentz vector and can be calculated with the ansatz

i4µ
p,q = V1(p2, p · q, q2)pµ + V2(p2, p · q, q2)qµ. (5.54)

The calculation in Appendix F.4 leads to the result

V1(p2, p · q, q2) = 2i
[
− I2(p) + q2I3(p, q) + p · q

p2q2 − (p · q)2

(
q2I2(q)− q2I2(p− q)

− p2q2I3(p, q)− p · qI2(p) + p · qI2(p− q) + q2p · qI3(p, q)
)]
,

V2(p2, p · q, q2) = 2i
[
− I2(q) + p2I3(p, q) + p · q

p2q2 − (p · q)2

(
p2I2(q)− p2I2(p− q)

− p2q2I3(p, q)− p · qI2(q) + p · qI2(p− q) + p2p · qI3(p, q)
)]
.

(5.55)

Since the momenta p and q are on-shell for the pion, the expressions simplify a bit and
we get

i4µ
p,q = V (p− q)(pµ + qµ) (5.56)

with

V (p− q) = 2
(p− q)2 − 4m2

π

×

×
[
2m2

π

(
iI2(mπ)−m2

πiI3(p, q)
)
−
(
(p− q)2 − 2m2

π

)
iI2(p− q)

]
,

(5.57)

where V is a Lorentz scalar and only depends on (p− q)2 (or p · q alternatively).13 The
function V seems to have a singularity for (p − q)2 = 4m2

π due to the denominator but
the term in square brackets also vanishes and it turns out that V has only a removable
singularity and V (4m2

π) is finite.
Finally, we insert the rho-meson propagator

Dµν,ab
ρ (p) = δab

(
Lµν(p)2gv + Tµν(p)Dρ(p2)

)
(5.59)

and do the contraction over isospin and Lorentz indices. The isospin factor reduces to

εaebεdfcδef = εebaεecd = δadδbc − δacδbd (5.60)
13In [48] the authors calculate this vertex function for the extended pion. In that case −g2

πqqV (p− q)/2
is to be replaced by

gps(gps + gpv)iI2(mπ)

+ (gps + gpv)2

(p− q)2 − 4m2
π

[
((p− q)2 − 2m2

π)[iI2(p− q)− iI2(mπ)] + 2m4
πiI3(p, q)

]
−

g2
pv

12M2

[
((p− q)2 + 2M2)iI2(p− q)− 2iI1

]
,

(5.58)

which in the limit gpv = 0 and gs = gπqq is identical to our formula.
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for the s-channel. Summing over the Lorentz indices we encounter the expressions

44trans (q1, q2, q3, q4) := i4µ
q1,q2 Tµν(q1 − q2)i4ν

q3,q4 ,

44long (q1, q2, q3, q4) := i4µ
q1,q2 Lµν(q1 − q2)i4ν

q3,q4

(5.61)

(with q1 − q2 = q4 − q3 and q2
i = m2

π implied). We calculate

44long (q1, q2, q3, q4) = (V (q1 − q2))2 (q1 + q2)µ (q1 − q2)µ(q4 − q3)ν
(q1 − q2)2 (q3 + q4)ν

= (V (q1 − q2))2 (q2
1 − q2

2)(q2
4 − q2

3)
(q1 − q2)2 = 0

(5.62)

because of the on-shell condition. We hence observe that the longitudinal part vanishes.
The transversal part is

44trans (q1, q2, q3, q4) = i4µ
q1,q2 (ηµν − Tµν(q1 − q2)) i4ν

q3,q4 = ηµνi4µ
q1,q2 i4

ν
q3,q4

= (V (q1 − q2))2 (q1 + q2) · (q3 + q4)
= V (s)2(u− t).

(5.63)

With the help of the above we can write the matrix element as

Mab;cd
ππρ,s = (δadδbc − δacδbd) (2NfNc)2g4

πqq (V (s))2Dρ(s)(u− t). (5.64)

Applying the same replacement scheme as for the sigma-meson exchange diagram (see
(4.20)) we obtain the results for the different channels:

Mab;cd
ππρ,s = (δadδbc − δacδbd) (2NfNc)2g4

πqq (V (s))2Dρ(s)(u− t),

Mab;cd
ππρ,t = (δabδcd − δadδbc) (2NfNc)2g4

πqq (V (t))2Dρ(t)(s− u),
Mab;cd

ππρ,u = (δabδcd − δacδdb) (2NfNc)2g4
πqq (V (u))2Dρ(u)(s− t).

(5.65)

We expressed all momentum dependence in terms of the Mandelstam variables. Because
of the momentum scalar product in 44trans (q1, q2, q3, q4) it is not possible to write the
matrix elements in a certain channel solely as a function of one Mandelstam variable
(in contrast to the sigma propagation diagram). The reason is that the quark triangles
have a more complicated momentum structure due to the vector nature of the rho meson
vertex.

Static Limit
Let us again study the static limit of the above matrix elements, i.e. for p1 = p2 = p3 =
p4 = p or equivalently s = 4m2

π and t = u = 0. The matrix element in the s-channel
vanishes because the factor (u− t) is zero. So, we only need to evaluate Dρ and V at 0.
For the rho-meson propagator we have

Dρ(0) = 2gv
1 + 2gvJρ(0) = 2gv. (5.66)
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We further calculate

V (0) = −iI(mπ)− iI(0) +m2
πiK(mπ). (5.67)

This cancels exactly with gπqq given according to (2.81) by

g−2
πqq = −NcNf

(
iI(0) + iI(mπ)−m2

πiK(mπ)
)
. (5.68)

The final result for the matrix elements in the static limit is

Mab;cd
ππρ,s = 0,

Mab;cd
ππρ,t = (δabδcd − δadδbc) 32gvm2

π,

Mab;cd
ππρ,u = (δabδcd − δacδdb) 32gvm2

π.

(5.69)

Semi-Static Limit
Again, it might be too inexact to throw away the full momentum dependence of the
matrix elements as it is done in the static limit. In analogy to the sigma propagation
diagram, we keep the full momentum dependence of the propagator. Following [48] we
also keep the momentum factors (u − t), etc. in the end of the expressions. Only the
function V will be evaluated for s = 4m2

π, t = u = 0. The matrix elements hence read

Mab;cd
ππρ,s = (δadδbc − δacδbd) (2NfNc)2g4

πqq(V (4m2
π))2Dρ(s)(u− t),

Mab;cd
ππρ,t = (δabδcd − δadδbc) (2NfNc)2g4

πqq (V (0))2Dρ(t)(s− u),
Mab;cd

ππρ,u = (δabδcd − δacδdb) (2NfNc)2g4
πqq (V (0))2Dρ(u)(s− t).

(5.70)

We already calculated V (0) for the static limit (see (5.67)). V (4m2
π) will be evaluated

numerically (as a limit) since V has a removable singularity at that point.

5.3. Results
We calculate the invariant matrix elements for the different isospin channels (see Sec-
tion 4.3) again with the additional contribution from the rho-propagation diagram, which
we write as

Mab;cd
ππρ,s = (δadδbc − δacδbd)Mππρ,s,

Mab;cd
ππρ,t = (δabδcd − δadδbc)Mππρ,t,

Mab;cd
ππρ,u = (δabδcd − δacδdb)Mππρ,u

(5.71)

with

Mππρ,s = (2NfNc)2g4
πqq (V (s))2Dρ(s)(u− t),

Mππρ,t = (2NfNc)2g4
πqq (V (t))2Dρ(t)(s− u),

Mππρ,u = (2NfNc)2g4
πqq (V (u))2Dρ(u)(s− t).

(5.72)

74



We can identify the isospin components A, B and C ofMab;cd
ππ and get

A =Mππ,1 +Mππ,2 −Mππ,3 +Mππ,s +Mππρ,t +Mππρ,u,

B =Mππ,1 −Mππ,2 +Mππ,3 +Mππ,t −Mππρ,s −Mππρ,u,

C = −Mππ,1 +Mππ,2 +Mππ,3 +Mππ,u +Mππρ,s −Mππρ,t.

(5.73)

Using (4.10) we obtain for the different isospin channels:

M0
ππ = 3Mππ,1 + 3Mππ,2 −Mππ,3 + 3Mππ,s +Mππ,t +Mππ,u + 2Mππρ,t + 2Mππρ,u,

M1
ππ = 2Mππ,1 − 2Mππ,2 +Mππ,t −Mππ,u − 2Mππρ,s +Mππρ,t −Mππρ,u,

M2
ππ = 2Mππ,3 +Mππ,t +Mππ,u −Mππρ,t −Mππρ,u.

(5.74)

Static Limit
In the static limit we obtained

Mππρ,s = 0,
Mππρ,t =Mππρ,u = 32gvm2

π.
(5.75)

Since some of the above matrix elements are the same, the results for the different isospin
channels simplify to

M0
ππ = 6Mππ,1 −Mππ,3 + 3Mππ,s + 2Mππ,t + 4Mππρ,t,

M1
ππ = 0,

M2
ππ = 2Mππ,3 + 2Mππ,t − 2Mππρ,t.

(5.76)

As before the I = 1 channel is not present in the static limit.

Scattering Lengths
We again calculate the pion-pion scattering lengths for l = 0 via

aI0 = 1
32πmπ

MI,sl.
ππ (5.77)

using the matrix elements obtained in the static limit (see above). The results are
shown in Table 5.2. We see that the scattering lengths become larger by a factor of 2 to
4 compared to the results without the rho-meson exchange diagram. The importance of
the rho-meson exchange compared to the sigma-meson exchange and quark box diagrams
varies strongly depending on the chosen parameter set. The deviation from the results in
the simple model also means that the Weinberg results (as discussed in Section 4.3) are
not well-reproduced any more. This is because we simply added a new interaction (via
an intermediate rho meson) while the contribution from the other diagrams remained
unchanged. In particular, we neglected the mixing of the pion and the longitudinal part
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Param. Set [C] [D] [E]
Msl.

ππ,1 -49.18 -56.79 -74.79
Msl.

ππ,3 -52.08 -59.60 -77.56
Msl.

ππ,s 51.22 58.37 75.77
Msl.

ππ,t 50.51 58.18 76.33
Msl.

ππρ,t 3.48 5.32 5.54
a0

0 [m−1
π ] 0.254 0.315 0.308

a2
0 [m−1

π ] -0.1006 -0.1341 -0.1346
a0

0 [m−1
π ] 0.116 0.103 0.087

a2
0 [m−1

π ] -0.0313 -0.0282 -0.0244

Table 5.2.: Results for the pion-pion scattering lengths aI0 with rho-meson exchange in-
cluded (upper values) compared to the results from Section 4.3 in the simple
NJL model (lower values).

of the a1, which also affects the pion decay constant (as calculated in Appendix B.3).
We believe that a new fit of the model parameters in the extended model would be
necessary in order to obtain quantitatively good results. Of course, with the modified
parameter sets [C] - [E] we are able to study the qualitative effect of an additional vector
interaction.
We also calculate the low energy scattering parameters we introduced in Section 4.3.

Table 5.3 gives the results. Most of the values are enhanced by a factor of approximately
3 (except for b11) compared to the results in the simple model (see Table 4.2).

Param. Set [C] [D] [E] [C] [D] [E]
a0

0 [m−1
π ] 0.254 0.315 0.415 0.116 0.103 0.087

a1
1 [10−3m−3

π ] 64.6 83.9 114.6 23.37 20.79 17.66
a2

0 [m−1
π ] -0.101 -0.134 -0.188 -0.0313 -0.0282 -0.0244

b00 [m−3
π ] 0.330 0.417 0.563 0.134 0.118 0.0988

b11 [10−3m−5
π ] 8.9 12.3 17.0 1.2 1.6 0.8

b20 [m−3
π ] -0.158 -0.204 -0.280 -0.060 -0.055 -0.048

Table 5.3.: Results for pion-pion scattering lengths aIl and effective range parameters bIl
in the extended model (left) compared to the simple model (right).

Chiral Theorems
At the end of Section 4.3 we discussed the cancellation of the static limit matrix elements
from the sigma propagation and the box diagram close to the chiral limit leading to small
matrix elements for the different isospin channels. Similarly, the contribution from the
static limit rho-exchange diagram is small (see Table 5.2) and vanishes in the chiral limit,
which is obvious from (5.69) since the matrix elements are proportional to m2

π.
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5.4. Medium Results
We also want to study the scattering results from the extended model in the medium.
This means we have to investigate the medium properties of the additional rho propa-
gation diagram. The form is similar to the sigma propagation diagram and given by

Mππρ,s = (2NfNc)2g4
πqq (V (s))2Dρ(s)(u− t) (5.78)

for the s-channel (the other channels are obtained by a suitable replacement of the
Mandelstam variables). The factors gπqq and Dρ(s) can both be moved to the medium
description while keeping the momentum dependence of the latter. The term (u − t)
is not temperature dependent. The problem lies in the vertex function V (v) (which
includes the quark triangle and contains the elementary integral iI3), where v = s, t, u.
Again, we investigate the momentum dependence of V (v) in a reasonable momentum
range (see Figure 5.6) and find that it is not too large, especially for negative arguments.
We will therefore approximate V (v) in the static limit (s = 4m2

π, t = u = 0). For V (0) we
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Figure 5.6.: Momentum dependence of the vertex function V (v) for v = s, i.e. v ≥ 4m2
π

(left) and v = t or v = u, i.e. v ≤ 0 (right) for parameter set [C].

obtained an expression in terms of elementary integrals, which can be easily calculated
for finite temperature. For V (4m2

π) the situation is more difficult. We argued (see
beginning of Section 5.2) that it is obtained as a limit onto a removable singularity. In
contrast to V (0) it does not seem possible to write V (4m2

π) as a linear combination of
elementary integrals, which would be necessary in order to compute the temperature
dependence. Studying the temperature dependence of the quark triangles in the sigma
propagation diagram (see Figure 4.8) shows that except for the peak in the t- and u-
channel at T = TMott the results are almost identical in all channels. This suggests
that we can replace V (4m2

π) by V (0) without making a large error away from TMott and
near TMott the scattering amplitudes are divergent in any case. In the following we will
approximate V (4m2

π) by V (0) in the medium calculations for the rho-meson exchange
diagram.

Static Limit
As an application we calculate the l = 0 scattering lengths a0

0 and a2
0. For those it suffices

to consider the case of the static limit with p1 = p2 = p3 = p4 = (mπ, 0). In that case
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the s-channel contribution vanishes (see (5.69)) and hence the above described problem
with V (0) does not occur. The results for parameter set [C] are shown in Figure 5.7.
We compare these results to those in the simple model, again calculated for parameter
set [C].
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Figure 5.7.: Temperature dependent medium solutions for the scattering lengths a0
0 and

a2
0 at µ = 0 for parameter set [C] in the extended model (upper) and in the

simple model (lower) in units of the inverse vacuum pion mass.

The imaginary parts are identical since the contribution from the rho-meson exchange
is given byMππρ,t =Mππρ,u = 32gvm2

π, which is purely real. The rho-meson propagator
in the s-channel has of course an imaginary part above the threshold s > 4M2, but the
s-channel contribution vanishes completely in the static limit. The real parts show
a significant qualitative difference for temperatures T > TMott. This is due to the
momentum factor in the matrix elements for rho-meson exchange which becomes 4m2

π

in the static limit and of course shows a strong temperature dependence as studied in
Section 3.3.
There is no new pole coming from Dρ(p2) since we found that for larger temperatures

the inverse rho-meson propagator does not have a zero (even when only considering the
real part). Hence there is no analogue to Tdiss (where 2mπ = mσ) for the rho-meson
exchange.
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5.5. More Realistic Meson Propagators
So far we have studied the effect of the sigma-meson and rho-meson exchange diagrams on
the pion-pion scattering amplitudes using the RPA propagators obtained in Sections 2.5
and 5.1. These propagators get an imaginary part above the qq̄ threshold (p2 > 4M2)
where the mesons can decay into a quark-antiquark pair. This also leads to an imaginary
part in the scattering amplitudes for sufficiently large momenta of the intermediate
meson.
Considering that the rho mesons and the sigma meson predominantly decay into pairs

of pions [66] it seems unrealistic not to include that effect into our calculations. This
can be achieved by studying the Bethe-Salpeter equation in more than leading order in
1/Nc as is done in this section. Calculations in the NJL model to more than leading
order in 1/Nc can be found for example in [90].

Meson Propagators with 1/Nc-Corrections
Since we are mainly interested in obtaining an additional width due to the decay into
two pions we will include the diagram

− iJ (π loop)
M,N (p) =

π

π

(5.79)

in the polarisation function in addition to the quark polarisation loop in RPA (2.48)

− iJ (RPA)
M,N = , (5.80)

where we now write (RPA) to distinguish this polarisation loop from the one obtained
in this section. In the above pion-loop diagram the meson is coupled to an intermediate
two-pion state by two quark triangles. This diagram is in next-to-leading order in 1/Nc.
There are also other possible diagrams one might consider (see for example [48]) but we
will restrict ourselves to this one since it will give the correct phenomenological behaviour
concerning the two-pion decay width.
The full (corrected) polarisation function is hence given by

JM,N (p) = J
(RPA)
M,N (p) + J

(π loop)
M,N (p). (5.81)

The corrected propagator is then obtained from the polarisation function as before (see
Section 2.5). The pion-loop correction only contributes to the sigma-meson and rho-
meson propagators because of parity and angular momentum conservation.
A careful evaluation of Feynman diagrams shows that the correction to the sigma-

meson polarisation function is given by

J (π loop)
σ (p) = −(2NcNf)2 3

2(i4 (p2))2i

∫ d4k

(2π)4D
(RPA)
π (p+ k)D(RPA)

π (k) (5.82)
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where we used the quark triangle i4 introduced in Section 4.1 about the sigma-exchange
diagram. To simplify the above expression further we write the pion propagators (in
RPA) in pole approximation

D(RPA)
π (p2) ≈

g2
πqq

p2 −m2
π

(5.83)

according to (2.71). This amounts to evaluating the quark-pion coupling gπqq(p) on-
shell, neglecting the fact the the momentum k in the pion loop runs over all possible
four-momenta. For the polarisation function this yields

J (π loop)
σ (p) = −(2NcNf)2 3

2(i4 (p2))2g4
πqqiI

(π)
2 (p), (5.84)

where the elementary integral iI(π)
2 (p) is identical to iI2(p) with M replaced by mπ.

Some care is needed when evaluating this integral for finite temperature since the sum
over fermionic Matsubara frequencies is to be replaced by a sum over bosonic ones. The
retarded expression iI(π),+

2 (p0, ~p) can be calculated analytically for general four-momenta
p = (p0, ~p)t and is given in Appendix D.4.
An analogous calculation can be made for the rho-meson polarisation function and

one gets

J (π loop),ab,µν
ρ (p) = −δab(2NcNf)2i

∫ d4k

(2π)4 (i4µ
k,p+k)(i4

ν
p+k,k)D(RPA)

π (p+ k)D(RPA)
π (k)

(5.85)
with the quark triangle i4µ from Section 5.2. We again make an on-shell approximation
and get

J (π loop),ab,µν
ρ (p) = −δab(2NcNf)2(V (p))2g4

πqq×

× i
∫ d4k

(2π)4
(2k + p)µ(2k + p)ν

(p2 −m2
π + iε) ((p+ k)2 −m2

π + iε) .
(5.86)

Writing the above propagator in terms of transversal and longitudinal part (as in Sec-
tion 5.1) yields

J (π loop),trans
ρ (p) = −(2NcNf)2(V (p))2g4

πqq

1
3
(
2iI(π)

1 + (4m2
π − p2)iI(π)

2 (p)
)
,

J (π loop),long
ρ (p) = −(2NcNf)2(V (p))2g4

πqq2iI
(π)
1 ,

(5.87)

where I(π)
1 is defined in the same way as iI(π)

2 (p).
With these expressions we can in principle determine the more realistic meson propa-

gators. The integral iI(π)
2 (p) will give an imaginary part above the p2 > 4m2

π threshold,
which is exactly the desired effect. However, there will also be an additional real part
affecting the masses of the rho and sigma meson. This spoils the ‘delicate cancellation’
between the sigma-exchange and box diagram (as described at the end of Section 4.3).
A simple solution to this problem does not seem to be possible and it is suggested in

80



[47] to ignore the real part of the pion-loop contributions and only take their imaginary
part, i.e.

JM (p) = J
(RPA)
M (p) + iIm

(
J
(π loop)
M (p)

)
(5.88)

for M = σ, ρ. This gives the widths corresponding to ππ ↔ σ and ππ ↔ ρ without
violating the chiral low-energy theorems. The downside of this approach is that the
neglected real part which is normally related to the imaginary part by a Kramers-Kronig
relation violates causality. Finally, we note that in the s-channel the sigma-meson and
rho-meson propagator has to be evaluated at s ≥ 4m2

π wherefore there is always an
imaginary part, while in the t- and u-channel, where t, u ≤ 0 there is never an imaginary
part from the pion-loop polarisation.
To calculate the imaginary part of J (π loop)

M (p) we will assume that the quark triangles
i4 (p) and V (p) are purely real. This is the case below the π ↔ qq̄ threshold at TMott.
In that case the imaginary part of the additional polarisation functions can be obtained
by calculating the imaginary part of the integral iI(π)

2 (p). The imaginary part of I(π)
1

vanishes and hence there is no longitudinal contribution to the rho-meson propagator.14
The results can finally be written as

Jσ(p) = Jσ(p)(RPA) − (2NcNf)2 3
2(i4 (p2))2g4

πqqIm
(
iI

(π)
2 (p)

)
,

J trans
ρ (p) = J trans,(RPA)

ρ (p)− (2NcNf)2(V (p))2g4
πqq

1
3(4m2

π − p2)Im
(
iI

(π)
2 (p)

)
.

