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1 INTRODUCTION

1 Introduction

The physics of strong interaction is firmly believed to be governed by the theory of Quantum
Chromodynamics (QCD) [Mut98]. Its degrees of freedom, the quarks and gluons, build
the matter and the interactions the hadronic world consists of. The hadrons which are
observed in experiments are colorless particle states in which the quarks and gluons are
confined. The problem of explaining the confinement phenomenon has been long-standing.
Also, dynamical chiral symmetry breaking which should explain the mass of hadrons, is a
mechanism that is not yet completely understood.

Quantum field theories such as Quantum Electrodynamics (QED) have been developed and
elaborated on in the last century especially by means of perturbation theory. For QED,
this approach successfully describes the observations from low-energy experiments. QCD,
on the other hand, is accessible by perturbation theory only for high energies where the
theory is asymptotically free [Gro73, Pol73]. The phenomenon of confinement is, however,
present for long range correlations, i.e. at low energy, where the strength of the coupling
demands a non-perturbative treatment.

Non-perturbative methods in QCD are in general cumbersome. The complexity of the
mathematical structure requires either immense computational power, as in lattice theory,
or controlled approximations. One simplifying step is to neglect the influence of quarks and
to consider Yang-Mills (YM) theories [Yanb4] instead. For the high-temperature phase of
QCD, the neglect of fermions is justified since the four-dimensional theory reduces to a
three-dimensional Euclidian theory and a sum over Matsubara frequencies of which in the
infinite temperature limit only the first bosonic mode has to be taken into consideration
[App81, Das97]. For small temperatures, the neglect of fermions is expected to cause only
a small effect on the dynamics of the gauge sector [Fis03]. For the investigation of the
whole range of QCD’s phase diagram at zero chemical potential, calculations in both four
and three dimensions are therefore of physical interest.

A non-perturbative approach on solving a quantum field theory is the Dyson-Schwinger
formalism [Dys49, Sch51]. It provides a set of integral equations which are the quantum
equations of motion of the Green functions of the theory. If the Dyson-Schwinger equations
(DSEs) were solved successfully, the whole variety of dynamics would be unveiled. The
obstacle to be overcome with these integral equations is their mutual nonlinear coupling.
Only by means of a truncation which decouples a subset of the DSEs it is possible to arrive
at approximate solutions for the Green functions. Controlling the truncation induced errors
is an important and difficult task. The ghost-gluon vertex, in particular, is a Green function
that has some well-known properties in the Landau gauge and thus provides guidance for
choosing a truncation. In recent Landau gauge studies [Sme98b, AlkO1, Fis02, Maa04],
the assumption was made that the ghost-gluon vertex could be substituted by its tree-level
form. By doing so, a solution of a truncated set of DSEs was made possible and it yields the
desired physical features including scenarios of confinement for the YM sector. The validity
of these results depend, however, very sensitively on the legitimation of the assumption
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concerning the ghost-gluon vertex. Hence, an investigation of this issue is imperative.

The intent of this work is to try and assess the assumption that the ghost-gluon vertex can
be chosen in its tree-level form for Landau gauge Yang-Mills studies. This is, of course, of
formal theoretical interest. Furthermore, it provides a check on the validity of recent DSE
calculations and thus a better insight into the confinement mechanism of QCD.

This thesis is organized as follows. In section 2 the framework for Yang-Mills theories will
be introduced. Provided with the formalism, the DSEs for the propagators and the ghost-
gluon vertex can be investigated in section 3. In this context, the issue of truncation will be
discussed. The results for the propagators which have been obtained in recent DSE studies
under certain approximations will be presented in section 4 and later employed for the
study of the ghost-gluon vertex. In section 5 the analytical structure of the vertex will be
examined and in section 6 the results which have been found analytically and numerically
will be shown and discussed. Finally, a conclusion will be given.

2 Green functions of Yang-Mills theory

The n-point Green functions of a quantum field theory are the vacuum expectation values
of its n-point correlation functions. If we know how the fields are correlated in the vacuum
then we know everything about the theory. A formalism that provides access to the Green
functions is therefore desirable. In this section the path integral method will be employed
to introduce generating functionals of various classifications of Green functions of a general
quantum field theory. To become more specific, then the Green functions of YM theory
that play the main roles for this work will be introduced. Some of the characteristics of
the theory will be outlined.

2.1 Generating functional formalism

By virtue of the path integral method, an introduction can be found for in [Riv87], the
formalism of functionals which generate the Green functions of a quantum field theory is
briefly described. Consider a theory of a general set ¢ of fields, comprising bosonic fields
¢ and fermionic fields ¢%, @%. The indices represent field, spacetime dependence as well
as all other possible indices. Let the theory be governed by an action S[yp| given as a
functional of these fields. Then from the partition sum

Zln) = [ Doexp (~=Slel + piyiy + P + k) (1)
all physical observables can be derived. Z depends on the set 1 incorporating external

sources 1 for the bosonic fields as well as Grassmannian sources 7% and 7% for the fermionic
fields ¢% and ¢4, respectively. The Einstein sum convention here generalizes to integration
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over d-dimensional spacetime such that it is understood that ¢iynl = [ d%z % (z)n%(x),
and equivalently for fermionic fields. It is assumed that the measure Dy is well-defined.