(5.89)

Note that J trans,(RPA)
ρ (p) corresponds to Jρ(p) in Section 5.1 where we omitted the trans

as there was no longitudinal part in the rho-meson polarisation loop at all.

14In principle the longitudinal part of the rho-meson polarisation function should always vanish (real
and imaginary part). This is the case if in addition to the pion-loop diagram one also includes a
tadpole diagram involving the exchange of a pion as described in [48].
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6. Shear Viscosity of a Pion Gas
The previous chapters have provided us with the quantum field theoretical description
of QCD matter within the framework of the NJL model. In particular we calculated
the matrix elements for the scattering of pions, which emerged as composite degrees of
freedom via the Bethe-Salpeter equation. We argued in Chapter 1 why we concentrated
on the scattering of pions rather than for example quarks to describe transport phenom-
ena in strongly interacting matter for not too large temperatures based on a microscopic
description (see also [46, 38, 10, 47]). This chapter is aimed at the calculation of the
shear viscosity of a pion gas where the interaction between the pions is described by the
NJL model results.
Section 6.1 will introduce the concept of relativistic hydrodynamics, the framework in

which we will define the shear viscosity η of a fluid. We will then derive an expression for η
from kinetic theory (see Section 6.2). The subsequent Section 6.3 will introduce the pion
gas and its thermodynamics. Together with the matrix elements from Chapters 4 and 5
this suffices to give an estimate of the shear viscosity, which we present in Section 6.4.
The results of the calculations are discussed in Section 6.5.

6.1. Relativistic Hydrodynamics
Relativistic hydrodynamics15 deal with the theoretical description of fluids, i.e. gases
or liquids moving with velocities that are not negligible compared to the speed of light.
An introduction to the topic can be found in [91], which will also be the basis of the
following paragraphs.
We consider a system of particles in local thermodynamic equilibrium, meaning that we

can define the intensive thermodynamic variables temperature T (x), chemical potential
µ(x) and pressure P (x) locally. This is the case if the mean free path between two
collisions is small compared to the length scale of interest to the observer. This also yields
entropy density s(x), energy density ε(x) and number density n(x) as local quantities.

Perfect Fluid
The flow of a fluid is characterised by the local four-velocity

uµ(x) = dxµ

dτ = γ

(
1
~v

)
, (6.1)

15Historically, the term hydrodynamics was used to describe the flow of fluids (gases or liquids) while
in modern day physics the term fluid dynamics is used instead. Hydrodynamics is then only the
description of liquids (and aerodynamics that of gases). For the purposes of this text we will not
make a distinction between gases or liquids and hence just speak of fluids, which corresponds to the
historical understanding of the term hydrodynamics.
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where ~v is the three-velocity and γ = 1/
√
~v2 + 1. Given a spacetime point xµ we can

find a suitable Lorentz transformation such that the fluid is locally at rest, i.e.

uµ(x) =
(

1
~0

)
. (6.2)

What does the stress-energy tensor Tµν look like at this point? For a perfect fluid (or
ideal fluid) we assume that an observer moving with the velocity ~v(x) of the fluid at xµ
sees the fluid around him as isotropic. For the stress-energy tensor the isotropy means
that at xµ it is diagonal with

Tµν(x) =


ε

P
P

P

 , (6.3)

where ε is the energy density and P the pressure. Making a Lorentz transformation back
to the laboratory frame we arrive at the expression

Tµν(x) = (P (x) + ε(x))uµ(x)uν(x)− P (x)ηµν (6.4)

for all xµ. If we for the moment assume a system with only one particle species, the only
remaining independent16 observable is the local number density n(x) or equivalently the
particle flow

Jµ(x) = n(x)uµ(x). (6.5)

To summarise our findings so far, we can describe the fluid by the seven variables
n(x), P (x), ε(x) and uµ(x). We now want to find a system of seven equations such that
the evolution of the hydrodynamic system is determined. First of all, the four-velocity
obeys the normalisation condition

uµ(x)uµ(x) = 1. (6.6)

Energy-momentum conservation implies

∂νT
µν(x) = 0 (6.7)

and particle number conservation yields the continuity equation

∂µJ
µ(x) = 0. (6.8)

These are six constraints. To obtain a further equation we have to assume that the
system is at all times in local thermal equilibrium. This yields an equation of state

P (x) = P (ε(x), n(x)), (6.9)
16We know that the thermodynamics are fully described by a set of three variables, which can e.g. be

ε, P and n.
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which allows us to express pressure as a function of number density and energy density.
With the equation of state the hydrodynamics of the system are fully determined.

Entropy Conservation
One important consequence of the assumptions for a perfect fluid is the conservation of
entropy. Defining the entropy flow

sµ(x) := s(x)uµ(x) (6.10)

one can show that
∂µs

µ = 0. (6.11)

Imperfect Fluid
So far, we considered a perfect fluid. In ideal hydrodynamics the stress-energy tensor
only depends on certain local quantities such as uµ(x) but not on gradients thereof. This
is closely related to the isotropy assumption we made in the comoving frame. We can
view this as a leading order truncation in the expansion of Tµν in terms of gradients.
In the following description of an imperfect (or non-ideal) fluid we will allow Tµν

to have corrections to the ideal expression which are linear in four-velocity gradients.
These additional terms lead to dissipative effects, which means that thermal equilibrium
is not strictly maintained and the fluid kinetic energy is dissipated as heat. Jµ may also
contain gradient terms. Altogether we have

Tµν(x) = (P (x) + ε(x))uµ(x)uν(x)− P (x)ηµν + ∆Tµν(x),
Jµ(x) = n(x)uµ(x) + ∆Jµ(x)

(6.12)

with the correction terms ∆Tµν(x) and ∆Jµ(x) parametrised as

∆Tµν = η
(
∂µuν + ∂νuµ + uνuλ∂λu

µ + uµuλ∂λu
ν
)

+
(
ζ − 2

3η
)

(ηµν − uµuν) ∂λuλ,

∆Jµ = κ

(
nT

ε+ P

)(
∂µ − uµuλ∂λ

) µ
T
.

(6.13)

The dissipative terms in the stress-energy tensor have the (shear) viscosity η and the bulk
viscosity ζ as coefficients. The coefficient κ in the current Jµ is the thermal conductivity.
The coefficients η, ζ and κ may assume non-negative values and are referred to as
transport coefficients.
One consequence of the imperfectness of the fluid is that entropy is no longer conserved.

More precisely one finds that
∂µs

µ(x) ≥ 0 (6.14)

for all xµ [91]. It should also be noted that for an imperfect fluid the velocity of energy
and particle transport do not coincide any more as they do for a perfect fluid. The
reason is of course that energy can also be transported as heat, which is expressed by
the term with the thermal conductivity κ.
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6.2. Kinetic Theory of Gases
In the hydrodynamics approach we have assumed that the fluids obey the continuum
assumption. Quantities like pressure or temperature are defined locally and are contin-
uous functions of space and time ignoring the fact that the fluid is in reality composed
of discrete particles.
In order to obtain an expression for the shear viscosity we will make use of kinetic

theory [92, 93, 94]. The kinetic theory of gases describes a gas (or a fluid in general)
as a large number of small particles. Kinetic theory allows us to explain macroscopic
properties of gases such as the shear viscosity by studying their microscopic dynamics.

Shear Viscosity
Of the three transport coefficients introduced above we are only interested in the shear
viscosity η in this work. In the following we will study this coefficient in a kinetic theory
approach [36]. A very simple estimate for the shear viscosity is derived in Appendix G.1
and reads

η ≈ 1
3np̄λ, (6.15)

where λ is the mean free path and p̄ the average momentum of the particles. The
derivation is non-relativistic and under the assumption that the velocity field uµ(x)
varies only slowly in space.
It should be noted that the above formula is only a rough estimate and the factor 1/3

should not be trusted too much. However, the general dependence on particle density n,
average momentum p̄ and the mean free path λ ought to be correct. More sophisticated
calculations [36, 95] lead to a factor of 0.21 in the non-relativistic limit and 4/15 in the
ultrarelativistic limit, i.e. where temperature is much larger than the particles’ mass.
This shows that our estimate, which was derived for non-relativistic particles, retains its
general form also for relativistic particles.

Range of Validity
In general, the kinetic theory of fluids depends on certain assumptions. This limits
the applicability of the above shear viscosity estimate. One major simplification of the
kinetic approach presented in this section is that we assumed classical particles. Of
course, to calculate the shear viscosity η we will use the invariant matrix elements as
input, which we obtained from our quantum field theoretical considerations. However,
they only enter as cross sections, i.e. absolute value squared of the invariant matrix
elements, at which point we go from a quantum to a classical theory. This simplification
is valid as long as each particle has enough time to ‘propagate classically’ between two
collisions, i.e. each collision occurs independently. This is the case if the mean free path
λ is much larger than the typical range of interaction d. In practice this means that we
can apply kinetic theory only to sufficiently dilute gases.
Simple estimates for the range of validity are discussed in [96]. The range of the

interaction d could be defined as the Compton wavelength of the particles, .i.e. d = 1/m,
wherem is the particles’ mass. Alternatively one might approximate d in the hard-sphere
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limit as d =
√
σ/m (with the cross section σ). The authors show that both expressions

yield similar constraints on temperature.

6.3. Thermodynamics of a Pion Gas
In this section we present a thermodynamic description of a pion gas. We consider
an ideal gas consisting of three types of spin 0 bosons: π+, π0 and π−. The π0 is its
own antiparticle and hence its particle number N0 is not conserved, which means that
there is no corresponding chemical potential. The π+ is the antiparticle of the π−,
which means that they can be created in pairs and only the difference of their particle
numbers Nnet := N+ − N− is a conserved quantity, which implies that there is only
one chemical potential µI for Nnet. We call this chemical potential charge (or isospin)
chemical potential since it corresponds to conservation of charge (or isospin). It is not
to be confused with the quark chemical potential µ, which we use throughout the text.
As we only study uncharged QCD matter in this text, we will set µI = 0.
We will determine the thermodynamic properties of the system in the grand canonical

ensemble regarding T , V and µI as thermodynamic variables. Since we assumed an ideal
gas, the following results will be standard results for a Bose gas [97, 98, 99]. However, in
contrast to most textbooks we will use the relativistic dispersion relation ε~k =

√
~k2 +m2

π

where we as before assume that all pions have the same mass mπ, which depends on
temperature as calculated in Section 3.3. The derivations leading to the expressions in
this section are found in Appendix G.2 and loosely follow [100].
For pressure p, entropy density s, energy density ε and particle density n we obtain:

P (T, V, µI = 0) = 3 m2
π

2π2β2

∞∑
n=1

1
n2K2(nβmπ),

s(T, V, µI = 0) = 3 m
2
π

2πβ

∞∑
n=1

1
n2 [4K2(nβmπ) + nβmπK1(nβmπ)] ,

ε(T, V, µI = 0) = 3 m2
π

2πβ2

∞∑
n=1

1
n2 [3K2(nβmπ) + nβmπK1(nβmπ)] ,

n(T, V, µI = 0) = 3 m2
π

2π2β

∞∑
n=1

1
n
K2(nβmπ).

(6.16)

Here, Kν(x) denotes the modified Bessel function of second kind (of order ν). For
an uncharged pion gas all three components have the same thermodynamic properties
yielding the degeneracy factor of 3 in front of every expression. The above quantities
are plotted in Figure 6.1 as a function of temperature.17

17Note that the pion mass mπ itself depends on T . When deriving for example the above expression for
the entropy s(T, V, µI) = 1

V
∂(T lnZ)

∂T

∣∣
V,µI

, one should in principle also consider the derivative of mπ

with respect to T (applying the product rule). We neglect this effect and obtain the standard formulæ
for an ideal gas since the dependence of mπ on T is negligible for temperatures below 150 MeV for
parameter set [A] and even higher temperatures for the other parameter sets [B] - [E]. The explicit
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Figure 6.1.: Thermodynamic quantities of the relativistic pion gas at µI = 0 as func-
tions of temperature. The dependence of the pion mass on temperature is
calculated with parameter set [A].

The average (mean) momentum of a pion is given by

p̄ = 1∫ d3k
(2π)3

1
e
βε~k−1

∫ d3k

(2π)3 |~k|
1

eβε~k − 1
. (6.17)

6.4. Shear Viscosity Estimate in the NJL model
In this section we combine the findings from the previous sections, which dealt with
hydrodynamics, kinetic theory and thermodynamics in order to obtain an estimate for
the shear viscosity based on the NJL model.
We saw in Section 6.2 that the shear viscosity of a classical gas can be approximated

by the simple formula
η ≈ 1

3np̄λ, (6.18)

where p̄ is the average momentum of the particles in the gas and λ is the mean free
path of a particle. The mean free path can be related to the differential cross section
via [101, 95]

1
nλ

=
∫

dΩ dσ
dΩ sin2(ϑ) = 2π

∫ π

0
dϑ dσ

dΩ sin3(ϑ) =: σ̃. (6.19)

The factor sin2(ϑ) in the integral takes into account that scattering at larger angles has
more impact on momentum degradation than at small angles. We can hence write the
shear viscosity η as

η ≈ 1
3
p̄

σ̃
. (6.20)

This result implies that the stronger particles interact, the smaller their shear viscosity is.
This dependence can be understood from the derivation of the shear viscosity estimate in
Appendix G.1. The shear viscosity determines how fast velocity differences will even out

dependence on the temperature dependent pion mass can be seen as a small kink in the plots of
Figure 6.1 around T = 180 MeV.

87



in a fluid. This is due to the particle movement between regions with different velocities.
This momentum transfer through particle movement happens easiest when particles feel
only a small interaction between them. If however they are strongly interacting, they
can only travel a short distance between two collisions and hence will not carry much
momentum to neighbouring fluid regions.
In general, (6.18) should be written as a sum over several particle species i with

densities ni, etc. We saw however that for µI = 0 all pion species have the same
thermodynamic properties and hence can be treated on equal footing. This gave a
degeneracy factor in the expression for the number density. Following [96] we will simply
average over isospin according to

dσ
dΩ = 1∑2

I=0(2I + 1)

2∑
I=0

(2I + 1) |M
I
ππ|2

64π2s
. (6.21)

In the calculations leading to the above formulæ no momentum dependence of the
differential cross section dσ/dΩ was assumed. However, the NJL cross sections in general
depend on the particles’ momenta. To be more specific, after integrating out the angle (or
t) dependence, σ̃ depends on the Mandelstam variable s. For simplicity we will evaluate
the cross section σ̃ at some typical momentum p̄, i.e. we will set s = 4(m2

π + p̄2), where
p̄ = p̄(T ) is the average momentum of a pion for a certain temperature T calculated
according to (6.17). This will give the typical s at which collisions occur. One could
have also calculated the root mean square (rms) momentum or directly the average s.
All these calculation yield similar results, which differ by factors of the order of one. The
average momentum p̄ of a pion is plotted in Figure 6.2. For comparison we also show
the root mean square of the pion momentum. The average momentum is mainly linear
in T except for higher values of T , where the pion mass dependence on T plays a role.
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Figure 6.2.: Average pion momentum (mean and rms value) as a function of T for µI = 0.
The dependence of the pion mass on temperature is calculated for parameter
set [A].
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6.5. Results
In this chapter we present calculations for the shear viscosity using the results from
the previous sections. Recall that µ = µI = 0 will be assumed for all calculations. We
present results in four different approximations of increasing accuracy and computational
complexity.

1. Static limit: The simplest approximation is to evaluate the complete matrix el-
ements in the static limit. In that case they do not depend on the Mandelstam
variables (and in particular not on the scattering angle ϑ) and we get

σ̃ = 2π
∫ π

0
dϑ dσ

dΩ sin3(ϑ) = 8π
3

dσ
dΩ . (6.22)

2. Semi-static limit (only s-channel): We argued in Section 4.1 that we should also
consider the momentum dependence of the meson propagators and only evaluate
the quark triangles and boxes in the static limit. We expect the most important
contribution to come from the s-channel diagrams. On the other hand, for the t-
and u-channel the calculation of the meson propagators requires the evaluation of
the integral iI2 for non-vanishing three-momentum, which is computationally diffi-
cult. In this approximation we therefore only consider the s-channel as momentum
dependent.

3. Semi-static limit (all channels): To study how important the full momentum de-
pendence of the meson propagators in the t- and u-channel is, we also calculate
the shear viscosity for all channels evaluated in the semi-static limit.

4. Improved meson propagators: We obtain our most realistic approximation by con-
sidering the 1/Nc-corrected meson propagators from Section 5.5. Here we added
an imaginary part to incorporate a width corresponding to σ, ρ ↔ ππ, which we
consider an important effect. As in Approximation 3 the meson propagators will
be treated as momentum dependent in all channels.

6.5.1. Simple Model
We begin by calculating the shear viscosity estimate for the simple model (without a
rho-meson exchange). The results for Approximations 1, 2 and 3 are shown in Figure 6.3
for parameter set [A]. The figure also shows the corresponding plot for the shear viscosity
over entropy density ratio η/s.
We also estimate the range of validity of the kinetic approach. Following Section 6.2

we calculate the ratio λ/d with the mean free path λ = 1/(nσ̃) and the interaction range
d, which we take to be d = 1/mπ, the Compton wavelength of the pion. Alternatively one
could have estimated the interaction range by d = 1/mσ in view of the sigma propagation
diagram but this does not change the results considerably. The calculations show that
the the ratio λ/d shows a behaviour very similar to that of the ratio η/s. This means
that λ/d is larger than one for almost all T except where η or η/s exhibit a zero. At
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Figure 6.3.: Shear viscosity estimate (left) and ratio η/s (right) for pion gas as function
of T for parameter set [A]. The dotted line corresponds to Approximation 1,
the dashed line to Approximation 2 and the solid line to Approximation 3.

these temperatures the kinetic description breaks down. This implies in particular that
with our approach we cannot make a statement about a lower bound for η/s.
Let us shortly discuss the results obtained for the different approximations. In Ap-

proximation 1 (static limit) we see that the shear viscosity vanishes for T = 0 and
increases monotonously up to T . 100 MeV. This dependence is due to the temperature
dependence of the average momentum as shown in Figure 6.2. For even larger tempera-
tures the shear viscosity decreases again and even drops to zero (two times: once exactly,
once almost), which can be explained by pole and the sharp peak in the differential cross
section at TMott and Tdiss respectively (for details see discussion in Section 4.4).
The most unrealistic feature of the static limit approximation is that we do not consider

the momentum dependence of the sigma-meson propagator. In that case the propagator
in the s-channel Dσ(4m2

π) becomes extremely large at Tdiss where mσ = 2mπ. If we on
the other hand consider the momentum-dependent expression Dσ(s) = Dσ(4m2

π + 4~p2)
(Approximations 2 and 3) this peak is shifted to lower momenta by the average thermal
momentum p̄. We also observe that, as expected, there is only a small qualitative
difference between the Approximations 2 and 3. The zero of the shear viscosity at TMott
is due to the quark triangles and quark quadrilaterals (in the static limit) and remains
for Approximations 2 and 3.
We finally calculate the shear viscosity in Approximation 4 using the most realistic

meson propagators. The result for η and η/s is shown in Figure 6.4. The zero in
the shear viscosity corresponding to the pole of the sigma propagator vanishes since
the propagator obtains a large width in the s-channel due to the process σ ↔ ππ.
Remarkably, the shear viscosity over entropy ratio reaches a value of the order of 1 at
some intermediate temperature (T ≈ 60 MeV) and then stays almost constant over a
large temperature region up to TMott.
The results for η and η/s are in good agreement with those obtained in [10, 47]

where similar calculations were done in a more realistic kinetic theory approach. Here,
the author calculated the shear viscosity from a Boltzmann-Ueling-Uhlenbeck (BUU)
approach [94], where the NJL matrix elements enter in a two-body collision term. The
author also compared his results to those of the simple shear viscosity estimate which is
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Figure 6.4.: Shear viscosity estimate (left) and η/s (right) for pion gas as function of T
in Approximation 4 for parameter set [A].

used in this work and finds no significant qualitative difference [38].

6.5.2. Extended Model
We now study the effect of an additional vector interaction, i.e. we calculate the shear
viscosity estimate in the extended NJL model, again for Approximations 1 to 4. We use
parameter set [C] for the calculations and compare to the results in the simple model
also calculated for parameter set [C]. As the cross sections are larger in the extended
model, we expect the shear viscosity to be smaller according to formula (6.20). The
results for η and η/s are shown in Figures 6.5 and 6.6. The additional contribution
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Figure 6.5.: Shear viscosity as a function of T in the extended model (left) and in the
simple model (right) for parameter set [C]. The dotted line corresponds to
Approximation 1, the dashed line to Approximation 2 and the solid line to
Approximation 3.

from the vector channel does not change the poles of the matrix elements and hence
the zeros of the shear viscosity are the same in the simple and the extended model. A
qualitative difference in Approximations 2 and 3 is that while in the simple model the
shear viscosity increases between the first and the second zero (in the mid-temperature
region) there is a decrease for the extended model results. This is due to the momentum
factor (u− t), etc. in the rho-meson exchange matrix elements (5.65).
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Figure 6.6.: Shear viscosity over entropy density ratio as a function of T in the extended
model (left) and in the simple model (right) for parameter set [C]. The dotted
line corresponds to Approximation 1, the dashed line to Approximation 2
and the solid line to Approximation 3.