In the following sense the partition sum is the generating functional of full Green functions.
We can derive expectation values of full n-point correlation functions for either fermionic
or bosonic fields ¢? by differentiating with respect to the sources:

(p'p?..) = %%Z[n] : (2)

These correlation functions are in general dependent on non-zero sources. To obtain the
full n-point Green function, the vacuum expectation value is to be calculated by setting the
sources 7 to zero and making use of the normalization Z[0] = 1. This also implies setting
<90i>|77:0 = (Vi because of translational invariance of the vacuum®. The derivatives in (2)
are ordinary functional left derivatives if with respect to bosonic fields or their sources. For
fermionic fields, derivatives w.r.t. g% are also left derivatives, but in order to circumvent
explicit minus signs, derivatives w.r.t. ¢%, are right derivatives by definition:

59 59
SOl sob F R W (3)
Yr Pr Nk Nr
To arrive at the connected Green functions, one defines their generating functional by
Win] = In Z[n] (4)
such that for fields
b 0

12 =_—. )
<SO ¥ >conn. 5771 5772 ( )

With these definitions, the full n-point correlation functions can be decomposed into con-
nected ones. An intuitive explanation for the terminology is provided here when realizing
that the full correlation functions are linear combinations of products of connected Green
function and disconnected vacuum bubbles given by Z[n]. The decomposition yields

(") = () ZI0] (6)
(0'9") = ("0 omm. 201 + L") o {P™) comn. Z10] (7)
(0'0*0%) = (L'"0") ponn. ZIM + (L L) o (D comm, 20+ {2"0%) o (") comm. Z11]
(%0 comn. A2 comm. ZI L) o L) comm. {27 conm. Z111] (8)

One can directly see here that the vacuum expectation values of full and connected 3-point
Green functions are equivalent, but they are not for 4-point Green functions:

('), = <<¢1¢2w3¢4>mn,+ > @@ <90ms0">cm_>
k#l#m=#n

n=0

(9)

Tt is assumed that the symmetry of the vacuum is unbroken.
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The =+ indicates that for Grassmannian fields ¢ and ¢ one has to take feasible anticom-
mutations into account. The generating functional of proper? Green functions is defined
as the Legendre transform of Wn| with respect to all fields, known as the effective action
I

Lle] = =Wl + ¢ + Grilp + Mo (10)
By this definition, fields and sources are linked by
ow . or .
i i 11
T il (11)

such that their derivatives can be associated by

o ok ) 5 W 5
Spi  6pidp éni St oniond Spi

(12)

So if the derivatives w.r.t. fields are to (anti)commute, and the derivatives w.r.t. the
sources are to (anti)commute as well, then consequently derivatives w.r.t. fields will not
(anti)commute with derivatives w.r.t. the sources.

The procedure which was just introduced bears an astonishing analogy to information
theory (or equally statistical mechanics) where the expectation values are obtained by
derivatives of the partition sum with respect to the Lagrange parameters [Fel02]. These
parameters constrain the outcome of the calculation by enforcing known expectation values
of the observables of the theory. The counterparts of the Lagrange parameters are here
the sources which give us insight into the radiative corrections. The analogy now allows
us to understand that setting the sources to zero at the end of the calculation is nothing
but to say that the expectation values of the fields were not known in the first place.

2.2 Yang-Mills theories

SU(N.) Yang-Mills theories [Yan54] describe the dynamics of N? —1 gauge particles which
transform in the adjoint representation of the symmetry group. QCD is formulated as
a SU(3) theory where there are also N, = 3 quarks transforming in the fundamental
representation. The influence of quarks is, however, assumed to cause only minor effects
on the dynamics of the gauge sector [Fis03]. Therefore, QCD is here approximated by a
SU(3) YM theory. Generalizing to SU(N,), the classical Yang-Mills theories are governed

by the following Euclidian Lagrangian:
1 a
L= Z(F,uy>2 (13)

It involves the field strength tensor F}, which is the kinetic part of the gluon fields Af
with color index a and a term which describes self-interaction among them,

Fi, = 0,A, — 0,A; — gdf“bCAZAf, : (14)

2also known as one-particle irreducible (1PT)
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The mass dimension of the coupling g; depends on the spacetime dimension d. The self-
interaction occurs only in theories in which the structure constants f®° are non-zero, i.e.
in non-Abelian gauge theories. The structure constants are specific to the gauge group
and obey certain identities that are noted in appendix A.2. The non-Abelian nature of
the theory we intend to describe requires the covariant derivative of the gauge fields in the
adjoint representation to obey

D> =50, + gaf " AS . (15)

The theory described by (13) is invariant under gauge transformations. The gauge sym-
metry is generated by first-class constraints ®* implicit in the the Lagrangian by means
of Poisson brackets with the gauge fields [Dir64, Hen92]. We thus find a configuration
space of the gauge fields A = {A®}, in which the physics is equivalent. Along the orbits of
infinitesimal gauge transformations,

Al — AL — 0" — f“bCAZozC, (16)
the Lagrangian (13) is invariant for any a(z). One possibility to avoid ambiguities® in the
S matrix (which is to be gauge invariant) is to choose gauge-fixing conditions y?(A4) = 0
which cut the configuration space and remove the freedom of transformations of the gauge
fields. If the gauge-fixing condition is not to cut the configuration space locally twice, we
have to demand that it is left invariant under the gauge transformations for a unique a(x).
This is assured by requiring that det({®%, x"}p) # 0 where {-,-}p is the Poisson bracket.
The linear covariant gauge fixing condition to choose is x*(A4) = d,Af, = 0, called Lorentz
gauge.

Quantizing the theory in the path integral formalism (see, e.g., [Pes95]), the gauge-fixing
condition is implemented as a delta function in the integrand of the gauge space. The
integration is then performed over the given hypersurface of gauge fields. One can show
that by requiring

det(—9,D5") # 0 (17)

the gauge-fixing procedure is locally unique for infinitesimally neighboring configurations.
This does not remove the possibility of large gauge transformations leading to Gribov
copies [Gri78]. We shall not discuss these ambiguities here.

In the path integral over gauge fields, the Lorentz gauge-fixing condition is smeared out
by exponentiation to a Gaussian distribution of width &

3(8,A%) — exp (—2—15 / 'z (aﬂAg(x)f) (18)

This effectively introduces another term in the Lagrangian with £ as a new parameter,
the gauge parameter, that can be freely chosen. The Landau gauge, where £ = 0, plays

3These are circumvented in stochastic quantization and lattice theory.
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a distinct role in the gauge-fixing procedure as well as in this work, see section 2.3. It
enforces the Lorentz gauge with an infinite weight in (18) and thereby ensures that even
quantum fluctuations will obey the condition 9, A}, = 0. In particular, this means that the
gauge propagator will be transverse in the Landau gauge [AlkO1].

In the quantization of the theory, Faddeev and Popov [Fad67] used a trick of rewriting the
determinant (17) as a Gaussian integral over Grassmann valued scalar fields giving rise to
the so-called Faddeev-Popov ghosts which are namely the ghost fields ¢* and the antighost
fields ¢,

det(—@uDzb) = exp (/dd:vcaauDZbcb> : (19)

Since the ghosts do not have the correct relation between spin and statistics they cannot
be asymptotic states.* They do, however, serve as negative degrees of freedom to cancel
unphysical longitudinal polarizations of the gluons, and are therefore crucial to preserve
unitarity. Also, the confinement mechanism is understood to be due to ghost field contri-
butions, see section 4.3.

Although in general covariant gauges, the ghost and the antighost fields are independent
fields, in the Landau gauge one obtains a ghost-antighost symmetry (cf. section 5.2) as-
signing ¢’ = ¢ for complex fields. For general covariant gauges, this hermiticity assignment
leads to a Lagrangian that is neither strictly hermitian nor compatible with BRS trans-
formations [Nak90] and can be used only at the expense of quartic ghost interactions. For
the Landau gauge, however, which is the gauge mainly used in this work, quartic ghost
interactions do not contribute and we may use the above hermiticity assignment if we take
the limit £ — 0 at the end of the calculations [Alk01].

For the derivation of quantized correlation functions, the gauge-fixed path integral reads

21,6,0] = / DlAcd] eXp{— / d'z (i(Fﬁu)H %(&A‘;)z +z“aMngcb>

+ / i3 (A ] + 5o 4 E“a“)} | (20)

where Jj, 0 and o were introduced as sources for the fields Aj, ¢* and ¢”, respectively.

Although the Green functions defined in this theory are gauge dependent, their generating
functional given by eq. (20) is independent of the gauge-fixing condition chosen. This
is reflected in an underlying symmetry of the gauge-fixed quantized Lagrangian called
Becchi-Rouet-Stora (BRS) symmetry [Bec75]. In the same way as the gauge symmetry
appears in the classical Lagrangian which can be connected to charge conservation, the BRS
symmetry is found in the gauge-fixed quantized Lagrangian. BRS symmetry can be seen as
a set of constraints on the gauge independent generating functional that couples the gauge

4The absence of ghost fields from the S matrix can also be understood in the context of BRS symmetry
[Nak90].
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dependent Green functions mutually [Sme98a]. These constraints are the generalizations
of Ward-Takahashi identities to non-Abelian gauge theories and are called Slavnov-Taylor
identities (STIs) [Sla72, Tay71]. STIs can be most conveniently derived by applying BRS
transformations to Green functions.

The full, connected and proper n-point Green functions of YM theory now follow from
the introduction of generating functionals as given in section 2.1. To write them down
explicitely in momentum space, one is guided by physical principles such as Lorentz in-
variance and gauge invariance. For example, the propagators which are the connected
2-point Green functions must be dependent on the momentum in a Lorentz covariant way.
That is, the gluon propagator, which shall be denoted by Dzl;(p), must be a linear com-
bination of the transverse projector, t,,(p) = d,, — p.p,/p?, and the longitudinal one®,
(. (p) = pupy/p?. Gauge invariance leads to Slavnov-Taylor identities that provide further
information on the structure of the Green functions. For the gluon propagator, e.g., it is
found that pMDZf’, (p) = £€6%p, /p? , such that the longitudinal part is not modified by inter-
actions, see, e.g., [Sme98b]. The color structures of the non-perturbative Green functions
is assumed to equal the color structures of their counterparts from perturbation theory.
There is no rigorous way of proving this but the assumption is supported by lattice calcu-
lations [Bou98a, Bou98b|. Thus, the explicit form and the diagrammatic representation of
the gluon propagator and the ghost propagator reads

w = DZrl)/(p) = (;iz (tw(p)Z(pQ) + élw(p)) = (5abDW(p> (21)
“ e = o) =% _sip), (2)

p2

where Z(p?) and G(p®) are scalar dimensionless unknown dressing functions that may
be approximately determined by Dyson-Schwinger studies, see section 4. The reduced
propagators D, (p) and Dg(p) with suppressed color structure will be used frequently.