Approximation 4 using the most realistic sigma meson and rho-meson propagators is
shown in Figures 6.7 and 6.8. Again, the zero corresponding to Tdiss vanishes. There is
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Figure 6.7.: Shear viscosity estimate for pion gas as function of T in Approximation 4
for parameter set [C] in the extended model (left) and simple model (right).

a strong qualitative difference between the simple and the extended model for the shear
viscosity for larger temperatures due to the dominance of the rho meson diagram. While
η/s is almost constant in the mid-temperature region in the simple model (as discussed
above), in the extended model there is a decrease.

6.5.3. Discussion
We briefly discuss the prediction for the shear viscosity and in particular the shear
viscosity over entropy ratio within the NJL model. We mainly focus on Approximation 4
since we believe that this yields the most realistic results. We observe that η/s exhibits a
sharp drop for small temperatures and then stays almost constant in a large temperature
region until it becomes zero at TMott. The biggest qualitative difference between the
simple and the extended model is that in the simple model there is a slight increase of
η/s towards TMott while in the extended model η/s continues to drop.
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Figure 6.8.: Ratio η/s for pion gas as function of T in Approximation 4 for parameter
set [C] in the extended model (left) and simple model (right).

The conclusion from the calculations in both NJL models is that QCD matter be-
comes strongly interacting in the chiral crossover region (with η/s of the order of 1).
Quantitatively the results should only be trusted in the simple model with parameter set
[A]. The zero of the shear viscosity at TMott is due to the channel π ↔ qq̄ which opens at
mπ ≥ 2M . This occurs because the NJL model does not confine, but on the other hand
this is not too unrealistic since we expect deconfinement to occur in that temperature
region in any case.
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7. Summary, Conclusions, Outlook

In this thesis we have studied the scattering of pions in the NJL model, an effective
quantum field theory for QCD focusing on chiral symmetry. We used two versions of the
Lagrangian density, one with only a scalar-pseudoscalar interaction term (simple model)
and the other one with an additional vector-pseudovector vertex (extended model). Pion-
pion scattering in leading order in 1/Nc is described by three types of diagrams, the
quark-box, sigma-meson propagation and rho-meson propagation diagram with the latter
only occurring in the extended model. We found that the experimental low-energy
scattering data (expressed in terms of scattering lengths and effective range parameters)
is well reproduced for the lowest partial waves in the simple model for parameter set
[A]. Recall that parameter set [A] is the one with the correct physical value of the pion-
decay constant. We chose to implement the extended model by ignoring the π-a1 mixing
(which would change the pion mass and the pion decay constant) and we can therefore
not expect that after inclusion of the contribution from the additional diagram we are
able to reproduce the Weinberg values for the l = 0 scattering lengths. A next step
would be to determine a realistic parameter set for the extended model.
Following the work of many other authors we incorporated, as much as possible,

medium effects by applying the imaginary time formalism. We believe that these medium
modifications to the quark and meson masses and the matrix elements are indeed very
important and a reasonable description of QCD matter for non-vanishing T or µ cannot
be given without them. We also argued that in order to incorporate the processes
σ ↔ ππ and ρ ↔ ππ, which are known to be dominant from experiment, we must go
beyond leading order in 1/Nc. We saw that this is a rather difficult task and as simplest
solution we chose to only add the imaginary part arising from the pion-loop diagram
to the polarisation function for the mesons. While violating causality (which manifests
itself in the form of a Kramers-Kronig relation) we were in this manner able to obtain a
width for the sigma and the rho meson corresponding to the decay into two pions without
destroying the delicate cancellation between the box and sigma propagation diagram,
which was responsible for the correct low-energy behaviour of the matrix elements in
the chiral limit.
As an application we studied the shear viscosity of QCD matter in a very simple ap-

proximation, which is proportional to the inverse cross section evaluated at some typical
thermal momentum. We believe that this estimate gives qualitatively good results. We
studied QCD matter as a gas of pions because these are the lightest degrees of freedom
in the confined phase and certainly dominant for µ = 0 and not too large temperatures.
The results obtained for the shear viscosity in the simple model are in good agreement
with the results obtained by other authors using a more realistic kinetic theory approach.
We observed a significant contribution from the rho-meson exchange diagram in the ex-
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tended model for larger temperatures, which leads to an even smaller shear viscosity
over entropy ratio and believe that this is worth a further investigation.
For future works related to this topic we suggest that one creates new parameter

sets (especially in the extended model) which reproduce the scattering data in the vac-
uum. We also believe it might be possible to incorporate the π-a1 mixing, which affects
the pion mass and all the scattering processes. Moreover, a more careful study of the
implementation of next-to-leading order diagrams in 1/Nc should be done.
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X. Extensions

X.1. Alternative Regularisation Schemes
Other than Pauli-Villars regularisation, which is used for the purposes of the thesis, two
other regularisation methods are commonly used to handle the divergences in the NJL
model. We will introduce them for the example of the elementary integral

iI1 = i

∫ d4k

(2π)4
1

k2 −M2 + iε
, (X.1)

which diverges quadratically.

Sharp Three-Momentum Cutoff
One possibility is to separate the integral over four-momentum k = (k0,~k)t into an
integral over three-momentum ~k and an integral over k0 and then only regularise the
three-momentum integral. We hence write

iI1 = i

∫ d3k

(2π)3
1

2π

∫ ∞
−∞

dk0
1

k2
0 − E2

~k
+ iε

, (X.2)

where we defined E~k =
√
~k2 +M2. The inner integral can be evaluated using the residue

theorem. We will perform the necessary steps explicitly since similar techniques will be
used throughout the text. We write

1
2π

∫ ∞
−∞

dk0
1

k2
0 − E2

~k
+ iε

= 1
2π

∫ ∞
−∞

dk0
1

(k0 − E~k + iε′)(k0 + E~k − iε′)
(X.3)

with ε′ = ε/(2E~k). To apply the residue theorem we identify two first-order poles at
k0 = ±(E~k − iε

′). Since the integrand falls off quadratically for |k0| → ∞ we can close
the integration path from −∞ to ∞ to an integration path Γ around the upper half
plane:

Γ

Im(k0)

Re(k0)
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Only the pole k0 = −E~k + iε′ contributes to the integral and we get
1

2π

∫ ∞
−∞

dk0
1

(k0 − E~k + iε′)(k0 + E~k − iε′)
= 1

2iE~k
. (X.4)

This gives

iI1 = 1
2

∫ d3k

(2π)3
1
E~k

= 1
4π2

∫ ∞
0

dk k2
√
k2 +M2

(X.5)

for the complete integral. It is now obvious that the integral does not converge. We
introduce a sharp momentum cutoff Λ for the momentum ~k and hence get the regularised
version

1
4π2

∫ Λ

0
dk k2
√
k2 +M2

(X.6)

of the integral. The above integral can be calculated analytically and gives

iI1 = iI1(M,Λ) = 1
(2π)2

1
2

(
Λ
√

Λ2 +M2 −M2 arcsinh
( Λ
M

))
. (X.7)

One shortcoming of the presented method is that we treated k0 and ~k on a different
footing. Geometrically, the domain of integration represents an infinitely long hyper-
cylinder.

Sharp Four-Momentum Cutoff
If we want to avoid the above mentioned problem we can also work with a four-
momentum cutoff. But before we do this, we transform the integral via a Wick rotation
into an integral over Euclidean space. For this we start from

iI1 = i

∫ d3k

(2π)3
1

2π

∫ ∞
−∞

dk0
1

k2
0 − E2

~k
+ iε

. (X.8)

By use of the residue theorem we show that instead of integrating k0 from −∞ to ∞,
we can integrate from −i∞ to i∞. This can be seen from the fact that the integral over
the path Γ

Γ

Im(k0)

Re(k0)
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vanishes since the poles of the integrand (these are two first-order poles at k0 = ±(E~k −
iε′) with ε′ = ε/(2E~k) as we saw in the previous subsection) lie outside of Γ. In addition,
the contribution from the two circular arcs vanishes in the limit of large radii since the
integrand falls off quadratically. This gives

iI1 = i

∫ d3k

(2π)3
1

2π

∫ i∞

−i∞
dk0

1
k2

0 − E2
~k

+ iε

= i

∫ d3k

(2π)3
1

2π

∫ ∞
−∞

idk4
1

−k2
4 − ~k2 −M2 + iε

=
∫ d3kdk4

(2π)4
1

k2
4 + ~k2 +M2

,

(X.9)

where we defined k0 =: ik4. The above integral can now be regularised by integrating over
the hypersphere

{
(k1, . . . , k4)t ∈ R4 ∣∣k2

1 + . . .+ k2
4 ≤ Λ

}
. If we write ~K for the Euclidean

vector (k1, . . . , k4)t, this gives

iI1 = iI1(M,Λ) =
∫
~K2≤Λ2

d4K

(2π)4
1

~K2 +M2
= 2π2

(2π)4

∫ Λ

0
dK K3

K2 +M2

= 1
16π2

(
Λ2 +M2 ln

(
M2

Λ2 +M2

))
.

(X.10)

X.2. Thermodynamic Potential
In this section we derive an expression for the grand potential of the NJL model in mean-
field approximation. Moreover, we show that solving the gap equation is equivalent to
finding the stationary points of the grand potential.
When dealing with quark matter at finite temperature a very helpful quantity is the

partition function Z. Since we want to treat temperature T and chemical potential µ as
thermodynamic variables, while particle number and energy can fluctuate, we will work
in the grand canonical ensemble.18
Let us shortly review the basic ideas of statistical quantum field theory, focusing on the

functional integral representation of the partition function (see [68] for further reference).
Let H = H(ψ, ψ̄) be the Hamiltonian density a system of Dirac fermions of mass m, i.e.

H = ψ̄(−i~γ · ~∇+m)ψ +Hint. (X.11)

Then the grand canonical partition function Z is given by

Z = Tr exp
(
− 1
T

∫
d3x(H− µN )

)
(X.12)

18In the grand canonical ensemble the system can exchange particles as well as energy with a reservoir
while temperature T , volume V and chemical potential µ are thermodynamic quantities describing
the state of a system in thermal equilibrium.
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with the number density N := ψ†ψ = ψ̄γ0ψ. In the above expression the trace Tr
is a functional trace over all states of the system, i.e. over flavour, colour, Dirac and
momentum space. Explicitly in terms of functional integrals, the partition function reads

Z =
∫

[idψ†][dψ] exp
(∫ 1/T

0
dτ
∫

d3x

(
−ψ̄γ0 ∂

∂τ
ψ −H(ψ, ψ̄) + µN (ψ, ψ̄)

))
, (X.13)

where τ = it. The fields ψ̄ and ψ are Grassmann-valued and we have to impose antiperi-
odic boundary conditions.
The grand canonical partition function can be used to derive pressure P , net particle

number N and entropy S (i.e. their average values) according to

P = ∂(T lnZ)
∂V

∣∣∣∣
T,µ

, N = ∂(T lnZ)
∂µ

∣∣∣∣
T,V

and S = ∂(T lnZ)
∂T

∣∣∣∣
V,µ

(X.14)

as well as energy
E = −PV + TS + µN. (X.15)

The net particle number N is related to the number density n via N =
∫

d3xn(~x), where
n(~x) directly corresponds to

n = 〈ψ†ψ〉 = 〈N〉 (X.16)
and we write 〈·〉 for the thermal expectation value.
For convenience, we can also introduce the grand potential per volume Ω(T, µ;M),

which is given by
Ω(T, µ;M) = −T

V
lnZ. (X.17)

Mean-Field Approximation
For a system of free Dirac fermions (i.e. Hint. = 0) the partition function Z or equiv-
alently the grand potential can be explicitly calculated (this is done in Appendix H.2),
i.e. one can evaluate the functional trace. However, for the NJL model the Lagrangian
and hence the Hamiltonian contains additional interaction terms. The NJL Hamiltonian
density reads

H = ψ̄(−i~γ · ~∇+m)ψ − g
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
. (X.18)

The interaction terms prevent us from finding a simple expression for the partition
function as it is possible for free fermions. We therefore have to resort to approximation
techniques. In the following we will systematically develop a mean-field approximation.
We will start from the Lagrangian density of the simple NJL model (2.1) and write ψ̄ψ
and ψ̄iγ5~τψ as their expectation values plus a fluctuation term, i.e.

ψ̄ψ = 〈ψ̄ψ〉+ δσ and ψ̄iγ5τ
aψ = 〈ψ̄iγ5τ

aψ〉+ δaπ. (X.19)

We assume the expectation values to be constant in space and time.19 The average
value φ := 〈ψ̄ψ〉 is called quark condensate and breaks chiral symmetry. In principle
19As a further extension it is possible to study expectation values which may depend on one or more

spatial coordinate. This leads to the notion of inhomogeneous phases. For the NJL model these are
studied e.g. in [102, 103].
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the pseudoscalar channel could also form a condensate but we will assume that this
is not the case i.e. 〈ψ̄iγ5τ

aψ〉 = 0. In general any quark bilinear could have a quark
condensate but it is argued in [64] that if we only allow chiral symmetry and Lorentz
invariance to be broken while all other symmetries of the Lagrangian remain intact, the
only non-vanishing condensates are φ and n = 〈ψ†ψ〉.
Inserting the expansion (X.19) into the Lagrangian density L and dropping all terms of

quadratic (or higher) order in the fluctuations (see Appendix H.1) yields the mean-field
approximation

Lmf = ψ̄(i/∂ −M)ψ − (M −m)2

4g (X.20)

where we defined the constituent quark mass

M := m+ Σ = m− 2g〈ψ̄ψ〉 (X.21)

with the mean-field quark self-energy

Σ := −2g〈ψ̄ψ〉. (X.22)

We will see shortly that these definitions in the mean-field approximation coincide with
the definitions of M and Σ for gap equation in Hartree approximation (see equations
(2.30) and (2.38)) and so we will already denote them by the same name. We observe
that the linearised Lagrangian density describes a Dirac field ψ of effective mass M
in a constant mean-field potential (M − m)2/(4g). This justifies why we called this
approximation mean-field approximation. The corresponding Hamiltonian density Hmf
reads

Hmf = ψ̄(−i~γ · ~∇+M)ψ + (M −m)2

4g . (X.23)

Since the form of the linearised Lagrangian and Hamiltonian density is much simpler,
it is possible to explicitly calculate the grand potential (per volume) Ωmf(T, µ;M) (i.e.
the partition function) in mean-field approximation. The calculation is performed in
Appendices H.2 and H.3. The result is the grand potential ΩM (T, µ) of a free quark
gas with particles of mass M plus a constant term due to the additive constant in the
mean-field Lagrangian:

Ωmf(T, µ;M) = ΩM (T, µ) + (M −m)2

4g

= (M −m)2

4g − 2NcNf

∫ d3k

(2π)3

[
E~k + T ln

(
1 + exp

(
−
E~k − µ
T

))
+ T ln

(
1 + exp

(
−
E~k + µ

T

))]
.

(X.24)

Regularisation
If we want to calculate the mean-field grand potential Ωmf(T, µ;M) numerically, we will
first need to regularise it. The divergence of the integral comes from the E~k in the
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integrand. Since the order of divergence of this integral is by two larger than the one
of iI1, simply applying the Pauli-Villars regularisation scheme with two regulators will
not be sufficient. We can however make use of the fact that we only need to know the
grand potential up to a constant. It is possible to find an expression Ω′mf(T, µ;M) for
the grand potential, such that

Ω′mf(T, µ;M) = Ωmf(T, µ;M)− c(T, µ) <∞. (X.25)

Note that the difference is given by c(T, µ), which depends on T and µ but not on M .
This means that whenever we want to study the dependence of the grand potential on
M for constant T and µ, the above gauge of the grand potential is suitable.
An expression for Ω′mf(T, µ;M) can be found via

Ω′mf(T, µ;M) =
∫ M

Mvac
dM ′∂Ωmf(M ′)

∂M ′

=
∫ M

Mvac
dM ′

(
M ′ −m

2g − 4NcNfM
′iI1(T, µ;M ′)

) (X.26)

where Mvac is the result for the constituent quark mass in vacuum [46]. The above
integral indeed becomes finite when applying Pauli-Villars regularisation to the vacuum
part of the inner integral I1(T, µ;M ′). In the calculation we used the expression for
the derivative of the grand potential w.r.t. the constituent quark mass, which will be
calculated in Appendix H.4.

Stationarity Condition
Let us turn back to the quark condensate φ = 〈ψ̄ψ〉. We want to determine this expres-
sion in mean-field approximation using the grand potential (X.24) we calculated above.
If we have an expression for the quark condensate, we can determine the effective quark
mass M from equation (X.21).
In analogy to the relations (X.14) the quark condensate φ = 〈ψ̄ψ〉 and the number

density n = 〈ψ†ψ〉 can in general be obtained from the grand potential Ω = Ω(T, µ;m)
by

φ = ∂Ω
∂m

and n = −∂Ω
∂µ

, (X.27)

which follows directly from the form of the grand canonical partition function Z. We
will apply the same relations to our mean-field grand potential Ωmf since we want our
mean-field approach to be thermodynamically consistent.
We will focus on the first equation for now. It turns out that it can be brought into

the form of a stationarity condition for Ωmf . For this, in the expression for Ωmf(µ, T ;M)
we write M = M(µ, T ;m). Then

dΩmf
dm = ∂Ωmf

∂m
+ ∂Ωmf

∂M

dM
dm = φ+ ∂Ωmf

∂M

dM
dm (X.28)

since m appears in Ωmf only in the term (M −m)2/(4g), whose derivative w.r.t. m is
exactly φ. So consistency with (X.27) is fulfilled if

∂Ωmf
∂M

= 0. (X.29)
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This means that the effective mass M in mean-field approximation corresponds to the
stationary points of the grand potential.
A straightforward calculation using the expression (X.24) for the grand potential (see

Appendix H.4) shows that the above stationarity condition is equivalent to the gap
equation in Hartree approximation (3.4). Hence, the expression for the self-energy Σ,
which we simply defined in this chapter, is identical to the self-energy that naturally
appeared in the gap equation ansatz.
Now that we know that the mean-field and the Hartree approach are equivalent, we

can use this to our advantage. We commented that the for finite µ gap equation might
not lead to a single solution but instead could have several roots. This ambiguity can
now be resolved: we identified the extrema of Ωmf as the possible candidates for the
mass M . However, for reasons of stability, we must of course demand a global minimum
of Ωmf for our physical mass M . With the gap equation alone, we could not have solved
this ambiguity.
Finally let us determine explicit expressions for φ = 〈ψ̄ψ〉 and n = 〈ψ†ψ〉. We obtain

the quark condensate φ = −Σ/(2g) directly from the expression of the self-energy Σ
(3.6) and get

〈ψ̄ψ〉 = T
∑
n∈Z

∫ d3k

(2π)3 Tr
(
S(iωn + µ,~k)

)
, (X.30)

which in the vacuum reads

〈ψ̄ψ〉 = −i
∫ d4k

(2π)4 TrS(k). (X.31)

In addition, we can calculate n = −∂Ωmf/∂µ and get

n = 〈ψ†ψ〉 = 2NfNc

∫ d3k

(2π)3

(
n~k(T, µ;M)− n̄~k(T, µ;M)

)
, (X.32)

which is identical to our definition (3.12).

X.3. Constituent Quark Mass for Finite Chemical Potential
In this section we will determine the constituent quark mass for finite T and µ while in
the original thesis only the case µ = 0 is considered (see Section 3.3). The constituent
quark mass M = M(T, µ) is obtained as solution of the gap equation (3.4). For some
values of µ and T the gap equation does not yield a unique solution and the physical
solution has to be determined from the minimality condition of the grand potential (see
discussion below). For µ = 0 this does not occur.
First, we set T = 0 and let µ vary (see Figure X.1). M stays constant for a large

interval20 and undergoes a first-order phase transition (i.e. M is a discontinuous function
of µ) at µ ≈ 409 MeV where chiral symmetry is restored.
20This phenomenon can be studied in a more general context (for theories with a mass gap) and is called

Silver Blaze problem [104]
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Figure X.1.: Constituent quark mass M at T = 0 as function of µ for parameter set [C].
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Figure X.2.: Left: Constituent quark mass M as function of T at µ = 0, 100, 200, 300,
350, 400, 450 MeV (from top to bottom). Right: Constituent quark mass as
function of T and µ. The shaded area marks the first-order phase transition.
Both plots for parameter set [C]

Figure X.2 (left) shows the dependence of M on T for different values of µ. For
smaller values of µ, there is a crossover from the broken phase to the symmetric phase.
For µ ≈ 400 MeV this happens via a first-order phase transition and for large enough µ
we are in the symmetric phase even for T = 0. Figure X.2 (right) shows the constituent
quark mass in the T -µ plane for parameter set [C].
The transition between the chirally symmetric phase and the phase exhibiting spon-

taneous breaking of chiral symmetry is mainly a crossover. Only for small T one sees a
first-order phase transition. The first-order transition line in the T -µ plane for param-
eter sets [C] - [E] is shown in Figure X.3. Parameter sets [A] and [B] do not produce a
first-order phase transition at all. In those cases there is always a crossover between the
broken and the symmetric phase.

Ambiguity of the Gap Equation
For values of T and µ close to the first-order phase transition the gap equation does
not have a unique solution. The solutions to the gap equation for µ = 400 MeV and
parameter set [C] are shown in Figure X.4 (left). For sufficiently large or small T the
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Figure X.3.: The lines show the position of the first-order phase transition between the
(approximately) chirally symmetric phase (large T or µ) and the sponta-
neously broken phase (small T and µ) for parameter sets [C] - [E] (from left
to right).
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Figure X.4.: Left: The curved line represents the 1 or 3 solutions M to the gap equation
at µ = 400 MeV. The correct phase transition is marked by the middle
vertical line. Right: The grand potential Ω′mf at µ = 400 MeV and T =
36 MeV. Both plots for parameter set [C].

solution is unique. However, there is an interval for T with three solutions. The gap
equation does not tell us when the phase transition, i.e. the jump from the upper
branch to the lower branch of the solution happens. It might occur anywhere between
the beginning of the lower branch and the end of the upper branch. The intermediate
branch is unphysical.
We have argued in Section X.2 that the roots of the gap equation correspond to local

extrema of the grand potential. The physical solution is given by the global minimum of
the grand potential, i.e. of the solutions of the gap equation we have to single out the one
with the smallest grand potential. The lower and upper solution branch in Figure X.4 are
local minima of Ω′mf whereas the intermediate branch is a local maximum (see Figure X.4
(right)). The phase transition occurs when the global minimum jumps from one local
minimum to the other.
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A. Conventions

Minkowski Metric
In this text we use the Minkowski metric with the usual particle physics signature
(+,−,−,−), i.e. the metric tensor is given by

ηµν = ηµν = diag(+1,−1,−1,−1). (A.1)

Greek indices like µ, ν, . . . run over all components of a four-vector while lower case
Roman letters like i, j, . . . run over the three-vector components.

Natural Units
In this text we will use natural units, which in particle physics means

~ = c = kB = 1. (A.2)

The only remaining unit is the electron volt (eV).
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B. Basic Quantities

B.1. Calculation of the Polarisation Loop
The following calculations aim at the calculation of the polarisation loop

JM (p) = i

∫ d4k

(2π)4 Tr (ΓMS(k + p)ΓMS(k)) (B.1)

for M ∈ {σ, π} (see Section 2.5). Let us begin by calculating the expression for the σ
meson. We have

Jσ(p) = i

∫ d4k

(2π)4 Tr (S (k + p)S (k))

= i

∫ d4k

(2π)4 Tr
(

/k + /p+M

(k + p)2 −M2 + iε

/k +M

k2 −M2 + iε

)
.

(B.2)

We have to evaluate the trace

Tr
((
/k + /p+M

)
(/k +M)

)
= NfNc tr

((
/k + /p+M

)
(/k +M)

)
, (B.3)

where the remaining trace tr is to be taken over Dirac space. Using

tr(/a) = 0 and tr(/a/b) = 4(a · b) (B.4)

for arbitrary four-vectors a and b, we get

Tr
((
/k + /p+M

)
(/k +M)

)
= 4NfNc(k2 + p · k +M2). (B.5)

Hence

Jσ(p) = 4NfNci

∫ d4k

(2π)4
k2 + p · k +M2

((k + p)2 −M2 + iε) (k2 −M2 + iε)

= 4NfNc

(
i

∫ d4k

(2π)4
1

k2 −M2 + iε

−i
∫ d4k

(2π)4
p · k + p2 − 2M2

((k + p)2 −M2 + iε) (k2 −M2 + iε)

)
.

(B.6)

Via substitution one easily shows that∫ d4k

(2π)4
2p · k + p2

((k + p)2 −M2 + iε) (k2 −M2 + iε) = 0, (B.7)
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which means we can replace p ·k by −p2/2 in the second integral and so we finally arrive
at the expression

Jσ(p) = 4NfNci

∫ d4k

(2π)4
1

k2 −M2 + iε

− 2NfNc(p2 − 4M2)i
∫ d4k

(2π)4
1

((k + p)2 −M2 + iε) (k2 −M2 + iε)
= 4NfNciI1 − 2NfNc(p2 − 4M2)iI2(p).

(B.8)

The calculation for Jabπ is analogous. We have

Jabπ (p) = i

∫ d4k

(2π)4 Tr
(
iγ5τ

aS (k + p) iγ5τ
bS (k)

)
= −δabNcNf i

∫ d4k

(2π)4 tr
(

γ5(/k + /p+M)γ5(/k +M)
((k + p)2 −M2 + iε) (k2 −M2 + iε)

)

= −δabNcNf i

∫ d4k

(2π)4 tr
(

(−/k − /p+M)(/k +M)
((k + p)2 −M2 + iε) (k2 −M2 + iε)

)

= δab4NfNci

∫ d4k

(2π)4
k2 + k · p−M2

((k + p)2 −M2 + iε) (k2 −M2 + iε)

= δab4NfNci

∫ d4k

(2π)4
1

k2 −M2 + iε

− 4NfNci

∫ d4k

(2π)4
p · k + p2

((k + p)2 −M2 + iε) (k2 −M2 + iε)

= δab4NfNci

∫ d4k

(2π)4
1

k2 −M2 + iε

− δab2NfNcp
2i

∫ d4k

(2π)4
1

((k + p)2 −M2 + iε) (k2 −M2 + iε)
= δab

(
4NfNciI1 − 2NfNcp

2iI2(p)
)
.

(B.9)

B.2. Alternative Representation of the Meson Propagator
We want to show that the meson propagator

DM (p) = −2g
1− 2gJM (p) (B.10)

in the simple model can be written as

DM (p2) = − 1
2NcNf

(
(p2 − ε2

M )iI2(p2)−m2
πiI2(mπ)

) (B.11)

for M ∈ {σ, π} with επ = 0 and εσ = 4M2.
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We can write the polarisation function as

JM (p) = 1
2g

(
1− m

M

)
− 2NcNf(p2 − εM )iI2(p). (B.12)

Hence
1− 2gJM (p) = m

M
+ 4gNcNf(p2 − εM )iI2(p). (B.13)

We saw in Section 2.5.1 that the pion propagator Dπ(p) has a pole at the pion mass, i.e.
D−1
π (mπ) = 0. We can write

0 = 1− 2gJπ(mπ) = m

M
+ 4gNcNfm

2
πiI2(mπ). (B.14)

Then

1− 2gJM (p) = 1− 2gJM (p)− (1− 2gJM (mπ)) = 4gNcNf
(
p2iI2(p)−m2

πiI2(mπ)
)

(B.15)
and for the propagator we get

DM (p2) = − 1
2NcNf

(
(p2 − ε2

M )iI2(p2)−m2
πiI2(mπ)

) . (B.16)

B.3. Calculation of the Pion Decay Constant
We calculate the pion decay constant fπ starting from the defining relation

fπp
µδab = gπqq

∫ d4k

(2π)4 Tr
(
γµγ5

τa

2 S(k + p)iγ5τ
bS(k)

)
(B.17)

(see (2.83)). We do so by evaluating the right-hand side of the above equation. We have

Tr
(
γµγ5

τa

2 S(k + p)iγ5τ
bS(k)

)
= i

2δabNfNc tr (γµγ5S(k + p)γ5S(k))

= − i2δabNfNc tr (γµS(k + p)γ5S(k)γ5)

= − i2δabNfNc tr (γµS(k + p)S(−k)) .

(B.18)

Using

tr (γµS(k + p)S(−k)) =
tr
(
γµ(/k + /p+M)(−/k +M)

)
((k + p)2 −M2 + iε) (k2 −M2 + iε)

=
tr
(
γµ/pM

)
((k + p)2 −M2 + iε) (k2 −M2 + iε)

= 4Mpµ

((k + p)2 −M2 + iε) (k2 −M2 + iε)

(B.19)
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we get

fπ = −gπqq2MNfNci

∫ d4k

(2π)4
1

((k + p)2 −M2 + iε) (k2 −M2 + iε)
= −gπqq2MNfNciI2(p)
= −gπqq2MNfNciI2(mπ),

(B.20)

where we inserted m2
π for p2 since p is the momentum of the pion.
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C. Elementary Integrals

C.1. Calculation of the Integral iI1

The integral iI1 is defined as

iI1 = i

∫ d4k

(2π)4
1

k2 −M2 + iε
. (C.1)

We write
iI1 = i

∫ d3k

(2π)3
1

2π

∫ ∞
−∞

dk0
1

k2
0 − E2

~k
+ iε

, (C.2)

where we defined E~k =
√
~k2 +M2. The inner integral can be evaluated using the residue

theorem. We have

1
2π

∫ ∞
−∞

dk0
1

k2
0 − E2

~k
+ iε

= 1
2π

∫ ∞
−∞

dk0
1

(k0 − E~k + iε′)(k0 + E~k − iε′)
(C.3)

with ε′ = ε/(2E~k). To apply the residue theorem we identify two first-order poles at
k0 = ±(E~k − iε

′). Since the integrand falls off quadratically for |k0| → ∞ we can close
the integration path from −∞ to ∞ to an integration path Γ around the upper half
plane:

Γ

Im(k0)

Re(k0)

Only the pole k0 = −E~k + iε′ contributes to the integral and we get

1
2π

∫ ∞
−∞

dk0
1

(k0 − E~k + iε′)(k0 + E~k − iε′)
= 1

2iE~k
. (C.4)

This gives

iI1 = 1
2

∫ d3k

(2π)3
1
E~k

= 1
4π2

∫ ∞
0

dk k2
√
k2 +M2

(C.5)
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The integral iI1 is quadratically divergent. Using Pauli-Villars regularisation with two
regulators as described in Section 2.3 gives

iI1 = 1
16π2

(
M2 ln(M2)− 2(M2 + Λ2) ln(M2 + Λ2) + (M2 + 2Λ2) ln(M2 + 2Λ2)

)
= 1

16π2

(
M2 ln

(
M2

M2 + Λ2

)
+ (M2 + 2Λ2) ln

(
M2 + 2Λ2

M2 + Λ2

))
.

(C.6)

C.2. Calculation of the Integral iI2(p)
We want to explicitly perform the k0-integration in

iI2(p) = i

∫ d4k

(2π)4
1

(k2 −M2 + iε) ((k + p)2 −M2 + iε) (C.7)

(see equation (2.64)) by application of the residue theorem.
We introduce a more general notation that will help us structuring the calculations:

iI2(p) = i

∫ d4k

(2π)4

∏
a∈{0,p}

1
(k + a)2 −M2 + iε

= i

∫ d4k

(2π)4

∏
a∈{0,p}

1
(k0 + a0)2 − E2

~k+~a
+ iε

= i

∫ d4k

(2π)4

∏
a∈{0,p}

1
(k0 + a0)− (E~k+~a − iε′)

1
(k0 + a0) + (E~k+~a − iε′)

= −
∫ d3k

(2π)3

∫ dk0
2πi

∏
a∈{0,p}

1
2E~k+~a

×

×
(

1
(k0 + a0)− (E~k+~a − iε′)

− 1
(k0 + a0) + (E~k+~a − iε′)

)
.

(C.8)

Here, we first wrote (k + a)2 −M2 = (k0 + a2
0)− E2

~k+~a and then applied

1
(k0 + a0)2 − E2

~k+~a
+ iε

= 1
k0 + a0 − E~k+~a + iε′

1
k0 + a0 + E~k+~a − iε′

(C.9)

with ε′ = ε/(2E~k+~a). In future, we will drop the prime in ε′.
The k0-integral can now be evaluated using the residue theorem. To apply the residue

theorem we identify four first-order poles at k0 = ±(E~k− iε) and k0 = −p0±(E~k+~p− iε).
We can close the integration path from −∞ to ∞ to an integration path Γ around the
upper half plane:
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Γ

Im(k0)

Re(k0)

Only the poles k0 = −E~k + iε and k0 = −p0 − E~k+~p + iε contribute to the integral and
we get

iI2(p) =
∫ d3k

(2π)3
1

4E~kE~k+~p

[(
1

p0 − E~k − E~k+~p + 2iε −
1

p0 − E~k + E~k+~p

)

+
(

1
−p0 − E~k − E~k+~p + 2iε −

1
−p0 + E~k − E~k+~p

)]
.

(C.10)

Let us analyse the structure of the integrand. Those denominators without the 2iε-term
can become zero for a certain three-momentum, which means that the integral is not
well-defined (even with regularisation). These fractions however all cancel and in the
end only denominators with a 2iε-term are left.
We get

iI2(p) =
∫ d3k

(2π)3
1

4E~kE~k+~p

(
1

p0 − E~k − E~k+~p + 2iε −
1

p0 + E~k + E~k+~p − 2iε

)

=
∫ d3k

(2π)3
1

2E~kE~k+~p

E~k + E~k+~p
p2

0 − (E~k + E~k+~p − 2iε)2

=
∫ d3k

(2π)3
1

p2
0 − (E~k + E~k+~p)2 + iε

(
1

2E~k
+ 1

2E~k+~p

)
.

(C.11)

By making the substitution ~k 7→ −~k − ~p we get for the second part of the integral∫ d3k

(2π)3
1

p2
0 − (E~k + E~k+~p)2 + iε

1
2E~k+~p

=
∫ d3k

(2π)3
1

p2
0 − (E−~k−~p + E−~k)2 + iε

1
2E−~k

=
∫ d3k

(2π)3
1

p2
0 − (E~k+~p + E~k)2 + iε

1
2E~k

(C.12)

and hence we obtain

iI2(p) =
∫ d3k

(2π)3
1
E~k

1
p2

0 − (E~k + E
~p+~k)2 + iε

. (C.13)
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Figure C.1.: The real and imaginary parts of iI2(p2) plotted as a function of p2 for
M = 260 MeV and Λ = 800 MeV.

The above integral only depends on p2. We can therefore set p2
0 = p2 and ~p = 0. Hence

the integral becomes

iI2(p2) =
∫ d3k

(2π)3
1
E~k

1
p2 − 4E2

~k
+ iε

= 1
2π2

∫ ∞
0

dk k2

E~k(p2 − 4E2
~k

+ iε)
. (C.14)

The integral iI2(p2) = iI(p2) can be solved analytically, which is discussed in Section C.3.
The result is plotted in Figure C.1.

C.3. Analytical Solutions of the Integrals iI(p), iK(p), iL(p)
In Appendix C.2 we showed how to write the integral iI2(p2) = iI(p2) as a radial three-
momentum integral. Analogous calculations for iK(p2) and iL(p2) lead to the results in
[41]:

iI(p2) = 1
2π2

∫ ∞
0

dk k2

E~k(p2 − 4E2
~k

+ iε)
,

iK(p2) = 1
8π2

∫ ∞
0

dk
k2(12E2

~k
− p2)

E3
~k
(p2 − 4E2

~k
+ iε)2 ,

iL(p2) = 1
4π2

∫ ∞
0

dk
(20E2

~k
− p2)k2

E3
~k
(p2 − 4E2

~k
+ iε)3 .

(C.15)

Defining

x = p2

M2 − 4 k
2

M2 − 4 and p̃2 = p2

M2 (C.16)
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we can write the above integrals (applying a suitable variable transformation) in the
form

iI(p2) = 1
16π2

∫ p̃2−4

−∞
dx
√
p̃2 − 4− x√
p̃2 − x

1
x+ iε

,

iK(p2) = 1
16π2

1
M2

∫ p̃2−4

−∞
dx
√
p̃2 − 4− x(2p̃2 − 3x)√

p̃2 − x3
1

(x+ iε)2 ,

iL(p2) = 1
8π2

1
M4

∫ p̃2−4

−∞
dx
√
p̃2 − 4− x(4p̃2 − 5x)√

p̃2 − x3
1

(x+ iε)3 .

(C.17)

We are hence in each case given an integral∫ b

−∞
f(x) 1

(x+ iε)ndx, (C.18)

which is to be calculated in the limit ε→ 0, where n = 1, 2, 3 and f(x) is a well-behaved
function at x = 0. It is useful to determine the real and imaginary parts independently.

Imaginary Part
Let us first study the imaginary parts. We note that

dn

dxn
(

a

x2 + a2

)
= (−1)nn! Im

(
(x+ ia)n+1)

(x2 + a2)n+1 = (−1)nn! Im
( 1

(x− ia)n+1

)
. (C.19)

Moreover it is known that
1
π

ε

x2 + ε2 (C.20)

is an approximation to the identity, i.e. it converges to the Dirac delta distribution
δ(x) as ε → 0. Analogously, derivatives of that function converge to the corresponding
distributional derivatives of the delta distribution.
Taking the above observations together we get

Im
( 1

(x+ iε)n+1

)
→ −π (−1)n

n! δ(n)(x) (C.21)

as ε→ 0, where δ(n)(x) denotes the n-th derivative of the delta distribution.
The imaginary parts of the above integrals iI(p2), iK(p2) and iL(p2) are hence easily

calculated by first partially integrating and then evaluating the integrand at x = 0. This
yields

Im
(
iI(p2)

)
= − 1

16π

√
p2 − 4M2√

p2 Θ(p2 − 4M2),

Im
(
iK(p2)

)
= 1

16π
1√

p2
√
p2 − 4M2 Θ(p2 − 4M2),

Im
(
iL(p2)

)
= 1

8π
p2 − 2M2√

p23√
p2 − 4M23 Θ(p2 − 4M2),

(C.22)
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where Θ denotes the Heaviside step function.

Real Part
Let us now turn to the real part of the integral. Here, the considerations are a bit more
difficult. Let us define the integration kernel

Kε
n(x) := Re

( 1
(x+ iε)n

)
(C.23)

and Kn(x) as the distributional limit of Kε
n(x) for ε→ 0. A careful study of the above

expression shows that ∫ ∞
−∞

Kε
n(x)xkdx =

∫ ∞
−∞

Kn(x)xkdx = 0 (C.24)

for k ∈ {0, 1, . . . , n− 1}. For k < n− 1 the integral exists in an ordinary sense, however
for k = n−1 this is not the case. We can however set the integral value to zero since the
integrand is an odd function in that case.21 Let f(x) be a given (n-times differentiable)
function. We can consider the Taylor polynomial

Tn(x) = f(0) + f ′(0)x+ f ′′(0)x
2

2 + . . .+ f (n)(0)x
n

n! (C.25)

and the corresponding residual

Rn(x) = f(x)− Tn(x). (C.26)

We then get∫ ∞
−∞

Kn(x)f(x)dx =
∫ ∞
−∞

Kn(x)Tn−1(x)dx︸ ︷︷ ︸
=0

+
∫ ∞
−∞

Kn(x)Rn−1(x)dx

=
∫ ∞
−∞

Kn(x)Rn−1(x)dx

=
∫ ∞
−∞

f(x)− f(0)− f ′(0)x+ f ′′(0)x2

2 + . . .+ f (n−1)(0) xn−1

(n−1)!
xn

dx

=
∫ ∞
−∞

Rn−1(x)
xn

dx.

(C.27)

If we assume the function f(x) to be analytic, the numerator in the above integral has
a zero of order n at x = 0 and so Kn(x) just becomes 1/xn and the integrand does not
have a pole at x = 0.

21This corresponds to interpreting the integral as a Cauchy principal value integral lima→∞
∫ a
−a, which

indeed vanishes.
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Rather than integrating from −∞ to +∞ we only want to integrate up to some finite
b. We have to distinguish between two cases. First, let b > 0. Here we have∫ b

−∞
Kn(x)f(x)dx =

∫ ∞
−∞

Kn(x)f(x)dx−
∫ ∞
b

Kn(x)f(x)dx

=
∫ ∞
−∞

Rn−1(x)
xn

dx−
∫ ∞
b

f(x)
xn

dx

=
∫ b

−∞

Rn−1(x)
xn

dx−
∫ ∞
b

Tn−1(x)
xn

dx.