For the bare propagators DES,) (p) and Dg)) (p), the dressing functions are equal to 1.

To introduce definitions for the 3-point functions of Yang-Mills theory, the ghost-gluon
vertex szc(k; ¢, p) with one incoming, one outgoing ghost and one outgoing gluon shall be
denoted by

a, jt
T k — abc ds(d) abc
= [V(ksq,p) = (2m0)%0 Y (b +q—p)gafTu(k;q,p),  (23)
q p
- \\\

abc

and the three-gluon vertex I\

(k, q,p) with all momenta outgoing by

5This is to be strictly fulfilled only in the vacuum, for finite temperature other tensorial structures may
contribute.

10
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a, p, k

= T9% (k,q,p) = 2m)"0 D (k + ¢+ p)gaf " Toup(k,q.p) . (24)

b,v,q G PP

Again, the color structure is assumed to comply with perturbation theory and it has been
extracted from the vertices along with the momentum conservation and the gauge coupling
in (23) and (24) to define the more succinct reduced vertices I',,(k; ¢, p) and I',,,(k, ¢, p).
In the bare form these are found to be

() = igu, (25)
F/(L?/)p(k" Q>p) - _Z(k - Q)péw/ - Z(q - p)udup - 2(]7 - k)l/dup ) (26)

which can be directly obtained by applying derivatives to the action & = [ dzL of the
theory with respect to the fields involved in the vertices.

2.3 Landau gauge

For the study of gauge-dependent Green functions, one is free to choose a gauge parameter
&. The covariant gauge which has been picked for this and also related calculations is the
Landau gauge, where & = 0, the reason being that the complexity of a non-perturbative
treatment reduces considerably as will be discussed in the following. The propagators, in
particular, have been calculated in the Landau gauge, see section 4. There, this choice
eliminates the influence of the four-ghost vertex as well as the tadpole. The Landau gauge
also plays a distinctive role for renormalization in the sense that the gauge parameter
¢ need not be renormalized. Any multiplicative renormalization constant will not alter
¢ = 0. In this sense, the Landau gauge forms a fixed point in the renormalization group.
Furthermore, the running coupling can be formulated in terms of the propagators in this
gauge, see sec. 6.2. Most importantly, the Landau gauge provides first principle constraints
for the ghost-gluon vertex and thus alleviates a non-perturbative approach on the Green
functions of the theory. These constraints shall be presented now.

It was shown in [Mar78, Tay71] that in the Landau gauge the proper ghost-gluon vertex
must reduce to its tree-level form if one takes the limit of the incoming ghost momentum
p to zero,

lim I, (k; ¢, p) = T (q) (27)

This general statement is a crucial guideline for the constructions of the ghost-gluon ver-
tex to be made. Taking a look at the renormalization of the vertex, one can define the
renormalization constant Z; of the ghost-gluon vertex by

r, —TIi=210, (28)

11
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assuming multiplicative renormalizability of the non-perturbative vertex. Due to the iden-
tity (27) Z; can be fixed to a finite constant. If the renormalization point is chosen either
in the infrared or in the asymptotic ultraviolet, one gets

Zi=1. (29)

This result called non-renormalization was first shown in [Tay71] as a Slavnov-Taylor
identity and leads us to the conclusion that in the ultraviolet regime of the vertex the
leading asymptotic behavior can be expected. Generally speaking, the Landau gauge turns
out to be a gauge that is less divergent than other gauges.

3 Dyson-Schwinger equations

The Dyson-Schwinger equations may be regarded as the pivot of the study of YM theories
in this and related works. Therefore, the derivation will be formally presented here. The
need and the realization of a truncation will be discussed and the truncated DSEs for the
propagators as well as the ghost-gluon vertex will be calculated.

3.1 Derivation of Dyson-Schwinger equations

The derivation of DSEs can be found in a number of textbooks, such as [Bjo65] and [Itz80].
Both the operator formalism as well as the functional integral formalism are possible frame-
works. For the purposes of examining Yang-Mills theories, the functional integral method
will be used. A lucid treatment of this approach to derive DSEs can be found in [Rob94].
The crucial idea of the procedure is based on the fact that a functional integral over a total
derivative vanishes. This holds true only if [Riv87]

e the measure Dy is invariant under field transformations of the form
o(x) — p(z) + A(z) for arbitrary A(z),

e the representation of the generating functional as given in (1) exists.
The former is reminiscent of the derivation of the classical Euler-Lagrange equations where
the action is required to be invariant under infinitesimal variations of the fields. Nonethe-

less, no way has been found to prove either of the above conditions and they shall be
assumed henceforth.