(C.28)

However, since Tn−1(x) is a polynomial of degree n − 1, the integrand Tn−1(x)/(xn)
behaves like 1/x for large x and hence the latter integral does not converge. However, if
we write∫ b

−∞
Kn(x)f(x)dx =

∫ b

−b

Rn−1(x)
xn

dx+
∫ ∞
b

(
Rn−1(−x)

(−x)n − Tn−1(x)
xn

)
dx, (C.29)

both integrals are well-defined.
If b < 0, we can directly calculate∫ b

−∞
Kn(x)f(x)dx =

∫ b

−∞

f(x)
xn

dx (C.30)

since 0 is not element of the domain of integration.
With the above formula we can calculate the real parts of the integrals iI(p2), iK(p2)

and iL(p2) numerically without any further complication since the integrands are all
well-behaved. It turns out that in all three cases the integration can even be done
analytically.
The integral iI(p) still has to be regularised. Even though it is only logarithmically

divergent, we will use the regularisation scheme we used for iI1. Hence the result of the
Pauli-Villars regularised integral will be piecewise defined for p2 < 4M2, 4M2 < p2 <
4M2 + 4Λ2, 4M2 + 4Λ2 < p2 < 4M2 + 8Λ2 and p2 > 4M2 + 8Λ2.
The real part of iI2 has two contributions. The first one comes from the divergent

part of the integral and is given by
1

16π2

(
ln
(
M2

)
− 2 ln

(
M2 + Λ2

)
+ ln

(
M2 + 2Λ2

))
(C.31)

(regularised). The second contribution is not divergent and is for p2 < 4M2 (including
p2 < 0) given by

1
8π2

√
4M2 − p2 arctan

√
p2

4M2−p2√
p2 (C.32)

(not regularised). For p2 < 0, the argument
√

p2

4M2−p2 of the arctan is imaginary and we
can use arctan(ix) = i arctanh(x) to write the contribution to the integral as

1
8π2

√
4M2 − p2 arctanh

√
−p2

4M2−p2√
−p2 . (C.33)
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We note that the argument of the arctanh is now real and smaller than 1 in magnitude,
which implies that the arctanh is purely real. For p2 > 4M2 the second contribution is

1
16π2

√
p2 − 4M2√

p2 ln
(√

p2 +
√
p2 − 4M2√

p2 −
√
p2 − 4M2

)
(C.34)

(not regularised).
We can also write the real and the imaginary part of I(p) together as

iI(p2) = 1
16π2

[
ln
(
M2

)
− 2 ln

(
M2 + Λ2

)
+ ln

(
M2 + 2Λ2

)

+ 2f
(

4M2 − p2

p2

)
− 4f

(
4M2 + 4Λ2 − p2

p2

)
+ 2f

(
4M2 + 8Λ2 − p2

p2

)]
(C.35)

with

f(x) =


√
x arctan

(
1√
x

)
, x > 0

√
−x arctanh

(
1√
−x

)
, x < 0

0, x = 0
. (C.36)

For iK(p) we obtain

Re
(
iK(p2)

)
=

arctan
(√

p2

4M2−p2

)
8π2

√
p2
√

4M2 − p2 (C.37)

for p2 < 4M2 (including p2 < 0), which we can write as

Re
(
iK(p2)

)
=

arctanh
(√

−p2

4M2−p2

)
8π2

√
−p2

√
4M2 − p2 (C.38)
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for p2 < 0, and

Re
(
iK(p2)

)
= 1

16π2(p2)3/2
√
p2 − 4M2 (p2 − 2M2){

− p2
[
2M2

(
ln
(
−
√
p2(
√
p2 − 2M2 −

√
p2) +M2

256M2

)
+ 8 ln

(2M2 −
√
p2(
√
p2 − 4M2 +

√
p2)

M2 −
√
p2(
√
p2 − 2M2 +

√
p2)

))

− p2
(

ln
(
−
√
p2
√
p2 − 2M2 +M2 − p2

M2

)
+ 2 ln

(√
p2(
√
p2 − 4M2 +

√
p2)− 2M2

))]
− 2

(
12M4 + (p2)2

)
ln
(

2
(√

p2(
√
p2 − 2M2 +

√
p2)−M2

))
− 6

(
8M4 − 6M2p2 + (p2)2

)
arctanh

(√p2(
√
p2 − 4M2 −

√
p2 − 2M2)

p2 −
√

8M4 − 6M2p2 + (p2)2

)
+ 24M4 ln

(√
p2(
√
p2 − 4M2 +

√
p2)− 2M2

)}
(C.39)

for p2 > 4M2.
For iL(p) we obtain

Re
(
iL(p2)

)
=
−4M2√p2 + 2

(
2M2 − p2)√4M2 − p2 arctan

(√
p2

4M2−p2

)
+ (p2)3/2

8π2(p2)3/2 (p2 − 4M2)2

(C.40)
for p2 < 4M2 (including p2 < 0), which we write as

Re
(
iL(p2)

)
=

4M2√−p2 − 2
(
2M2 − p2)√4M2 − p2 arctanh

(√
−p2

4M2−p2

)
+ (−p2)3/2

8π2(−p2)3/2 (p2 − 4M2)2

(C.41)
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for p2 < 0, and

Re
(
iL(p2)

)
= 1

8π2(p2)3/2 (p2 − 4M2)2 (p2 − 2M2){√
p2 − 4M2

[
(p2)2 ln

( 2√
p2(
√
p2 − 4M2 +

√
p2)− 2M2

)
+ 4M2(p2 −M2) ln

(√
p2(
√
p2 − 4M2 +

√
p2)− 2M2

)
+ 2(p2 − 2M2)2 ln(M)

]
−M2p2

(
ln(16)

√
p2 − 4M2 + 6

√
p2
)

+M4
(

ln(16)
√
p2 − 4M2 + 8

√
p2
)

+ (p2)5/2
}

(C.42)

for p2 > 4M2.

C.4. Derivative of the Elementary Integral iI(p)
In the following we want to calculate the derivative

d
(
iI(p2)

)
d(p2) (C.43)

and express it again in terms of elementary integrals. For this we use the expressions
(4.23) for the elementary integrals since they explicitly depend on p2. We have

d
(
iI(p2)

)
d(p2) = d

d(p2)
1

2π2

∫ ∞
0

dk k2

E~k(p2 − 4E2
~k

+ iε)

= 1
2π2

∫ ∞
0

dk −k2

E~k(p2 − 4E2
~k

+ iε)2

= 1
8π2

∫ ∞
0

dk −4k2(k2 +M2)
E3
~k
(p2 − 4E2

~k
+ iε)2

(C.44)

In analogy we write

iI(0) = 1
8π2

∫ ∞
0

dk−k
2(p2 − 4k2 − 4M2)2

E3
~k
(p2 − 4E2

~k
+ iε)2 ,

iI(p2) = 1
8π2

∫ ∞
0

dk4k2(k2 +M2)(p2 − 4k2 − 4M2)
E3
~k
(p2 − 4E2

~k
+ iε)2 ,

iK(p2) = 1
8π2

∫ ∞
0

dkk
2(12k2 + 12M2 − p2)
E3
~k
(p2 − 4E2

~k
+ iε)2 .

(C.45)

Comparing the numerators of the integrand we see that

d
(
iI(p2)

)
d(p2) = 1

2p2

(
iI(0)− iI(p2)

)
− 1

2 iK(p2) (C.46)
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Moreover we calculate

d
(
p2iI(p2)

)
d(p2) = iI(p2) + p2 d

(
iI(p2)

)
d(p2)

= iI(p2) + 1
2
(
iI(0)− iI(p2)

)
− 1

2p
2iIK(p2)

= 1
2
(
iI(0) + iI(p2)− p2K(p2)

)
.

(C.47)

C.5. Calculation of the Integrals iI3(p, q) and iI4(p, q, r)
We were able to give analytical expressions for the integrals iI1 and iI2(p) (both needed
to be regularised). For the latter, we saw that the solution exhibits certain momentum
thresholds (p2 > 4M2, . . .). It is reasonable to assume that this will also be the case for
iI3(p, q) and iI4(p, q, r). However, since there are more external momenta, the situation
will be considerably more difficult. In general, integrals of the form

i

∫ d4k

(2π)4
1(

k2 −M2
0 + iε

) 1(
(k + q1)2 −M2

1 + iε
) · · · 1

((k + qn)2 −M2
n + iε) (C.48)

are called scalar one-loop n-point functions and are studied for example in [80, 81, 82].
One usually uses the momenta p1 = q1, p2 = q2 − q1, p3 = q3 − q2, etc. so that the k-th
denominator in the above integral reads (k + p1 + p2 + . . .+ pk)2 −M2

k + iε.
The general approach for solving these integrals is the introduction of so-called Feyn-

man parameters x, y, z, . . . [58]. The idea is based on the identity

1
AB

=
∫ 1

0
dx 1

(xA+ (1− x)B)2 =
∫ 1

0
dx
∫ 1

0
dy δ(x+ y − 1)

(xA+ yB)2 , (C.49)

which is easily generalised to

1
A1 · · ·An

= (n− 1)!
∫ 1

0
dx1 · · ·

∫ 1

0
dxn

δ(x1 + · · ·+ xn − 1)
(x1A1 + · · ·+ xnAn)n . (C.50)

By identifying the denominators of (C.48) with A1, . . . , An in the above formula, it
is possible to introduce n new integrations. Then, the k-integration is performed and
with the help of the δ-function we obtain an expression in terms of integrals over n− 1
Feynman parameters.
Using the above described technique, it is possible to write the integrals iI3(p, q) and

iI4(p, q, r) as

iI3(p, q) = 1
16π2

∫ 1

0
dx
∫ x

0
dy 1
ax2 + by2 + cxy + dx+ ey + f

(C.51)
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with

a = (q − p)2,

b = p2,

c = 2p · (q − p),
d = −(q − p)2,

e = p2 − 2p · q,
f = M2 − iε

(C.52)

and

iI4(p, q, r)

= − 1
16π2

∫ 1

0
dx
∫ x

0
dy
∫ y

0
dz 1

(ax2 + by2 + gz2 + cxy + hxz + jyz + dx+ ey + kz + f)2

(C.53)

with

a = (r − q)2,

b = (q − p)2,

c = 2(q − p) · (r − q),
d = −(r − q)2,

e = q2 − p2 + 2(p− q) · r,
f = M2 − iε,
g = p2,

h = 2p · (r − q),
j = 2p(q − p),
k = p2 − 2p · r.

(C.54)

We see that the integrals depend on all possible Lorentz scalars that can be formed
from the external momenta. The authors of [80] describe how the above expressions can
be further simplified and even expressed analytically using the Spence or dilogarithm
function

Sp(x) := −
∫ 1

0
dt ln(1− xt)

t
. (C.55)

One has to be very careful however, for which external momentum configurations the
given expressions are valid and we do not give these results here. We simply note that the
evaluation of iI3(p, q) and iI4(p, q, r) and even higher one-loop integrals is implemented
in the LoopTools package [83], which returns correct results for the external momenta
occurring in the pion-pion scattering process as described in Chapter 4.
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D. Medium Integrals

D.1. Medium Version of the Integral iI1

The medium version of integral iI1 is defined by

iI1(T, µ) = −T
∑
j∈Z

∫ d3k

(2π)3
1

(iωj + µ)2 − E2
~k

(D.1)

with the fermionic Matsubara frequencies iωj = (2j + 1)πiT . By applying the residue
theorem we can replace the sum by an appropriate integral over a path Γ in the complex
plane, which we then deform to the path Γ′:

Γ

Im(z)

Re(z)

Γ'Γ'

This gives

iI1(T, µ) =
∫ d3k

(2π)3
1

2πi

∮
Γ′

dznF(z) 1
(z + µ)2 − E2

~k

(D.2)

where nF(z) = (1 + exp(z/T ))−1 is the Fermi distribution function and has poles at all
Matsubara frequencies with residue −T . The path Γ′ runs clockwise around the poles
z1,2 = ±E~k − µ of the integrand and hence we get

iI1(T, µ) = −
∫ d3k

(2π)3

2∑
i=1

Reszi

(
nF(z) 1

(z + µ)2 − E2
~k

)

=
∫ d3k

(2π)3
1

2E~k

(
nF(−E~k − µ)− nF(E~k − µ)

)
=
∫ d3k

(2π)3
1

2E~k

(
1− n~k − n̄~k

)
,

(D.3)
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where we used nF(−z) = 1− nF(z) in the last step and defined the quark and antiquark
occupation number density

n~k = n~k(T, µ;M) = 1
1 + exp

(
E~k−µ
T

) = nF(E~k − µ)

n̄~k = n̄~k(T, µ;M) = 1
1 + exp

(
E~k+µ
T

) = nF(E~k + µ).
(D.4)

Regularisation
The above integral iI1(T, µ) can be split into a vacuum and a medium contribution as
we will show in the following and it turns out that only the vacuum contribution needs
to be regularised.
If we let T → 0, the Fermi distribution functions becomes

nF(x)→ 1−Θ(x) = Θ(−x), (D.5)

where Θ(x) denotes the Heaviside step function. If we in addition set µ = 0, the quark
and antiquark occupation number densities in expression (3.7) for iI1 will vanish since
E~k is always positive. We argued before that we will obtain the vacuum expression of a
given quantity in the limit T, µ→ 0. Hence

iIvac1 =
∫ d3k

(2π)3
1

2E~k
, (D.6)

which agrees with the vacuum result obtained in Chapter 2. The rest of the medium
integral we can separate off and call it the medium contribution to the integral, i.e.

iI1(T, µ) = iIvac1 + iImed
1 (T, µ) (D.7)

with
iImed

1 (T, µ) = −
∫ d3k

(2π)3
1

2E~k

(
n~k + n̄~k

)
. (D.8)

As the occupation number densities are given in terms of the Fermi distribution function
nF, they are exponentially decreasing for large ~k, which guarantees the convergence of
the medium contribution to the integral. Only the vacuum part (as we discussed in
Section 2.3) needs to be regularised, e.g. by applying a Pauli-Villars regularisation
scheme. The medium contribution will be left unchanged.
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D.2. Medium Versions of the Integrals iI(p), iK(p), iL(p)
We want to determine the medium versions of the integrals

iI(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)
1

((k + p)2 −M2 + iε) ,

iK(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)2
1

((k + p)2 −M2 + iε) ,

iL(p) := i

∫ d4k

(2π)4
1

(k2 −M2 + iε)2
1

((k + p)2 −M2 + iε)2 .

(D.9)

The medium integrals are given by

iI(iωn, ~p) = −T
∑
j∈Z

∫ d3k

(2π)3
1(

(iωj + µ)2 − E2
~k

) (
(iωn + iωj + µ)2 − E2

~k+~p

) ,
iK(iωn, ~p) = −T

∑
j∈Z

∫ d3k

(2π)3
1(

(iωj + µ)2 − E2
~k

)2 (
(iωn + iωj + µ)2 − E2

~k+~p

) ,
iL(iωn, ~p) = −T

∑
j∈Z

∫ d3k

(2π)3
1(

(iωj + µ)2 − E2
~k

)2 (
(iωn + iωj + µ)2 − E2

~k+~p

)2 ,

(D.10)

where the outer Matsubara frequency iωn = 2πinT is a bosonic frequency (related to ~p)
and iωj = (2j + 1)πiT is a fermionic frequency (related to ~k). We write the Matsubara
sums as contour integrals by application of the residue theorem (recall that the Fermi
distribution nF(z) = (1 + exp(z/T ))−1 has poles at z = (2j+ 1)πiT = iωj for j ∈ Z with
residue −T ). We get

iI(iωn, ~p) =
∫ d3k

(2π)3
1

2πi

∮
Γ

nF(z)(
(z + µ)2 − E2

~k

) (
(z + iωn + µ)2 − E2

~k+~p

) ,
iK(iωn, ~p) =

∫ d3k

(2π)3
1

2πi

∮
Γ

nF(z)(
(z + µ)2 − E2

~k

)2 (
(z + iωn + µ)2 − E2

~k+~p

) ,
iL(iωn, ~p) =

∫ d3k

(2π)3
1

2πi

∮
Γ

nF(z)(
(z + µ)2 − E2

~k

)2 (
(z + iωn + µ)2 − E2

~k+~p

)2 ,

(D.11)

where Γ is an integration contour running counter-clockwise around all the Matsubara
poles on the imaginary axis. This path can be deformed to an integration contour
running clockwise around the (first or second order) poles z1,2 = ±E~k − µ and z3,4 =
±E~k+~p − µ − iωn of the integrands. We then apply the residue theorem once more to
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obtain

iI(iωn, ~p) = −
∫ d3k

(2π)3

4∑
i=1

Reszi
nF(z)(

(z + µ)2 − E2
~k

) (
(z + iωn + µ)2 − E2

~k+~p

) ,
iK(iωn, ~p) = −

∫ d3k

(2π)3

4∑
i=1

Reszi
nF(z)(

(z + µ)2 − E2
~k

)2 (
(z + iωn + µ)2 − E2

~k+~p

) ,
iL(iωn, ~p) = −

∫ d3k

(2π)3

4∑
i=1

Reszi
nF(z)(

(z + µ)2 − E2
~k

)2 (
(z + iωn + µ)2 − E2

~k+~p

)2 .

(D.12)

The sum of the residues is quite lengthy and we do not write down the resulting expres-
sions. In the following we give the general ideas of the calculations.
We make the analytical continuation by replacing iωn 7→ p0 + iε to obtain the re-

tarded integrals iI+(p0, ~p), iK+(p0, ~p) and iL+(p0, ~p) (or iωn 7→ p0 + iε for the advanced
versions). We then do a partial fraction decomposition to write the integrand of each
integral in terms of the denominators (p0 ± E~k ± E~k+~p + iε)n, where n can be 1 for
iI+(p0, ~p), 1 or 2 for iK+(p0, ~p) and 1, 2 or 3 for iL+(p0, ~p).
For the imaginary part of the integrals this translates into δ-distributions and deriva-

tives thereof. For the real part we proceed analogously as described in Section C.3. Both
discussions turn out be be very difficult due to the three-dimensional integration over ~k.
So far this calculation is only done for iI+(p0, ~p) [38] and we will present the results in
Section D.3.

Vanishing Three-Momentum
As a simplification when it comes to calculating the retarded integrals iI+(p0, ~p), iK+(p0, ~p)
and iL+(p0, ~p) we could assume that the three-momentum ~p vanishes. Setting ~p = 0
amounts to replacing E~k+~p by E~k in expressions (D.12). In that case the integrand
simplifies considerably and the integrals can be written as

iI+(p0, 0) = −
∫ d3k

(2π)3

sinh
(
E~k
T

)
E~k

(
4E2

~k
− (p0 + iε)2

) (
cosh

(
E~k
T

)
+ cosh

( µ
T

)) , (D.13)

iK+(p0, 0) =
∫ d3k

(2π)3

−4E3
~k
p0 + E~kp0

(
p2

0 − 4E2
~k

)
cosh

(
E~k
T

)
cosh

( µ
T

)
+ E~kp

3
0

4E3
~k
p0T

(
(p0 + iε)2 − 4E2

~k

)2 (
cosh

(
E~k
T

)
+ cosh

( µ
T

))2 · · ·

· · ·
+ sinh

(
E~k
T

) [
2E2

~k

(
4E2

~k
− p2

0

)
sinh

( µ
T

)
· · ·

· · ·
−p0T

(
p2

0 − 12E2
~k

) (
cosh

(
E~k
T

)
+ cosh

( µ
T

))]
(D.14)
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and

iL+(p0, 0) =
∫ d3k

(2π)3

e
2(E~k+µ)

T

[
2E~k

(
16E4

~k
− p4

0

) (
cosh

(
E~k
T

)
cosh

( µ
T

)
+ 1

)
p2

0TE
3
~k

(
4E2

~k
− (p0 + iε)2

)3
(
e
E~k
T + e

µ
T

)2 (
e
E~k

+µ
T + 1

)2 · · ·

· · ·
+2p2

0T
(
p2

0 − 20E2
~k

)
sinh

(
E~k
T

) (
cosh

(
E~k
T

)
+ cosh

( µ
T

)))
.

(D.15)

These integrals only depend on E~k =
√
~k2 +M2 and hence only on |~k| rather than ~k.

We transform the integrals in the following way∫ d3k

(2π)3 f(E~k)
1(

4E2
~k
− p2

0

)n
= 1

2π2

∫ ∞
M

dE~kE~k
√
E2
~k
−M2f(E~k)

1(
4E2

~k
− p2

0

)n
= 1

8π2

∫ ∞
4M2−p2

0

dx
√
x+ p2

0 − 4M2f

(1
2

√
x+ p2

0

) 1
(x− sgn(p0)iε)n

= 1
8π2 (−1)n

∫ −(4M2−p2
0)

−∞
dx
√
−x+ p2

0 − 4M2f

(1
2

√
−x+ p2

0

) 1
(x+ sgn(p0)iε)n .

(D.16)

The real and imaginary part of the integrals can now be calculated as described in
Section C.3. This is done numerically in the case of the real part. The imaginary part
can be expressed analytically and is given by

Im
(
iI+(p0, 0)

)
= − sgn(p0)

√
p2

0 − 4M2 sinh
(
|p0|
2T

)
16π|p0|

(
cosh

(
|p0|
2T

)
+ cosh

( µ
T

))Θ(p2
0 − 4M2), (D.17)

Im
(
iK+(p0, 0)

)
= sgn(p0)

sinh
(
|p0|
2T

) [
sgn(p0)

(
p2

0 − 4M2) sinh
( µ
T

)
32πp2

0T
√
p2

0 − 4M2
(
cosh

(
|p0|
2T

)
+ cosh

( µ
T

))2 · · ·

· · ·
+2|p0|T

(
cosh

(
|p0|
2T

)
+ cosh

( µ
T

))]
Θ(p2

0 − 4M2),

(D.18)
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Im
(
iL+(p0, 0)

)
= sgn(p0)

sinh
(
|p0|
2T

) [
8T 2 (p2

0 − 2M2) cosh
(
|p0|
T

)
128πT 2|p0|3

√
p2

0 − 4M2
3 (

cosh
(
|p0|
2T

)
+ cosh

( µ
T

))3 · · ·

· · ·
+
(
8T 2 (p2

0 − 2M2)+
(
p2

0 − 4M2)2) cosh
(

2µ
T

)
· · ·

· · ·
+16T 2 (p2

0 − 2M2)− 3
(
p2

0 − 4M2)2]
· · ·

· · ·
−
(
16T 2 (2M2 − p2

0
)

+
(
p2

0 − 4M2)2) cosh
( µ
T

)
sinh

(
|p0|
T

)
×

×Θ(p2
0 − 4M2).

(D.19)

One easily checks that for µ = 0 and T → 0 these expressions for the imaginary part
yield the vacuum results (C.22) as calculated in Section C.3 times a factor of sgn(p0),
which is due to the fact that we are calculating retarded integrals rather than Feynman
integrals. A more detailed discussion related to this topic can be found in Section D.3,
where we calculate the medium integral iI+(p0, ~p) = iI+

2 (p0, ~p) for non-vanishing ~p.

Regularisation
The way we wrote down the integrals, we did not separate between a medium and a
vacuum contribution. This we have to do since we decided to regularise the vacuum,
but not the medium contribution of the integrals. Since iK+(p0, ~p) and iL+(p0, ~p) do
not have to be regularised at all, we simply calculate the unregularised expression (for
the real or imaginary part) and subtract the vacuum expression in order to obtain the
medium contribution. Then we add again the regularised vacuum expression, which we
decided to regularise for consistency.
For the imaginary part of iI+(p0, ~p) we proceed as described above. The real part does

not converge without regularisation. It is therefore convenient to separate off medium
and vacuum contribution already for the integrand. This is done in the following Sec-
tion D.3 for the more general case of non-vanishing external three-momentum ~p. Setting
~p = 0 in (D.32) yields

iI+
2 (p0, 0) =

∫ d3k

(2π)3
1
E~k

(
1− n~k − n̄~k

) 1
(p0 + iε)2 − 4E2

~k

, (D.20)

where we easily read off the vacuum contribution

iI+,vac
2 (p0, 0) =

∫ d3k

(2π)3
1
E~k

1
(p0 + iε)2 − 4E2

~k

, (D.21)

and the medium contribution

iI+,med
2 (p0, 0) = −

∫ d3k

(2π)3
1
E~k

(
n~k + n̄~k

) 1
(p0 + iε)2 − 4E2

~k

. (D.22)
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For each the real part can be obtained by writing the integral as a one-dimensional
integral over |~k| and calculating the Cauchy principal value integral, where we regularise
only the vacuum part. For the vacuum part we obtain exactly Re

(
iI(p2 = p2

0)
)
as is

discussed in Section D.3. The medium contribution is calculated numerically.