12
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One may start with a derivative with respect to the field @% to find

5 ) -7 1 —i 1
0 = /D[w]ﬁ exp (=Sl + Pl + Gpny + M)
F

0S P i i i g
= / Dly] (— 5 @[f] + n’%) exp (—S[e] + @ + Grny + Trek)
a
o5 [ 2] 58
n k [90] k
- | = 7l = ( —
Sk +NF (1] < Sk + 77F> (30)

The DSE for a n-point Green function now follow from successive derivation w.r.t. the

sources of whichever fields are of interest. It is important to maintain non-zero sources

until all derivatives are performed in order not to neglect any terms. Eventually only the

vacuum expectation values that depend on pairs of Grassmann fields remain, others are

zero because the bosonic functionals Wn| and I'[¢] can depend on pairs of Grassmann

fields only. For example, it can be easily seen that the following quantity must vanish:
5T 5T

Sphsk  Spkspk

0. (31)

One can also argue that the conservation laws lead to the same conclusions. If, for example,
a Green function involves Faddeev-Popov-ghosts, it can only depend on pairs of ghost and
antighost fields, otherwise the ghost number would not be conserved.

The n-point Green functions obtained in this way can be formally® expressed as
. i 08 S i ik
(11455) -2 (1)

n=0 J=1 \i#j
where the right hand side represents the quantum effects, so called contact terms, that
contribute where two fields coincide. The DSEs given by eq. (32) are often referred to
as the quantum equations of motion for Green functions due to their connection to the
classical Euler-Lagrange equations of motion via the identity

0S oL oL
(2 =— 0| == - (33)
ok Opk 9(9u*)
Evidently, the quantum equations of motion satisfy the classical equation of motion up to
contact terms arising from commutation relations of field operators.

n=0

SFor simplicity, feasible Grassmannian nature of fields is discarded here. Taking them into account will
involve extra minus signs.

13
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3.2 Truncation

The set of equations (32) derived in the Dyson-Schwinger formalism is an infinite tower
of non-linear coupled equations. To solve for one particular n-point Green function, the
(n + 1)-point functions (and possibly more) have to be computed. Due to this recursive
coupling which makes one Green function dependent on all the others, a decoupling of a
subset of the equations is necessary to be able to approximately solve it”. In particular
this means that some of the n-point functions have to be neglected. For example, the
decoupling of a set of equations involving the 2-point and 3-point Green functions can be
achieved by neglecting all (n > 4)-point functions and thus truncating a part of the whole
set of DSEs as given in (32). This specific truncation has been developed to solve the DSEs
for the ghost and gluon propagators in [Sme98b], see section 4. In the next section, the
DSEs will be presented within this truncation scheme.

Truncations which lead to soluble subsets of equations generally break gauge invariance
explicitely and one has to check the extent of the violation to be able to assess a posteriori
if the truncation is a useful approximation. The truncation developed in [Sme98b] for the
calculation of the ghost- and the gluon propagator, has proven to be reasonable in this
respect [Fis02].

3.3 Dyson-Schwinger equations for the ghost- and gluon propa-
gator

Following the outline of section 3.1, the DSEs for the ghost- and gluon propagators can be
derived in a straightforward but tedious calculation. The main steps for the derivation of
the ghost DSE, although not all, are performed in appendix B. In momentum space, one
arrives at

D) = [DPw)]

— gaN. /d’qu @p—¢,0) D (@ (p)Dalp—q) . (34)

The trivial color indices of the propagators have been suppressed. This involves rendering
equal the color structures of bare and proper vertices and contracting them to yield the
factor N, see eq. (72) in the appendix.

The DSE for the gluon propagator neglecting any 4-point functions reads
(D), = [DOWp)], + giNe /ddq I (q = p) Daa —p) To(=pi¢.a — p) Da(q)

——ng /C‘ldq L) (0. —=¢,0 =) Dpp (@) Tuory (=00 — 4. 4) Door (g — p).  (35)

The graphical representations of these DSEs are depicted in fig. 1.

Tt is possible to make a series expansion that leads to the Feynman diagrams.

14
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Figure 1: The truncated set of DSE’s for the gluon and for the ghost propagator. Wiggly
lines with filled blobs represent connected gluon propagators, without blobs bare propa-
gators. Ghost propagators are equivalently denoted by dashed lines. Vertices with empty
blobs represent proper vertices, small dots represent bare vertices.

3.4 Dyson-Schwinger equation for the ghost-gluon vertex

The derivation of the DSE for the ghost-gluon vertex without any truncations has been
performed and can be looked up in appendix B. According to the truncation applied to the
propagators, the vertex DSE is presented here excluding the four-point interaction. The
identity (27) which follows from first principle is not violated by this neglect since it can
be shown analytically that the term which implicates the four-point interaction vanishes
in the infrared limit of incoming ghost momentum 8. Also, it vanishes perturbatively and
therefore would not influence the ultraviolet behavior of the vertex.

The DSE for the ghost-gluon vertex, the graphical representation of which can be seen in
fig. 2, then reads

Lu(kiq,p) = T (k;q.p)
—%QZNC /ddwl“u(k; w,w + k)
x D ()T (q) Dor(w — q)T'a(q — wiw + k, p) Da(w + k)
—%gch/ddwFWp(k:,w,w +k)
x Dy ()T (@) De(w — )Ty (g — wiw + b, p) Dyo(w + k), (36)

where the suppressed color structure of the vertices and propagators has been contracted
according to eq. (73) in appendix A.2 to yield the factors —3N...