D.3. Medium Version of the Integral iI2(p)
We want to determine the medium version of the integral

iI2(p) = i

∫ d4k

(2π)4
1

(k2 −M2 + iε) ((k + p)2 −M2 + iε) . (D.23)

for non-vanishing external three-momentum ~p. In Section D.2 we showed that the Mat-
subara integral can be written as

iI2(iωn, ~p) = −
∫ d3k

(2π)3

4∑
i=1

Reszi
nF(z)(

(z + µ)2 − E2
~k

) (
(z + iωn + µ)2 − E2

~k+~p

) (D.24)

with z1,2 = ±E~k − µ and z3,4 = ±E~k+~p − µ− iωn. Calculating the residues yields

iI2(iωn, ~p) = −
∫ d3k

(2π)3

 nF(E~k − µ)
2E~k

(
E~k + iωn − E~k+~p

) (
E~k + iωn + E~k+~p

)
+

nF(−E~k − µ)
(−2E~k)

(
−E~k + iωn − E~k+~p

) (
−E~k + iωn + E~k+~p

)
+

nF(E~k+~p − iωn − µ)(
E~k+~p − iωn − E~k

) (
E~k+~p − iωn + E~k

)
2E~k+~p

+
nF(−E~k+~p − iωn − µ)(

−E~k+~p − iωn − E~k
) (
−E~k+~p − iωn + E~k

)
(−2E~k+~p)

 .

(D.25)

By using the periodicity of nF and making a substitution ~k 7→ −~k− ~p in the second part
of the integral, the above expression simplifies to

iI2(iωn, ~p) = −
∫ d3k

(2π)3

 nF(E~k − µ)
2E~k

(
E~k + iωn − E~k+~p

) (
E~k + iωn + E~k+~p

)
−

nF(−E~k − µ)
2E~k

(
E~k − iωn + E~k+~p

) (
E~k − iωn − E~k+~p

)
+

nF(E~k − µ)
2E~k

(
E~k − iωn − E~k+~p

) (
E~k − iωn + E~k+~p

)
−

nF(−E~k − µ)
2E~k

(
E~k + iωn + E~k+~p

) (
E~k + iωn − E~k+~p

)
 .

(D.26)
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Doing a partial fraction decomposition and rearranging the terms, one arrives at the
result

iI2(iωn, ~p) = −
∫ d3k

(2π)3
1

4E~kE~k+~p

(
nF(E~k − µ)− nF(−E~k − µ)

)
×

×
(

2(E~k − E~k+~p)
(E~k − E~k+~p)2 − (iωn)2 −

2(E~k + E~k+~p)
(E~k + E~k+~p)2 − (iωn)2

)
.

(D.27)

Introducing s~k,~p := E~k+~p +E~k and d~k,~p := E~k+~p +E~k and using nF(−z) = 1− nF(z) we
get

iI2(iωn, ~p) =
∫ d3k

(2π)3
1

2E~kE~k+~p

(
1− nF(E~k + µ)− nF(E~k − µ)

)
×

×

 d~k,~p
d2
~k,~p
− (iωn)2 +

s~k,~p
s2
~k,~p
− (iωn)2

 . (D.28)

Making the substitution ~k 7→ −~k − ~p we see that the integral∫ d3k

(2π)3
1

2E~kE~k+~p
· 1 ·

d~k,~p
d2
~k,~p
− (iωn)2 (D.29)

vanishes and∫ d3k

(2π)3
1

2E~kE~k+~p
· 1 ·

s~k,~p
s2
~k,~p
− (iωn)2 =

∫ d3k

(2π)3
1
E~k

1
s2
~k,~p
− (iωn)2 . (D.30)

Hence we can write the integral in a slightly different way (in accordance with [38]),
namely

iI2(iωn, ~p) =
∫ d3k

(2π)3

( 1
E~k
−
nF(E~k + µ) + nF(E~k − µ)

2E~kE~k+~p
s~k,~p

)
1

(iωn)2 − s2
~k,~p

−
nF(E~k + µ) + nF(E~k − µ)

2E~kE~k+~p
d~k,~p

1
(iωn)2 − d2

~k,~p

 .
(D.31)

Retarded Integral
For the calculation of the meson masses we need the retarded version of the above
integral, which is obtained by replacing iωn 7→ p0 + iε. The integral reads

iI+
2 (p0, ~p) =

∫ d3k

(2π)3

( 1
E~k
−

n~k + n̄~k
2E~k+~pE~k

s~k,~p

)
1

(p0 + iε)2 − s2
~k,~p

−
n~k + n̄~k
2E~k+~pE~k

d~k,~p
1

(p0 + iε)2 − d2
~k,~p

 .
(D.32)
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We split the integral into a vacuum and a medium contribution

iI+
2 (p0, ~p) = iI+,vac

2 (p0, ~p) + iI+,med
2 (p0, ~p) (D.33)

with
iI+,vac

2 (p0, ~p) =
∫ d3k

(2π)3
1
E~k

1
(p0 + iε)2 − s2

~k,~p

(D.34)

and

iI+,med
2 (p0, ~p) = −

∫ d3k

(2π)3
n~k + n̄~k
2E~k+~pE~k

 s~k,~p
(p0 + iε)2 − s2

~k,~p

+
d~k,~p

(p0 + iε)2 − d2
~k,~p


= −

∫ d3k

(2π)3
n~k + n̄~k
4E~k+~pE~k

(
1

p0 + iε− s~k,~p
− 1
p0 + iε+ s~k,~p

+ 1
p0 + iε− d~k,~p

− 1
p0 + iε+ d~k,~p

)
.

(D.35)

Only the vacuum part is divergent and needs to be regularised. The medium part is
convergent due to the n~k and the n̄~k in the integrand. Moreover, for µ = 0 and T → 0
the medium integral iImed

2 (p0, ~p) vanishes, which justifies the separation into the two
parts.
The vacuum part can be written as

iI+,vac
2 (p0, ~p) =

∫ d3k

(2π)3
1
E~k

1
p2

0 + i sgn(p0)ε− s2
~k,~p

(D.36)

and comparing with (C.13) immediately shows

iI+,vac
2 (p0, ~p) = iI2(p2) (D.37)

for p0 > 0 and
iI+,vac

2 (p0, ~p) =
(
iI2(p2)

)∗
(D.38)

for p0 < 0, i.e.
Re
(
iI+,vac

2 (p0, ~p)
)

= Re
(
iI2(p2)

)
(D.39)

and
Im
(
iI+,vac

2 (p0, ~p)
)

= sgn(p0)Im
(
iI2(p2)

)
. (D.40)

The vacuum part iI+,vac
2 (p0, ~p) is hence identical to the vacuum integral iI2(p2) provided

that p0 > 0. For p0 < 0 there is a sign flip in the imaginary part. If we had taken the
advanced integral instead of the retarded one, this would be exactly the other way
around. This observation corresponds to the fact that we chose Feynman expressions in
our vacuum description (see Appendix C.2), while for the medium discussion we chose
retarded expressions. The results for iI2(p2) are presented in Appendices C.2 and C.3.
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Imaginary Part
Let us now turn to the medium contribution iI+,med

2 (p0, ~p). We first calculate the imag-
inary part, which is given by

Im
(
iI+,med

2 (p0, ~p)
)

=
∫ d3k

(2π)3
n~k + n̄~k
4E~k+~pE~k

π
(
δ(p0 − s~k,~p)− δ(p0 + s~k,~p)

+ δ(p0 − d~k,~p)− δ(p0 + d~k,~p)
)
.

(D.41)

In general it is possible to write∫ d3k

(2π)3 f(E~k, E~k+~p) = 1
(2π)2|~p|

∫ ∞
M

dE~k
∫ E+

~k+~p

E−
~k+~p

dE~k+~pE~kE~k+~pf(E~k, E~k+~p), (D.42)

where we treat E~k and E~k+~p as integration variables and define

E±~k+~p
:=
√
M2 + (|~k| ± |~p|) =

√
M2 +

(√
E2
~k
−M2 ± |~p|

)
. (D.43)

The integral hence reads

Im
(
iI+,med

2 (p0, ~p)
)

= 1
16π|~p|

∫ ∞
M

dE~k
∫ E+

~k+~p

E−
~k+~p

dE~k+~p(n~k + n̄~k)
(
δ(p0 − s~k,~p)− δ(p0 + s~k,~p)

+ δ(p0 − d~k,~p)− δ(p0 + d~k,~p)
)
.

(D.44)

Since the integrand contains δ-distributions of the form δ(p0±E~k±E~k+~p), we calculate

χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 − E~k ∓ E~k+~p)

=
[
Θ(p2 − 4M2)Θ(±p0 ∓ E~k)χ[p0/2−

√
∆,p0/2+

√
∆](E~k)

+Θ(−p2)Θ(±p0 ∓ E~k)
(
1− χ[p0/2−

√
∆,p0/2+

√
∆](E~k)

)]
δ(p0 − E~k ∓ E~k+~p),

χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 + E~k ∓ E~k+~p)

=
[
Θ(p2 − 4M2)Θ(±p0 ± E~k)χ[−p0/2−

√
∆,−p0/2+

√
∆](E~k)

+Θ(−p2)Θ(±p0 ± E~k)
(
1− χ[−p0/2−

√
∆,−p0/2+

√
∆](E~k)

)]
δ(p0 − E~k ∓ E~k+~p),

(D.45)

where we defined
√

∆ := ~p

2

√
p2 − 4M2

p2 (D.46)

for p2 < 0 or p2 > 4M2.
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Multiplying the above by Θ(E~k −M) and further simplification yields

Θ(E~k −M)χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 − E~k − E~k+~p)

= Θ(p2 − 4M2)Θ(p0)χ[p0/2−
√

∆,p0/2+
√

∆](E~k)δ(p0 − E~k − E~k+~p),

Θ(E~k −M)χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 − E~k + E~k+~p)

= Θ(p2 − 4M2)Θ(E~k − (p0/2 +
√

∆))δ(p0 − E~k + E~k+~p),

Θ(E~k −M)χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 + E~k − E~k+~p)

= Θ(p2 − 4M2)Θ(E~k − (−p0/2 +
√

∆))δ(p0 + E~k − E~k+~p),

Θ(E~k −M)χ[E−
~k+~p

,E+
~k+~p

](E~k+~p)δ(p0 + E~k + E~k+~p)

= Θ(p2 − 4M2)Θ(−p0)χ[−p0/2−
√

∆,−p0/2+
√

∆](E~k)δ(p0 + E~k + E~k+~p),

(D.47)

Inserting this in the integral expression and applying the δ-distributions to eliminate
the integral over E~k+~p shows that the imaginary part is given by

Im
(
iI+,med

2 (p0, ~p)
)

= 1
16π |~p|Θ(p2 − 4M2) sgn(p0)

∫ |p0/2|+
√

∆

|p0/2|−
√

∆
dE~k

(
n~k + n̄~k

)
(D.48)

for p2 > 0 and

Im
(
iI+,med

2 (p0, ~p)
)

= 1
16π |~p| sgn(p0)

∫ √∆+|p0/2|
√

∆−|p0/2|
dE~k

(
n~k + n̄~k

)
(D.49)

for p2 < 0.
The imaginary part of the medium contribution depends again on sgn(p0) as in the case

of the vacuum contribution. The above integrals over the Fermi distribution function can
even be calculated analytically as the antiderivative of the Fermi distribution is known.
This yields [38]

Im
(
iI+,med

2 (p0, ~p)
)

= − T

16π |~p|Θ(p2 − 4M2) sgn(p0)×

×

ln

1 + e−
1
T (| p0

2 |+
√

∆−µ)

1 + e−
1
T (| p0

2 |−
√

∆−µ)

+ ln

1 + e−
1
T (| p0

2 |+
√

∆+µ)

1 + e−
1
T (| p0

2 |−
√

∆+µ)


(D.50)

for p2 > 0 and for p2 < 0 we get

Im
(
iI+,med

2 (p0, ~p)
)

= − T

16π |~p| sgn(p0)×

×

ln

1 + e−
1
T (
√

∆+| p0
2 |−µ)

1 + e−
1
T (
√

∆−| p0
2 |−µ)

+ ln

1 + e−
1
T (
√

∆+| p0
2 |+µ)

1 + e−
1
T (
√

∆−| p0
2 |+µ)

 .
(D.51)
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Real Part
The real part of the medium contribution has to be calculated numerically. The most
reliable method makes use of the fact that we were able to express the imaginary part
analytically and that the imaginary part and the real part are related via a Kramers-
Kronig relation [75, 76]:

Re
(
iI+,med

2 (p0, ~p)
)

= 1
π

PV
∫ ∞
−∞

dω
Im
(
iI+,med

2 (ω, ~p)
)

ω − p0
(D.52)

where this is only a one-dimensional integral (rather than three-dimensional), which
might have a first-order pole at ω = p0 depending on whether iImed

2 (ω, ~p) vanishes at
ω = p0 for a given ~p or not. Hence we must evaluate the integral as a principal value
integral.

D.4. Medium Version of the Bosonic Integral iI
(π)
2 (p)

The bosonic version of the integral iI2(p) is obtained by replacing the quark massM with
the pion mass mπ and in the medium case the sum over fermionic Matsubara frequencies
by a sum over bosonic Matsubara frequencies. The calculation is very similar to the
fermionic case but instead of the Fermi distribution function nF(z) = 1/(exp(z/T ) + 1)
the Bose distribution function nF(z) = 1/(exp(z/T )− 1) will appear.
For the purposes of this text we will only need the imaginary part, which for the

medium part is given by

Im
(
iI

(π),+,med
2 (p0, ~p)

)
= − T

16π |~p|Θ(p2 − 4m2
π) sgn(p0)×

×

ln

e− 1
T (| p0

2 |+
√

∆−µ) − 1
e−

1
T (| p0

2 |−
√

∆−µ) − 1

+ ln

e− 1
T (| p0

2 |+
√

∆+µ) − 1
e−

1
T (| p0

2 |−
√

∆+µ) − 1


(D.53)

for p2 > 0 and

Im
(
iI

(π),+,med
2 (p0, ~p)

)
= − T

16π |~p| sgn(p0)×

×

ln

e− 1
T (
√

∆+| p0
2 |−µ) − 1

e−
1
T (
√

∆−| p0
2 |−µ) − 1

+ ln

e− 1
T (
√

∆+| p0
2 |+µ) − 1

e−
1
T (
√

∆−| p0
2 |+µ) − 1


(D.54)

for p2 < 0. In this context ∆ is defined by
√

∆ := ~p

2

√
p2 − 4m2

π

p2 (D.55)

for p2 < 0 or p2 > 4m2
π. The µ in the above integral is the chemical potential for the pion

and we will only consider µ = 0. The vacuum contribution is identical to the fermionic
case with an appropriate replacement of masses.
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E. Quark Triangles and Boxes

E.1. Calculation of the Quark Triangle
Our goal is to write the general quark triangle

i4p,q = i

∫ d4k

(2π)4 tr (S(−k)S(k + p)S(k + q)) (E.1)

as a function of elementary integrals. First, we evaluate the trace over Dirac space. A
straightforward calculation using

tr(/a) = 0,
tr(/a/b) = 4a · b,

tr(/a/b/c) = 0
(E.2)

shows that

tr(S(a)S(b)S(c)) = 4M(a · b+ a · c+ b · c) + 4M3

(a2 −M2 + iε)(b2 −M2 + iε)(c2 −M2 + iε) . (E.3)

Setting a = −k, b = k + p and c = k + q and simplifying yields

tr (S(−k)S(k + p)S(k + q))

= 4M(M2 − k2 + p · q)
(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε) .

(E.4)

Hence

i4p,q = −4Mi

∫ d4k

(2π)4
1

((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

+ 4M(p · q)i
∫ d4k

(2π)4
1

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)
(E.5)

and substituting k 7→ k − q in the first integral gives

i4p,q = −4MiI2(p− q) + 4M(p · q)iI3(p, q). (E.6)
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E.2. Calculation of the Quark Triangle in the Static Limit
We will derive simple expressions for i4p,p and i4p,−p in terms of the integrals (4.22).
We have

i4p,p = −4MiI2(p− p) + 4Mp2iI3(p, p), (E.7)

where iI2(·) = iI(·) and

iI3(p, p) = i

∫ d4k

(2π)4
1

(k2 −M2 + iε)
1

((k + p)2 −M2 + iε)2 . (E.8)

By making the substitution k 7→ −k − p we see that

iI3(p, p) = i

∫ d4k

(2π)4
1

((k + p)2 −M2 + iε)
1

(k2 −M2 + iε)2 = iK(p) (E.9)

and hence
i4p,p = −4M

(
iI(0)− p2iK(p)

)
. (E.10)

To calculate i4p,−p we turn directly to the definition of i4p,q and equation (E.4) to
get

i4p,−p = −4Mi

∫ d3k

(2π)3
k2 + p2 −M2

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k − p)2 −M2 + iε)
(E.11)

Obviously the integral

i

∫ d3k

(2π)3
k · p

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k − p)2 −M2 + iε) (E.12)

vanishes since the integrand is an odd function of k and hence

i4p,−p = −4Mi

∫ d3k

(2π)3
(k − p)2 −M2

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k − p)2 −M2 + iε)

= −4Mi

∫ d3k

(2π)3
1

(k2 −M2 + iε)
1

((k + p)2 −M2 + iε)
= −4MiI(p).

(E.13)

E.3. Calculation of the Quark Box
We want to calculate the expression

i�p,q,r = i

∫ d4k

(2π)4 tr (S(p+ k)S(−p+ q − k)S(−r + k)S(−k)) . (E.14)

137



First we calculate

tr (S(a)S(b)S(c)S(d)) = 1
(a2 −M2 + iε)(b2 −M2 + iε)(c2 −M2 + iε)(d2 −M2 + iε)×

× [4 ((a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)

+M2 (a · b+ a · c+ a · d+ b · c+ b · d+ c · d) +M4
)]

(E.15)

for arbitrary four-vectors a, b, c and d (analogously to the calculation in Appendix E.1),
where we used

tr
(
/a/b/c/d

)
= 4 ((a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)) . (E.16)

We will soon insert a = p + k, b = −p + q − k, c = −r + k and d = −k. In view of
these replacements let us write

2(a · b) = +(a+ b)2 − a2 − b2,
2(a · c) = −(a− c)2 + a2 + c2,

2(a · d) = +(a+ d)2 − a2 − d2,

2(b · c) = +(b+ c)2 − b2 − c2,

2(b · d) = −(b− d)2 + b2 + d2,

2(c · d) = +(c+ d)2 − c2 − d2.

(E.17)

Then we write

a2 = (a2 −M2) +M2 (E.18)

and analogously for b, c and d. After straightforwardly cleaning up, the numerator of
(E.15) reads

(a+ b)2(c+ d)2 − (a− c)2(b− d)2 + (a+ d)2(b+ c)2

− (a+ b)2(c2 −M2)− (a+ b)2(d2 −M2)− (c+ d)2(a2 −M2)− (c+ d)2(b2 −M2)
+ (a− c)2(b2 −M2) + (a− c)2(d2 −M2) + (b− d)2(a2 −M2) + (b− d)2(c2 −M2)
− (a+ d)2(b2 −M2)− (a+ d)2(c2 −M2)− (b+ c)2(a2 −M2)− (b+ c)2(d2 −M2)
+ 2(a2 −M2)(c2 −M2) + 2(b2 −M2)(d2 −M2).

(E.19)

We now insert p, q, l and k and express the integral via the elementary integrals iI2,
iI3 and iI4 by cancelling terms a2−M2, . . . in the numerator against the corresponding
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terms in the denominator. The following terms appear:

a+ b = q,

a− c = p+ r,

a+ d = p,

b+ c = −p+ q − r,
b− d = −p+ q,

c+ d = −r.

(E.20)

This gives for the quark box

i�p,q,r =
(
q2r2 − (p+ r)2(−p+ q)2 + p2(−p+ q − r)2

)
iI4(p, p− q,−r)

+
(
−r2 + (−p+ q)2 − (−p+ q − r)2

)
iI3(p− q,−r)

+
(
−r2 + (p+ r)2 − p2

)
iI3(p,−r) +

(
−q2 + (−p+ q)2 − p2

)
iI3(p, p− q)

+
(
−q2 + (p+ r)2 − (−p+ q − r)2

)
iI3(q, r + p)

+ 2iI2(p− q) + 2iI2(p+ r),
(E.21)

which we further simplify to

i�p,q,r = 2
[
2(r · p)(p · q)− (r · p)q2 + r2(p · q)− (r · q)p2

]
iI4(p, q, r + p)

− 2r · (p− q + r)iI3(q − p, r) + 2p · riI3(p,−r)
− 2p · qiI3(p, q) + 2q · (p+ r − q)iI3(q, r + p)
+ 2iI2(p− q) + 2iI2(p+ r).