8This can be proven equivalently to the argument for the reduction to the bare vertex in [Tay71].

15
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Figure 2: Truncated DSE for the ghost-gluon vertex

4 Propagators of Yang-Mills theory

The truncation of the subset of DSEs for the propagators of Yang-Mills theory as it was
demonstrated in section 3.2 was first developed in [Sme97]. All four-point functions are
discarded up to one exception, the tadpole diagram of the gluon DSE?. The neglect of the
other diagrams with four-point interactions (which are all two-loop diagrams) is known
not to affect the infrared behavior of the propagators [Vac95], in the ultraviolet they are
subleading due to asymptotic freedom. For intermediate momenta, the inclusion of two-
loop terms may comply with lattice results if considerable effort is put into constructing
a suitable truncation [Blo03]. Further approximations have been employed to arrive at an
iterative solution of the results. In this section, these approximations will be mentioned
and the results as well as their interpretation will be discussed. For the calculation of the
ghost-gluon vertex in section 6, the results of the propagators will be crucial.

4.1 Vertex approximations

The truncated DSEs for the ghost- and gluon propagators as they are depicted in fig. 1
are still very hard to solve self-consistently when coupled to the DSEs for the vertices.
An iteration would have to be performed for all the equations simultaneously. In order to
circumvent these technical difficulties, ansédtze have been made for the vertices to succeed
in obtaining a self-consistent solution for the propagators [Fis02, Maa04].

For the ghost-gluon vertex, one applies a bare vertex approximation. This is an estimate
that is motivated, on the one hand, by the non-renormalization of this vertex in the Landau
gauge whence no divergences are expected to emerge in the ultraviolet. In the infrared
limit, on the other hand, the Slavnov-Taylor identity tells us that the vertex is bare for a
vanishing incoming ghost-momentum. In addition, Zwanziger’s hypothesis (see section 5.3)
indicates that even for the infrared limit of the gluon momentum the vertex reduces to tree-
level. Therefore, one is tempted to assume that the bare vertex is a good approximation
for the whole range of momenta. One of the main motivations for the investigations of the
ghost-gluon vertex in this work is to clarify whether or not the bare vertex approximation
is justified.

9The tadpole was retained since it produces merely a constant.
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4 PROPAGATORS OF YANG-MILLS THEORY

The three-gluon vertex for d = 4 is chosen [Fis02] in such a way that the propagators
obtain the correct anomalous dimensions from leading-order perturbation theory at short
distances. For d = 3 a construction is made [Maa04] avoiding additional breaking of gauge
invariance which would occur in the gluon loop of the gluon propagator if one chose the
three-gluon vertex to be bare.

4.2 Previous results

The results for the propagators obtained with the bare vertex approximation for the ghost-
gluon vertex and a construction for the three-gluon vertex as they were obtained for three
dimensions in [Maa04] and for four dimensions in [Fis02] will be displayed here and em-
ployed for the study of the ghost-gluon vertex later on. The solution solves the truncated
DSEs self-consistently. In figs. 3 and 4 the results are plotted in comparison to lattice
results.

6 : :
latt. cont. extrap. —+—
) 3
5t 1% Gn 1407 B=42 e
DR 1407 p=5 %
10y Ml 140°p=6 =~ ©
s T3 DSE
@ N
<t
&) |
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Figure 3: The d = 3 results from DSEs [Maa04] for the ghost dressing function (left) and
the gluon propagator (right) compared to lattice calculations [Cuc01, Cuc03]. g3 is the
coupling constant with a mass dimension in three-dimensional Yang-Mills theory.

Both for three and for four dimensions the propagators show the same qualitative behavior.
The ghost propagator shows an enhancement stronger that 1/p? in the infrared whereas
the gluon propagator is suppressed in the infrared. The infrared suppression is found to
be due to the ghost loop in the gluon DSE [Sme97]. A good agreement is found in the
comparison with lattice results, the largest deviation is present for intermediate momenta.
Due to finite volume effects of the lattice, the infrared behavior lacks lattice data, this
shortcoming in lattice theory has the counterpart of the necessity of a truncation in DSE
studies.
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Figure 4: The d = 4 results from DSEs [Fis02] for the ghost dressing function (left)
compared to lattice calculations [Lan02] and the gluon propagator (right) with lattice
results from [Bow04]. Mind that the lattice data at low momenta are likely to be strongly
influenced by finite volume effects.

4.3 Implications for gluon confinement

Confinement is a phenomenon mediated by long-range interactions (i.e., at the order of the
size of a hadron), so the infrared behavior of the Green functions is of particular interest.
For the ghost field a confining mechanism is redundant since the ghost propagator does not
appear in the S matrix a priori [Pes95]. Its infrared enhancement, however, is the leading
contribution to the infrared suppression of the gluon propagator. A propagator which
vanishes in the infrared cannot have a Kallen-Lehmann spectral representation because
it violates positivity and therefore must be confined [AlkO4a]. Thus, gluons are confined
by long-range interactions that are mediated by ghosts. This intuitive picture can be put
briefly by saying: the ghosts are confining and the gluons are confined.

More sophisticated scenarios for confinement in the Landau gauge are namely the Kugo-
Ojima confinement criterion [Kug79, Kug95] or the Zwanziger-Gribov condition [Zwa04,
Zwa94, Gri78]. Both scenarios request an infrared enhancement of the ghost propagator
such as it was found in the calculations. In Coulomb gauge a complementary picture of
confinement is found which relates the infrared enhancement to center vortices and the
Gribov horizon, see [Feu04, Gre04].

One outstanding feature of the results is that the three-dimensional calculations which
describe the theory in the asymptotic high-temperature limit do not show significant devi-
ations from the four-dimensional vacuum theory [Maa04]. This indicates that the notion of
“deconfinement” in the QCD phase diagram as it was suggested originally in the context of
the quark-gluon plasma has to be revised. Findings in lattice theory [Lae03] also show that
there are considerable deviations in the equation of state from a Boltzmann gas suggested
for the “deconfined” phase. Thus these investigations point at remnant interactions in the
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high-temperature phase.

5 Analytical structure of the ghost-gluon vertex

In this section, the calculation of the ghost-gluon vertex will be implemented as an iterative
solution of the DSE given by eq. (36). Formulae are derived for performing one iteration
step both perturbatively and non-perturbatively in the next section. The four-point func-
tion which contributes to the vertex DSE, see appendix B, is discarded in compliance with
the truncation of the DSEs for the propagators. As starting points for the iteration to be
inserted into the right hand side of eq. (36) the bare as well as a STI-motivated ghost-
gluon vertex will be considered. An ansatz has to be made for the three-gluon vertex
involved in the DSE of the ghost-gluon vertex. Since the three-gluon vertex is assumed to
be subdominant in the infrared [AlkO1], the ansatz is chosen to be at tree-level. Recently
[Alk04b] there have been indications that in order to find a self-consistent solution for the
quark propagator in DSE studies of QCD, the three-gluon vertex ought to be singular in
the infrared. Therefore, a further investigation might be mandatory to approximate QCD.
In particular, one might employ a STI-motivated ansatz for the three-gluon vertex such
as the construction in [AlkO1]. However, in order to calculate the Green functions of pure
YM-theory, the bare three-gluon vertex will be used here as an ansatz.

In addition to the Lorentz structure of the vertex, its symmetry properties as well as
implications for its infrared behavior from the STI will be discussed.

5.1 Lorentz structure

In a Lorentz invariant theory, the ghost-gluon vertex must be transform as a vector in the
Lorentz group. Therefore, it must depend on the momenta in a Lorentz covariant way and
decompose to

L. (k;q,p) = iq.(1 + A(K* ¢%, p%)) + ik, B(K*; ¢*,p?) (37)

where A(k?;¢% p?) and B(k?;¢?, p?) are scalar functions to be determined from the form
of the vertex given in eq. (36). In order to initiate the iteration with the bare ghost-gluon
vertex as a starting point, the vertices in the integrand are replaced by their tree-level
forms. The first step is to perform the contractions in the kernel. A helpful tool for doing
so is FORM [Ver00]. The resulting vector integrals have one or two external scales and
can be reduced to scalar integrals using the techniques outlined in appendix C.1. The
algorithm for extracting Lorentz structure from general tensor integrals is given by ref.
[Pas79]. One then obtains in arbitrary dimension and covariant gauge
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A(kZ; q27p2) ’bare input ng /dd {ui((t: ()(ugw+f)/€)) (Z((w - Q)2>A1 + 5143)
(w— Q)z) 2
T e T AP 1)
+Z ( w+k)*)EA +Z (w2)£A5 + £2A6)} : (38)
B ) oA S I (2w - )i+ 6B
(w— C]) ) 2 2
w4(w 0)2(w + k) (Z(w )Z((w + k)7) B,
+Z((w + k))EBy + Z(W*)EBs + €2Bg) } (38h)

where A = ¢?k* — (¢ - k)? is the Gram determinant and the functions A; through Ag
and B through Bg are quoted in appendix D. In the Landau gauge, only the kernels
Ay, Ay, By and By are relevant. It therefore incorporates a considerable simplification
for the computational effort. Moreover, the longitudinal part of the vertex, determined
by the function B, is mostly irrelevant in the Landau gauge. If contracted with a gluon
propagator, the vertex will be fully determined by its transverse projection,

]{72

A T, (k: — 14+ A(k:
Z.gquutW(/lf) v(k;q,p) =1+ A(k; q,p) (39)

where all contributions from B vanish. Therefore, the function A is the object to be focused
on for most purposes.

5.2 Symmetry

For the Landau gauge, the gauge fixing condition d,A, = 0 of covariant gauges is strictly
enforced, also for quantum fluctuations. I.e. , the derivatives in the Faddeev-Popov deter-
minant commute, [0, D,] = 0, and one is free to choose in which order one will write the
determinant by virtue of a Grassmann integral. The resulting ghost-antighost conjugation
leads to the symmetry [Sme98b]

AR ¢, p) = AR %, ¢°) (40)

which can be shown explicitely on the level of the integrand to be fulfilled only in the
Landau gauge'®. It was shown in [Ler02] that in the manifestly ghost-antighost symmetric
Landau gauge, the whole ghost-gluon vertex will acquire a symmetry in the ghost momenta
such that T',(k; ¢, p) = T',(k; p, ¢). In this case, in addition to (40) the function B—(1+A4)/2

10This has been done but will not be displayed for it is rather technical.
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would be antisymmetric in the ghost momenta. However, since here we input a tree-level
vertex which is not ghost-antighost symmetric, the whole vertex cannot be symmetric
either.