(E.22)

E.4. Calculation of the Quark Box in the Static Limit
We will calculate the quark boxes in the static limit, i.e. i�p,p,p and i�p,p,−p. Let us
begin with the latter one. We can directly insert the momenta into the expression we
obtained in Section E.3 and get

i�p,p,−p = 2
[
2(−p · p)(p · p)− (−p · p)p2 + (−p)2(p · p)− (−p · p)p2

]
iI4(p, p,−p+ p)

− 2(−p) · (p− p− p)iI3(p− p,−p) + 2p · (−p)iI3(p, p)
− 2p · piI3(p, p) + 2p · (p− p− p)iI3(p,−p+ p)
+ 2iI2(p− p) + 2iI2(p− p)

= 2p4iI4(p, p, 0)− 2p2iI3(0,−p)− 2p2iI3(p, p)
− 2p2iI3(p, p)− 2p2iI3(p, 0) + 4iI2(0)

= 2p4iL(p)− 8p2iK(p) + 4iI(0).
(E.23)
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For i�p,p,p it is more convenient to begin with the definition of the quark box (see
(4.34)). We have

i�p,p,p = i

∫ d4k

(2π)4 tr (S(p+ k)S(−k)S(−p+ k)S(−k)) . (E.24)

A straightforward application of the trace rules in Dirac space yields

i�p,p,p = i

∫ d4k

(2π)4 4
(
M4 − 2M2k2 + k4 − 2(p · k)2 −M2p2 + k2p2

)
×

× 1
((−p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε) ((p+ k)2 −M2 + iε) .

(E.25)

The numerator can be written as(
(−p+ k)2 −M2

)
(k2 −M2) + 2(p · k)k2 − 2(p · k)M2 − 2(p · k)2 (E.26)

and hence

i�p,p,p = 4iI(p) + 8i
∫ d4k

(2π)4

(
(p · k)k2 − (p · k)M2 − (p · k)2

)
×

× 1
((−p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε) ((p+ k)2 −M2 + iε) .

(E.27)

Due to the invariance of the denominator under k 7→ −k we can add or subtract any
odd function of k in the numerator of the second integral and hence this integral can be
written as

4i
∫ d4k

(2π)4
(p · k)

(
M2 − (p+ k)2)

((−p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε) ((p+ k)2 −M2 + iε)

= −4i
∫ d4k

(2π)4
(p · k)

((−p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε)

= 4i
∫ d4k

(2π)4
(p · k)

((p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε)

= 2i
∫ d4k

(2π)4
(p+ k)2 − k2 − p2 +M2 −M2

((p+ k)2 −M2 + iε) (k2 −M2 + iε) (k2 −M2 + iε)
= −2p2iK(p) + 2iI(0)− 2iI(p).

(E.28)

Consequently,
i�p,p,p = −2p2iK(p) + 2iI(0) + 2iI(p). (E.29)
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F. Quantities in the Extended NJL Model

F.1. Polarisation Loops
The polarisation functions Jσ(p) and Jabπ (p) were calculated in Appendix B.1.

The ρ-Meson Polarisation Loop
We begin by calculating the polarisation for the ρ meson:

Jµν,abρ (p) = i

∫ d4k

(2π)4 Tr
(
γµτaS(k + p)γντ bS(k)

)
= δabNcNf i

∫ d4k

(2π)4 tr
(
γµ

/k + /p+M

(k + p)2 −M2 + iε
γν

/k +M

k2 −M2 + iε

)

= 4NfNcδabi

∫ d4k

(2π)4
(kµ + pµ)kν − ηµν(k + p) · k + (kν + pν)kµ + ηµνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε)
(F.1)

The tensor structure of Jµν,abρ (p) is in general given by

Jµν,abρ (p) = δab
(
Tµν(p)J trans

ρ (p2) + Lµν(p)J long
ρ (p2)

)
, (F.2)

where Tµν and Lµν are the transversal and longitudinal projectors introduced in Sec-
tion 5.1. J trans

ρ (p2) and J long
ρ (p2) can be obtained via

δabJ
trans
ρ (p2) = 1

3TµνJ
µν,ab
ρ (p),

δabJ
long
ρ (p2) = LµνJ

µν,ab
ρ (p).

(F.3)

The longitudinal part vanishes:

pµJ
µν,ab
ρ (p) ∼

∫ d4k

(2π)4
p · (k + p)kν − pν(k + p) · k + (kν + pν)p · k + pνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

=
∫ d4k

(2π)4
(p+ k)2 kν − k2 (kν + pν) + pνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

(F.4)

Substituting k 7→ −k − p for the second term in the enumerator (the denominator is
invariant under that substitution) yields

pµJ
µν,ab
ρ (p) ∼

∫ d4k

(2π)4
2 (p+ k)2 kν + pνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε) . (F.5)
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In addition one shows that the term pνM2 = (pν + kν)M2 − kνM2 can be replaced by
−2kνM2 and hence

pµJ
µν,ab
ρ (p) ∼

∫ d4k

(2π)4
2 (p+ k)2 kν − 2kνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

=
∫ d4k

(2π)4
2kν

k2 −M2 + iε
= 0

(F.6)

due to symmetry. Since pµJµν,abρ (p) = 0 we also have LµνJµν,abρ (p) = 0 and hence
Jµν,abρ (p) is purely transversal, i.e.

Jµν,abρ (p) = δabT
µν(p)Jρ(p2) (F.7)

with Jρ(p2) := J trans
ρ (p2). Next, we calculate the transversal part

Jρ(p2) = J trans
ρ (p2) = 1

3TµνJ
µν,ab
ρ (p) = 1

3ηµνJ
µν,ab
ρ (p). (F.8)

One gets

Jρ(p2) = 4
3NcNf i

∫ d4k

(2π)4
k2 + p · k − 4

(
k2 + k · p

)
+ k2 + p · k + 4M2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

= 4
3NcNf i

∫ d4k

(2π)4
−2k2 − 2k · p+ 4M2

(k2 −M2 + iε)((k + p)2 −M2 + iε) .
(F.9)

As in Appendix B.1 we can replace 2k · p by −p2 in the numerator and hence

Jρ(p2) = 4
3NcNf i

∫ d4k

(2π)4
−2k2 + p2 + 4M2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

= 4
3NcNf i

∫ d4k

(2π)4
−2
(
k2 −M2)+ p2 + 2M2

(k2 −M2 + iε)((k + p)2 −M2 + iε)

= 4
3NcNf

(
−2iI1 +

(
p2 + 2M2

)
iI2(p2)

)
.

(F.10)

The a1-Meson Polarisation Loop
We calculate the polarisation loop

Jµν,aba1 (p) = i

∫ d4k

(2π)4 Tr
(
γµγ5τ

aS(k + p)γνγ5τ
bS(k)

)
= δabNcNf i

∫ d4k

(2π)4 tr
(
γµ

/k + /p−M
(k + p)2 −M2 + iε

γν
/k +M

k2 −M2 + iε

)

= 4NfNcδabi

∫ d4k

(2π)4
(kµ + pµ)kν − ηµν(k + p) · k + (kν + pν)kµ − ηµνM2

(k2 −M2 + iε)((k + p)2 −M2 + iε) .

(F.11)
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The above expression only differs from Jµν,abρ (p) by the sign in front of the ηµνM and
hence the results are easily derived from those we obtained for Jµν,abρ (p). Writing

Jµν,aba1 (p) = δab
(
Tµν(p)J trans

a1 (p2) + Lµν(p)J long
a1 (p2)

)
(F.12)

we get

J trans
a1 (p2) = 4

3NcNf
(
−2iI1 +

(
p2 − 4M2

)
iI2(p2)

)
,

J long
a1 (p2) = −8NcNfM

2I2(p2).
(F.13)

Mixed Polarisation Loops
We calculate the polarisation loops JM,N (p) with M 6= N . All combinations of σ with
another channel vanish because a trace over τa is to be taken, i.e.

Jaσ,π = Jaπ,σ = Jµ,aσ,ρ = Jµ,aρ,σ = Jµ,aσ,a1 = Jµ,aa1,σ = 0. (F.14)

In the following we show that

Jµ,abπ,ρ = Jµ,abρ,π = Jµν,abρ,a1 = Jµν,aba1,ρ = 0. (F.15)

We have
Jµ,abπ,ρ (p) = i

∫ d3k

(2π)3 Tr (γµS(k + p)γ5S(k)) = 0 (F.16)

since the trace over Dirac space contains only terms with one γ5 and one, two or three γµ
matrices and the trace over such combinations is always zero. Analogously Jµ,abρ,π (p) = 0.
Next, we consider

Jµν,abρ,a1 (p) = i

∫ d3k

(2π)3 Tr
(
γµτaS(k + p)γνγ5τ

bS(k)
)
. (F.17)

Only the term with γ5 and four γµ matrices has a non-zero trace. We get

Jµν,abρ,a1 (p) = 4NcNfδabi
(kα + pα)kβ4iεµανβ

(k2 −M2 + iε)((k + p)2 −M2 + iε)

= 4NcNfδabi
pαkβ4iεµανβ

(k2 −M2 + iε)((k + p)2 −M2 + iε) ,
(F.18)

where we used the antisymmetry of εµανβ . Making the substitution k 7→ −k − p and
again making use of the antisymmetry of the ε-tensor we see that

Jµν,abρ,a1 (p) = −4NcNfδabi
pαkβ4iεµανβ

(k2 −M2 + iε)((k + p)2 −M2 + iε) (F.19)

and hence
Jµν,abρ,a1 (p) = 0. (F.20)
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Analogously Jµν,aba1,ρ (p) = 0.
The only off-diagonal terms that do not vanish are Jµ,abπ,a1 (p) and Jµ,aba1,π(p). One calcu-

lates

Jµ,abπ,a1 (p) = i

∫ d3k

(2π)3 Tr
(
iγ5τ

aS(k + p)γµγ5τ
bS(k)

)
= iNcNfδabi

∫ d4k

(2π)4 tr (S(k + p)γµS(−k))

= 4iNcNfδabi
4 (pµ + kµ)M − 4kµM

(k2 −M2 + iε)((k + p)2 −M2 + iε)
= 4iNcNfδabMpµiI2(p2).

(F.21)

Analogously Jµ,aba1,π(p) = −4iNcNfδabMpµiI2(p2). We again separate off the tensor struc-
ture (here given by pµ) and write

Jµ,abπ,a1 (p) = δab
pµ√
p2Jπ,a1(p2) (F.22)

with
Jπ,a1(p2) = i4NcNfM

√
p2iI2(p2) (F.23)

and
Jµ,aba1,π(p) = δab

pµ√
p2Ja1,π(p2) (F.24)

with
Jπ,a1(p2) = −i4NcNfM

√
p2iI2(p2). (F.25)

F.2. Meson Propagators
The σ-meson channel decouples from the other channels and hence the σ-meson propa-
gator is identical to the one in the simple model (2.66).

The ρ-Meson Propagator
Since the ρ-channel decouples from all the other channels, it can be treated indepen-
dently. The Bethe-Salpeter equation (see (2.53)) for the ρ-meson is

Dµν,ab
ρ (p) = 2gvδabηµν − 2gvJac,µλρ (p)Dcb, ν

ρ λ (p). (F.26)

We plug in the purely transversal ρ-meson polarisation loop

Jµν,abρ (p) = δabT
µν(p)Jρ(p2) (F.27)

and see that the isospin structure of Dµν,ab
ρ (p) must also be given by δab. We can hence

write the ρ-meson propagator in general as

Dµν,ab
ρ (p) =: δab

(
Dtrans
ρ (p2)Tµν(p) +Dlong

ρ (p2)Lµν(p)
)
. (F.28)
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Inserting this into the above Bethe-Salpeter equation gives

Dtrans
ρ (p2)Tµν(p) +Dlong

ρ (p2)Lµν(p)

= 2gv (Tµν(p) + Lµν(p))− 2gvTµλ(p)Jρ(p2)
(
Dtrans
ρ (p2)T ν

λ (p) +Dlong
ρ (p2)L ν

λ (p)
)

=
(
2gv − 2gvJρ(p2)Dtrans

ρ (p2)
)
Tµν(p) + 2gvLµν(p).

(F.29)

This yields the solution
Dtrans
ρ (p2) = 2gv

1 + 2gvJρ(p2) (F.30)

and
Dlong
ρ (p2) = 2gv. (F.31)

The a1-Meson and the Pion Propagator
We want to study the propagators of the pion and the a1-meson. They have to be
treated together since they are coupled. The Bethe-Salpeter equation for the different
propagators reads

Dab
π (p) = −2gsδab + 2gsJacπ (p)Dcb

π (p) + 2gsJacπ,a1 λ(p)Dλ,ac
a1,π(p),

Dµ,ab
π,a1(p) = 2gsJacπ (p)Dµ,cb

π,a1(p) + 2gsJacπ,a1 λ(p)Dλµ,cb
a1 (p),

Dµ,ab
a1,π(p) = −2gvJµ,aca1,π (p)Dcb

π (p)− 2gvJac,µa1 λ(p)Dλ,cb
a1,π(p),

Dab,µν
a1 (p) = 2gvηµνδab − 2gvJµ,aca1π (p)Dν,cb

π,a1(p)− 2gvJac,µa1 λ(p)Dλν,cb
a1 (p).

(F.32)

Since all the polarisation functions have a Kronecker delta in isospin space, the same is
true for the propagators. We write the propagators in general as

Dab
π (p) =: δabDπ(p2),

Dµ,ab
π,a1(p) =: δab

pµ√
p2Dπ,a1(p2),

Dµ,ab
a1,π(p) =: δab

pµ√
p2Da1,π(p2),

Dab,µν
a1 (p) =: δab

(
Dtrans
a1 (p2)Tµν(p) +Dlong

a1 (p2)Lµν(p)
)

(F.33)

and plug in these expressions into the above equations together with the parametrisation
of the polarisation loops from the above section. Using the rules for the transverse and
longitudinal projectors similar to the considerations for the rho-meson propagator yields
the equations

Dπ(p2) = −2gs + 2gsJπ(p2)Dπ(p2) + 2gsJπ,a1(p2)Da1,π(p2),
Dπ,a1(p2) = 2gsJπ(p2)Dπ,a1(p2) + 2gsJπ,a1(p2)Dlong

a1 (p2),
Da1,π(p2) = −2gvJa1,π(p2)Dπ(p2)− 2gvJ long

a1 (p2)Da1,π(p2),
Dlong
a1 (p2) = 2gv − 2gvJa1π(p2)Dπ,a1(p2)− 2gvJ long

a1 (p2)Dlong
a1 (p2)

(F.34)
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and
Dtrans
a1 (p2) = 2gv − 2gvJ trans

a1 (p2)Dtrans
a1 (p2). (F.35)

The transversal part of the a1-meson propagator decouples and is given by

Dtrans
a1 (p2) = 2gv

1 + 2gvJa1(p2) (F.36)

similar to the transversal part of the ρ-meson propagator. The longitudinal part is
coupled to the pion by the above set of four equations. These can be cast into the form(

Dπ Dπ,a1

Da1,π Dlong
a1

)
=
(
−2gs 0

0 2gv

)
+
(

2gs 0
0 −2gv

)(
Jπ Jπ,a1

Ja1,π J long
a1

)(
Dπ Dπ,a1

Da1,π Dlong
a1

)
.

(F.37)
Solving this linear system of equations for the matrix containing the D’s yields(

Dπ Dπ,a1

Da1,π Dlong
a1

)
=
((

1 0
0 1

)
−
(

2gs 0
0 −2gv

)(
Jπ Jπ,a1

Ja1,π J long
a1

))−1(
−2gs 0

0 2gv

)

=
(

1− 2gsJπ −2gsJπ,a1

2gvJa1,π 1 + 2gvJ long
a1

)−1(
−2gs 0

0 2gv

)

= 1
D

(
1 + 2gvJ long

a1 2gsJπ,a1

−2gvJa1,π 1− 2gsJπ

)(
−2gs 0

0 2gv

)

= 1
D

(
−2gs − 2gs2gvJ long

a1 2gs2gvJπ,a1

2gs2gvJa1,π 2gv − 2gs2gvJπ

)

= 1
D

(
−
(

2gs 0
−2gv

)
+ 2gs2gv

(
−J long

a1 Jπ,a1

Ja1,π −Jπ

))
,

(F.38)

where

D(p2) =
(
1− 2gsJπ(p2)

) (
1 + 2gvJ long

a1 (p2)
)

+ 2gs2gvJπ,a1(p2)Ja1,π(p2) (F.39)

is the determinant of the matrix we have to invert.

F.3. Pole Structure of the Pion Propagator
In this section we investigate the pole structure of the scattering matrix T in the pion
sector (5.39). Dropping the trivial isospin dependence we write

T = −(iγ5,
/p√
p2γ5)

(
Dπ(p2) Dπ,a1(p2)
Da1,π Dlong

a1

) iγ5
/p√
p2
γ5


= − 1

p2 −m2
π

p2 −m2
π

D(p2) (iγ5,
/p√
p2γ5)

(
−2gs − 2gs2gvJ long

a1 2gs2gvJπ,a1

2gs2gvJa1,π 2gv − 2gs2gvJπ

) iγ5
/p√
p2
γ5

 .
(F.40)
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As a next step we evaluate all terms except for the pole term at p2 = m2
π (and thus

essentially write T in pole approximation). First we calculate

D′(m2
π) := lim

p2→m2
π

D(p2)
p2 −m2

π

= NfNc

[
4gs

d
(
p2iI2(p2))

)
d(p2) − 16gvMm

d
(
iI2(p2))

)
d(p2)

]

= NfNc

[
2gs

(
iI(0) + iI(m2

π)−m2
πK(m2

π)
)

− 8gv
Mm

m2
π

(
iI(0)− iI(m2

π)−m2
πK(m2

π)
) ]
.

(F.41)

Then we evaluate the matrix at p2 = m2
π. It is given by(

a ib
−ib d

)
:= lim

p2→m2
π

(
−2gs − 2gs2gvJ long

a1 2gs2gvJπ,a1

2gs2gvJa1,π 2gv − 2gs2gvJπ

)
, (F.42)

where the constants a, b and d take the values

a = −2gs − 4gsgvJ long
a1 (m2

π) = −2gs + 32NcNfgsgvM
2iI2(m2

π),

d = 2gv − 4gsgvJπ(m2
π) = 2gv − 8NcNfgsgv

(
2iI1 −m2

πiI2(m2
π)
)
,

b = −i4gsgvJπ,a1(m2
π) = 16NcNfgsgvMmπiI2(m2

π).

(F.43)

The determinant of this matrix vanishes, i.e. ad − b2 = 0, since it is by construction
proportional toD(m2

π) = 0. Moreover, the matrix is hermitian. Hence it can be unitarily
diagonalised with one eigenvalue equal to zero. More precisely we can write(

a ib
−ib d

)
=
(

a√
a2+b2

d√
b2+d2

−ib√
a2+b2

ib√
b2+d2

)(
a+ d 0

0 0

)(
a√

a2+b2
ib√
a2+b2

d√
b2+d2

−ib√
b2+d2

)
(F.44)

and hence

(iγ5,
/p√
p2γ5)

(
a ib
−ib d

) iγ5
/p√
p2
γ5


= a+ d

a2 + b2

(
aiγ5 − ib

/p√
p2γ5

)
⊗
(
aiγ5 + ib

/p√
p2γ5

)

= a+ d

a2 + b2

(
aiγ5 − ib

/p√
p2γ5

)
⊗
(
aiγ5 − ib

−/p√
p2γ5

)
.

(F.45)

Taking the above together we can write T in pole approximation

T = − 1
p2 −m2

π

1
D′(m2

π)
a+ d

a2 + b2

(
aiγ5 − ib

/p√
p2γ5

)
⊗
(
aiγ5 − ib

−/p√
p2γ5

)

=: − 1
p2 −m2

π

(
gpsiγ5 − igpv

/p√
p2γ5

)
⊗
(
gpsiγ5 − igpv

−/p√
p2γ5

)
,

(F.46)
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where we introduced the pseudoscalar and the pseudovector quark-pion couplings gps and
gpv corresponding to the vertices iγ5 and i/p/

√
p2 (or −i/p/

√
p2 for outgoing momenta).

The coupling strengths are given by

g2
ps = a2(a+ d)

(a2 + b2)D′(m2
π) and g2

pv = b2(a+ d)
(a2 + b2)D′(m2

π) . (F.47)

F.4. Calculation of the Quark Triangle
Our goal is to calculate the quark triangle

i4µ
p,q := i

∫ d4k

(2π)4 tr (S(−k)S(k + p)γµS(k + q)) . (F.48)

First we calculate for arbitrary four-vectors a, b and c:

tr (S(a)S(b)γµS(c)) = tr
(

/a+M

a2 −M2 + iε

/b +M

b2 −M2 + iε
γµ

/c +M

c2 −M2 + iε

)
. (F.49)

We have

tr
(
(/a+M)(/b +M)γµ(/c +M)

)
= tr

(
aλγ

λ +M)(bργρ +M)γµ(cκγκ +M)
)

= tr
(
aλbρcκγ

λγργµγκ + aλbρMγλγργµ + aλMcκγ
λγµγκ +Mbρcκγ

ργµγκ

aλM
2γλγµ +MbρMγργµ +M2cκγ

µγκ +M3γµ
)

= aλbρcκ4
(
ηλρηµκ − ηλµηρκ + ηλκηρµ

)
+ 4M2

(
aλη

λµ + bρη
ρµ + cκη

µκ
)

= 4 ((a · b)cµ − (b · c)aµ + (a · c)bµ) + 4M2 (aµ + bµ + cµ) .

(F.50)

We insert a = −k, b = k + p and c = k + q and get

i4µ
p,q = 4i

∫ d4k

(2π)4
−k · (k + p)(kµ + qµ) + (k + p) · (k + q)kµ − k · (k + q)(kµ + pµ)

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε) · · ·

· · · +M
2(kµ + pµ + qµ)

= 4i
∫ d4k

(2π)4
−(k2 −M2)(kµ + pµ + qµ)− (k · p)qµ + (p · q)kµ − (k · q)pµ

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

= −4i
∫ d4k

(2π)4
kµ + pµ + qµ

((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

}
(1)

−4i
∫ d4k

(2π)4
(k · p)qµ + (k · q)pµ

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

}
(2)

+4i
∫ d4k

(2π)4
(p · q)kµ

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

}
(3).

(F.51)

148



To calculate (1) we perform the substitution k 7→ −k−p−q and obtain the same integral
with −kµ in the numerator of the integrand instead of kµ + pµ + qµ and hence we can
write

(1) = (1) + (1)
2 = 2i

∫ d4k

(2π)4
pµ + qµ

((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)
= 2(pµ + qµ)iI2(p− q)

(F.52)

To calculate (2) we write

− 4i
∫ d4k

(2π)4
(k · p)

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

= −2i
∫ d4k

(2π)4
(k + p)2 − k2 − p2

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)

= −2i
∫ d4k

(2π)4
(k + p)2 −M2 +M2 − k2 − p2

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)
= −2iI2(q) + 2iI2(p− q) + 2p2iI3(p, q)

(F.53)

and analogously for the second term to get

(2) =
(
−2iI2(q) + 2iI2(p− q) + 2p2iI3(p, q)

)
qµ

+
(
−2iI2(p) + 2iI2(p− q) + 2q2iI3(p, q)

)
pµ

(F.54)

and hence

(1) + (2) =
(
−2iI2(q) + 2p2iI3(p, q)

)
qµ +

(
−2iI2(p) + 2q2iI3(p, q)

)
pµ. (F.55)

The calculation of (3) is more difficult due to the kµ in the integrand. We want to
calculate the integral

Iµ := 4i
∫ d4k

(2π)4
kµ

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε) (F.56)

(and hence (3) = (p · q)Iµ). We know that Iµ is a Lorentz vector depending on p and q
and hence can only be of the form

Iµ = f1(p2, p · q, q2)pµ + f2(p2, p · q, q2)qµ, (F.57)

where f1 and f2 are functions depending on all possible Lorentz scalars that can be
formed from p and q. Contracting the above equation with pµ and qµ yields

p · I = p2f1 + (p · q)f2,

q · I = (p · q)f1 + q2f2,
(F.58)
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which we solve for f1 and f2:

f1 = q2(p · I)− (p · q)(q · I)
p2q2 − (p · q)2 ,

f2 = −(p · q)(p · I) + p2(q · I)
p2q2 − (p · q)2 .

(F.59)

We saw during the calculation of (2) that

p · I = 4i
∫ d4k

(2π)4
p · k

(k2 −M2 + iε) ((k + p)2 −M2 + iε) ((k + q)2 −M2 + iε)
= 2iI2(q)− 2iI2(p− q)− 2p2iI3(p, q)

(F.60)

and analogously
q · I = 2iI2(p)− 2iI2(p− q)− 2q2iI3(p, q). (F.61)

Hence

f1 = 2iq
2I2(q)− q2I2(p− q)− p2q2I3(p, q)− (p · q)I2(p)

p2q2 − (p · q)2 · · ·

+ · · · (p · q)I2(p− q) + (p · q)q2I3(p, q)
(F.62)

and

f2 = 2ip
2I2(p)− p2I2(p− q)− p2q2I3(p, q)− (p · q)I2(q)

p2q2 − (p · q)2 · · ·

+ · · · (p · q)I2(p− q) + p2(p · q)I3(p, q)
(F.63)

Finally, parametrising i4µ
p,q as

i4µ
p,q = V1(p2, p · q, q2)pµ + V2(p2, p · q, q2)qµ (F.64)

we get

V1(p2, p · q, q2) = 2i
[
− I2(p) + q2I3(p, q) + p · q

p2q2 − (p · q)2

(
q2I2(q)− q2I2(p− q)

− p2q2I3(p, q)− p · qI2(p) + p · qI2(p− q) + q2p · qI3(p, q)
)]
,

V2(p2, p · q, q2) = 2i
[
− I2(q) + p2I3(p, q) + p · q

p2q2 − (p · q)2

(
p2I2(q)− p2I2(p− q)

− p2q2I3(p, q)− p · qI2(q) + p · qI2(p− q) + p2p · qI3(p, q)
)]
.

(F.65)
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G. Relativistic Hydrodynamics

G.1. Shear Viscosity Estimate
We will give a rough estimate for the shear viscosity of a non-relativistic fluid obtained
in kinetic theory [36].
If we go to a comoving frame at xµ, the fluid will be locally at rest, i.e. the four-

velocity will take the form uµ(x) = (1,~0)t. A simple calculation shows that the spatial
off-diagonal components T ij for i 6= j are given by

T ij(x) = −η
(
∂iu

j + ∂ju
i
)
. (G.1)

The component T ij of the stress-energy tensor is the flux of the i-th component of
momentum across the surface determined by xj = const. If a fluid flows at uniform
velocity (all spatial velocity gradients vanish) there will of course be no net momentum
flux across any surface. To first order T ij must hence be proportional to first derivatives
of u.
Without loss of generality we will assume that we study a fluid which (in the laboratory

frame) only flows in the x-direction, i.e. has a velocity ux. We further assume that ux
may only depend on z, i.e. ux = ux(z). Equation (G.1) then reads

T xz = −η∂zux(z). (G.2)

Let us ask the question how much momentum in x-direction is transported through a
plane z = const. per unit time and per unit area. In average (1/6)nv̄ particles cross
the plane from below per unit time and area. (The factor of 1/3 comes from the three
spatial dimensions and the factor 1/2 from the fact that there is two directions in each
dimension.) The important question in the context of momentum transport is now,
where these particles last interacted with the other particles, i.e. where they had their
last collision. In average the particles crossing the plane from below moved the distance
λ since their last collision (where λ is the mean free path). That means that they have
the mean x-component of the velocity at z−λ, i.e. they carry a momentum mux(z−λ).
The momentum flux of particles moving through the plane from below is hence given by
(1/6)nv̄ (mux(z − λ)). Analogously we get a momentum flux of (1/6)nv̄ (mux(z + λ))
of the particles moving through the plane from above. The net momentum transport is
thus

T xz ≈ 1
6nv̄m (ux(z − λ)− ux(z + λ)) . (G.3)

By assuming that T ij is linear in derivatives of u we implicitly assumed that u varies
only slowly in space. We can hence approximate the difference ux(z− λ)− ux(z+ λ) by
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−2λ∂zux(z), which yields

T xz(z) ≈ −1
3nv̄mλ∂zux(z) = −1

3np̄λ∂zux(z). (G.4)

We readily read off the shear viscosity

η ≈ 1
3np̄λ. (G.5)

G.2. Thermodynamics of a Pion Gas
We want to describe an ideal gas of π+, π0 and π−, which has one conserved particle
number Nnet := N+ − N− and a corresponding charge chemical potential µI . We will
determine the thermodynamic properties of the system in the grand canonical ensemble
regarding T , V and µI as thermodynamic variables and use the relativistic dispersion
relation ε~k =

√
~k2 +m2

π. As described in Section 6.3 we will neglect that mπ depends
on temperature when calculating derivatives of the grand canonical partition function.
The following derivations loosely follow [100].
The energy of the system is given by

E = −PV + TS + µINnet. (G.6)

The partition function is

lnZ(T, V, µI)

= −V
∫ d3k

(2π)3

(
ln
(
1− e−β(ε~k−µI)

)
+ ln

(
1− e−βε~k

)
+ ln

(
1− e−β(ε~k+µI)

)) (G.7)

with β = 1/T . As usual for bosons we have to impose the restriction that mπ = ε0 ≥ µI
and since we also deal with antiparticles we analogously need mπ ≥ −µI , i.e. |µI | ≤ mπ.
The integral in the expression for the partition function cannot be solved analytically.

It is however possible to write the logarithms as a Taylor series. Introducing the fugacity
z := eβµI we write the partition function as

lnZ(T, V, µI) = V

2π2

∞∑
n=1

1
n

∫ ∞
0

dkk2e−nβε~k
(
zn + 1 + z−n

)
. (G.8)

The integration can now be performed and one obtains the following series representation

lnZ(T, V, µI) = V m2
π

2π2β

∞∑
n=1

1
n2
(
zn + 1 + z−n

)
K2(nβmπ). (G.9)

Here, Kν(x) denotes the modified Bessel function of second kind (of order ν).
With the help of the partition function we can calculate the (average) pressure

P (T, V, µI) = ∂(T lnZ)
∂V

∣∣∣∣
T,µI

= T

V
lnZ

= m2
π

2π2β2

∞∑
n=1

1
n2
(
zn + 1 + z−n

)
K2(nβmπ).

(G.10)
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The average net particle number density nnet = n+ − n− is given by

nnet(T, V, µI) = 1
V

∂(T lnZ)
∂µI

∣∣∣∣
T,V

= z

V

∂(lnZ)
∂z

∣∣∣∣
T,V

= m2
π

2π2β

∞∑
n=1

1
n

(
zn − z−n

)
K2(nβmπ).

(G.11)

Finally the entropy density s = S/V of the system is given by

s(T, V, µI) = 1
V

∂(T lnZ)
∂T

∣∣∣∣
V,µI

= m2
π

2πβ

∞∑
n=1

1
n2
[(
zn (4− n ln(z)) + 4 + z−n (4 + n ln(z))

)
K2(nβmπ)

+nβmπ
(
zn + 1 + z−n

)
K1(nβmπ)

]
.

(G.12)

The average energy density can be obtained via ε = −P + Ts+ µInnet or directly via

ε(T, V, µI) = − 1
V

∂(lnZ)
∂β

∣∣∣∣
V,z

= 3P + m3
π

2π2β

∞∑
n=1

1
n

(
zn + 1 + z−n

)
K1(nβmπ).

(G.13)

The number density and energy density can also be obtained in a different approach.
We can write

nnet(T, V, µI) = Nnet
V

=
∫ d3k

(2π)3

( 1
eβ(ε~k−µI) − 1

− 1
eβ(ε~k+µI) − 1

)
. (G.14)

The Bose-Einstein distribution function enters in the above expression. In the same way,
the energy density is given by

ε(T, V, µI) = E

V
=
∫ d3k

(2π)3 ε~k

( 1
eβ(ε~k−µI) − 1

+ 1
eβε~k − 1

+ 1
eβ(ε~k+µI) − 1

)
. (G.15)

These expressions are identical22 to (G.11) and (G.13) since the particle number operator
and the Hamilton operator are essentially single-particle operators (the former in general,
the latter because we are dealing with an ideal gas). In analogy to the above expression
we can define the total number density n = n+ + n0 + n− via

n(T, V, µI) =
∫ d3k

(2π)3

( 1
eβ(ε~k−µI) − 1

+ 1
eβε~k − 1

+ 1
eβ(ε~k+µI) − 1

)
, (G.16)

22From a numerical point of view they are of course not the same. In principle they should yield the
same result, but the integral expression converges much faster than the sum expression but on the
other hand the sum is less sensitive to extreme choices of T .
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which is of course identical to the expression

n(T, V, µI) = m2
π

2π2β

∞∑
n=1

1
n

(
zn + 1 + z−n

)
K2(nβmπ). (G.17)

We immediately see that P = nT , which is the ideal gas law (with kB = 1).
We are also interested in the average momentum p̄ of a single particle, which is given

by

p̄ =

∫ d3k
(2π)3 |~k|

(
1

e
β(ε~k−µI )−1

+ 1
e
βε~k−1

+ 1
e
β(ε~k+µI )−1

)
∫ d3k

(2π)3

(
1

e
β(ε~k−µI )−1

+ 1
e
βε~k−1

+ 1
e
β(ε~k+µI )−1

) . (G.18)

Symmetric Pion Gas
All the above expressions simplify considerably in the case of a symmetric pion gas,
meaning that Nnet = N+ −N− = 0. From the above equation for nnet we see that this
is the case exactly for µI = 0. We have

P (T, V, µI = 0) = 3 m2
π

2π2β2

∞∑
n=1

1
n2K2(nβmπ),

s(T, V, µI = 0) = 3 m
2
π

2πβ

∞∑
n=1

1
n2 [4K2(nβmπ) + nβmπK1(nβmπ)] ,

ε(T, V, µI = 0) = 3 m2
π

2πβ2

∞∑
n=1

1
n2 [3K2(nβmπ) + nβmπK1(nβmπ)] ,

n(T, V, µI = 0) = 3 m2
π

2π2β

∞∑
n=1

1
n
K2(nβmπ).

(G.19)

For an uncharged pion gas all three components have the same thermodynamic prop-
erties and we get the degeneracy factor of 3 in front of every expression. The average
momentum is given by

p̄ =

∫ d3k
(2π)3 |~k| 1

e
βε~k−1∫ d3k

(2π)3
1

e
βε~k−1

. (G.20)
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H. The Grand Potential

H.1. Calculation of the Mean-Field Lagrangian Density
We want to linearise the Lagrangian density of the NJL model

L = ψ̄(i/∂ −m)ψ + g
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
(H.1)

by dropping all terms of quadratic or higher order in the fluctuations after inserting the
decomposition

ψ̄ψ = 〈ψ̄ψ〉+ δσ and ψ̄iγ5τ
aψ = 〈ψ̄iγ5τ

aψ〉+ δaπ. (H.2)

One calculates for the scalar interaction term

(ψ̄ψ)2 = 〈ψ̄ψ〉2 + 2〈ψ̄ψ〉δσ +O(δ2
σ) = 2〈ψ̄ψ〉ψ̄ψ − 〈ψ̄ψ〉2 +O(δ2

σ). (H.3)

We assumed that the pseudoscalar condensate 〈ψ̄iγ5τ
aψ〉 vanishes wherefore there can

be no linear terms in the fluctuation δaπ and hence

(ψ̄iγ5~τψ)2 = 0 +O(δa 2
π ). (H.4)

We define the mean-field quark self-energy Σ as

Σ := −2g〈ψ̄ψ〉 (H.5)

and the constituent quark mass

M := m+ Σ = m− 2g〈ψ̄ψ〉. (H.6)

Expressing 〈ψ̄ψ〉 in terms of M and m, we get

L = ψ̄(i/∂ −m)ψ + g
(
2〈ψ̄ψ〉ψ̄ψ − 〈ψ̄ψ〉2

)
+O(δ2

σ, δ
a 2
π )

= ψ̄(i/∂ −m)ψ + g

(
−2M −m2g ψ̄ψ − (M −m)2

4g2

)
+O(δ2

σ, δ
a 2
π )

= ψ̄(i/∂ −M)ψ − (M −m)2

4g +O(δ2
σ, δ

a 2
π ).

(H.7)

In total this yields a mean-field Lagrangian density

Lmf = ψ̄(i/∂ −M)ψ − (M −m)2

4g . (H.8)
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H.2. Calculation of the Grand Potential of a Fermi Gas
We want to determine the Fermi gas contribution ΩM (T, µ) to the mean-field grand
potential Ωmf(T, µ;M) (see (X.24)), i.e. we want to calculate

ΩM (T, µ) = −T
∑
j∈Z

∫ d3k

(2π)3 Tr ln
( 1
T
S−1(iωj + µ,~k)

)
. (H.9)

We write the above as

ΩM (T, µ) = −T
∑
j∈Z

∫ d3k

(2π)3 ln Det
( 1
T
S−1(iωj + µ,~k)

)

= −T
∑
j∈Z

∫ d3k

(2π)3 ln Det
( 1
T

(
(iωj + µ)γ0 − ~k · ~γ −M

))
,

(H.10)

where Det (like Tr) is taken over Dirac, isospin and colour space. Using

ln Det(/Q−M) = 2NfNc ln(Q2 −M2) (H.11)

we get

ΩM (T, µ) = −2NcNfT
∑
j∈Z

∫ d3k

(2π)3 ln
(

(iωj + µ)2 − E2
~k

T 2

)
. (H.12)

Using the residue theorem, we write the above expression as a contour integral

ΩM (T, µ) = 2NfNc

∫ d3k

(2π)3
1

2πi

∫
Γ
nF(z) ln

(
(z + µ)2 − E2

~k

T 2

)
, (H.13)

where nF is the Fermi distribution function

nF(z) = 1
1 + exp

(
z
T

) , (H.14)

which has exactly poles at the fermionic Matsubara frequencies with residue −T .
We will now evaluate the integral by deforming the integration contour. Let us in-

vestigate the analyticity of the integrand. The complex logarithm (i.e. its principal
value) is analytic in the complex plane with a branch cut along the negative real axis.
Hence the ln-term in the integrand is analytic in z in the complex plane with the points
−E~k − µ < z < E~k − µ on the real axis removed. We can therefore deform the integra-
tion contour Γ to an integration contour Γ′ (without changing the value of the integral)
around the branch cut:
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Γ

Im(z)

Re(z)
Γ'

E -μ-E -μ kk

Γ

This gives

ΩM (T, µ) = 2NcNf

∫ d3k

(2π)3
1

2πi

∫ E~k−µ

−E~k−µ
dz
(
nF(z + iε) ln

(
(z + iε+ µ)2 − E2

~k

T 2

)

− nF(z − iε) ln
(

(z − iε+ µ)2 − E2
~k

T 2

))
(H.15)

We can drop the iε in the nF terms since the branch cut only appears in the ln term.
Moreover, using

ln(z) = ln(|z|) + i arg(z) = (ln (z∗))∗ (H.16)

we arrive at the expression

ΩM (T, µ) = 2NcNf

∫ d3k

(2π)3
1

2πi

∫ E~k−µ

−E~k−µ
dznF(z)2i arg

(
(z + iε+ µ)2 − E2

~k

T 2

)

= 2NcNf

∫ d3k

(2π)3
1

2πi

∫ E~k

−E~k
dznF(z − µ)2i arg

(
(z + iε)2 − E2

~k

T 2

)
.

(H.17)

We now use

arg
(

(z + iε)2 − E2
~k

T 2

)
= sgn(z)π (H.18)

to get

ΩM (T, µ) = 2NcNf

∫ d3k

(2π)3

∫ E~k

−E~k
dznF(z − µ) sgn(z). (H.19)

157



The integral over z can now be calculated analytically and one finally gets

ΩM (T, µ) = −2NcNf

∫ d3k

(2π)3

[
E~k + T ln

(
1 + exp

(
−
E~k − µ
T

))
+ T ln

(
1 + exp

(
−
E~k + µ

T

))]
,

(H.20)

which is the result stated in (H.23).

H.3. Calculation of the Mean-Field Grand Potential
In the following we want to derive the expression (X.24) for the mean-field grand poten-
tial using the expression for Fermi gas grand potential from above. We have

Ωmf = −T
V

lnZmf = −T
V

ln Tr exp
(
− 1
T

∫
d3x(Hmf − µψ̄γ0ψ)

)
= −T

V
ln Tr exp

(
− 1
T

∫
d3x(ψ̄(−i~γ · ~∇+M)ψ + (M −m)2

4g − µψ̄γ0ψ)
)

= −T
V

ln
[
Tr exp

(
− 1
T

∫
d3x(ψ̄(−i~γ · ~∇+M)ψ + (M −m)2

4g − µψ̄γ0ψ)
)
×

× exp
(
−V
T

(M −m)2

4g

)]

= −T
V

Tr exp
(
− 1
T

∫
d3x(ψ̄(−i~γ · ~∇+M)ψ − µψ̄γ0ψ)

)
+ (M −m)2

4g .

(H.21)

The first part is simply the grand potential for free fermions of mass M , which we call
ΩM . If one does the functional integration explicitly (see for example [68] or any other
textbook on statistical field theory), one can write ΩM (T, µ) as

ΩM (T, µ) = −T
∑
n∈Z

∫ d3k

(2π)3 Tr ln
( 1
T
S−1(iωn + µ,~k)

)
. (H.22)

A calculation involving the residue theorem (see Appendix H.2) shows that this can be
brought into the form

ΩM (T, µ) = −2NcNf

∫ d3k

(2π)3

[
E~k + T ln

(
1 + exp

(
−
E~k − µ
T

))
+ T ln

(
1 + exp

(
−
E~k + µ

T

))]
,

(H.23)

such that the mean-field grand potential indeed reads as in (X.24).

158



H.4. Equivalence of the Gap Equation and the Stationarity of
the Grand Potential

We want to show that the stationarity condition (X.29) of the grand potential Ωmf is
equivalent to the gap equation (3.4). To do this, we start from the expression (X.24)
for the grand potential and differentiate it with respect to M . Observe that M appears
hidden in E~k =

√
~k2 +M2. Since we want to apply the chain rule, it is useful to know

that
∂E~k
∂M

= M

E~k
. (H.24)

Moreover,
d

dx
(
ln(1 + e−x)

)
= − 1

1 + ex . (H.25)

This gives

∂Ωmf
∂M

= ∂

∂M

(
(M −m)2

4g

)
− 2NfNc

∫ d3k

(2π)3

[
∂E~k
∂M

+ ∂

∂E~k

(
T ln

(
1 + exp

(
−
E~k − µ
T

)))
∂E~k
∂M

+ ∂

∂E~k

(
T ln

(
1 + exp

(
−
E~k + µ

T

)))
∂E~k
∂M

]

= M −m
2g − 2NfNc

∫ d3k

(2π)3
M

E~k

1− 1
1 + exp

(
E~k−µ
T

) − 1
1 + exp

(
E~k−µ
T

)
 ,
(H.26)

which bearing the form of iI1(T, µ) in mind (see (3.7)) can be written as

∂Ωmf
∂M

= M −m
2g − 4NfNcMiI1(T, µ;M). (H.27)

Setting the above equal to zero directly yields

M = m+ 8NcNfMgiI1(T, µ;M), (H.28)

which is the gap equation.
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