5.3 Slavnov-Taylor identity

Taking into consideration a STT for the ghost-gluon vertex, the infrared limit of the vertex
can be partly kept under control. The results of the calculations to come are required
to satisfy the STT in order to not break gauge invariance. Furthermore, the vertex STI
has motivated additional ansatze for the vertex, one of which will be presented here and
investigated in the next section as another potential candidate for the non-perturbative
ghost-gluon vertex.

If one applies the BRS variation dgrs to a suitable correlation function,
0= (5335 <Caé5c> s (41)

it can be shown [Sme98b] that one arrives at a STI for the ghost-gluon vertex. Given the
present truncation neglecting all four-point functions, it reads

ik, G KT (ks q,p) — ip G (P u(=p; ¢, —k) = Z14*°G™H(¢?) . (42)

This equation holds true for any gauge parameter £. The reduction to the bare vertex
given by eq. (27), valid without truncation but only for £ = 0 (see section 2.3), is repro-
duced by the STI (42) in the following way. For p — 0 one has k — —¢ and finds with
lim,_op’G~(p?) =0 :

—iq (ki q,0) = 21> = Tulk;q,0) = Z1T0(q). (43)

For the Landau gauge, where Z; = 1, the STI (42) therefore demands the same feature as
non-renormalization. With the decomposition of the vertex (37) this relation demands

lim (A(K*¢* p°) — B(k*¢%p%) = 0, (44a)

p—0
nr%B(k;?;q?,p?) < 0. (44b)
p—»

In the infrared limit of the outcoming ghost momentum, ¢ — 0, the STI (42) yields

Lu(p;0,p) =Tu(=p:0,-p) , (45)

which leads to
lim B(k* ¢*,p%) = 0, (46a)
lim AR ¢%,p%) < o0, (46b)
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so that the whole vertex vanishes. Again, the vertex equals the bare vertex in this limit,

T(p;0,p) =T (0)=0. (47)

In the limit & — 0 the STI (42) does not provide any further information. There is,
however, a hypothesis by Zwanziger which is based on topological arguments [Zwa04]. It
states that in the Landau gauge the ghost-gluon vertex remains bare in the infrared limit
of any of the legs. Thus, Zwanziger’s hypothesis infers in addition to (44), (46):

lim A(k* ¢*,p%) = 0, (48a)
Ilcin%B(kQ;qQ,pQ) < 0. (48b)

Although the identity (42) does not fully constrain the vertex, an ansatz for the ghost-gluon
vertex was found in [Sme97] which satisfies (42) and has the correct symmetry properties

given by eq. (40):
G(k*)  G(K?)
TS0 (ks q,p) = iq, ( + —1] . 49
iar) =0 G * G )
For an input of this vertex construction, the functions A and B are calculated equivalently

to the procedure outlined in section 5.1. It is found that they can be related to their
counterparts of the bare vertex input by

{44 Bitsrrinpue = {41 Bitbare input ((G;((ig * G((G(kQ))Q) - 1) :
Glw-9? [ Gllw—9?*)
<G((w TR G 1) o
(W+k)?) | Glw+k)?)
o e ) o

Such constructions are promising since they have shown some success, cf. the Ball-Chiu
vertex in QED [Bal80]. However, it was shown in [Wat99] that the ansatz (49) is not
consistent with perturbation theory. Moreover, it diverges in the infrared limit of the
gluon momentum k and thus contradicts Zwanziger’s hypothesis (48). This ansatz will be
studied in more detail in section 6.2.

(
{A27 B2}’STI input {A27 BQ}‘bare input ( (

6 Results

The results of an explicit calculation of the ghost-gluon vertex according to the preceeding
section will be performed here both perturbatively and non-perturbatively. The perturba-
tive case can be kept mostly general for a SU(N.) YM theory in d spacetime dimensions
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and a parameter £ of covariant gauges. On the other hand, the non-perturbative results
will be restricted to Landau gauge and either d = 4 or d = 3. The gauge group will be
SU(3), unless indicated.

6.1 Perturbative results

Here, the perturbative ghost-gluon vertex at one-loop order will be calculated. On the one
hand, the result may be relevant for studies of perturbative QCD. On the other hand, it
lacks the capability of describing the dynamics of YM theory at large distances. However,
asymptotic freedom requires the non-perturbative vertex to approach perturbation theory
for sufficiently large momenta, and the perturbative calculations therefore provide a check
on the non-perturbative vertex in the ultraviolet. In addition, the insights gained from
this kind of calculation are of some benefit for the understanding of parts of the underlying
mathematical structure. The following calculations are presented for arbitrary Euclid-
ian spacetime dimension d. Any divergent expressions are thus dimensionally regularized
[Hoo72]. Eventually, the focus will be on d = 3 since the case d = 4 is discussed in the
literature, see [Wat00, Dav96].

For the implementation of the perturbative calculation, the equation (38) will be employed

with the dressing functions of the propagators in the loop, G and Z, set to 1. The scalar

integrals A(k?%; ¢%, p*) and B(k?; %, p*) then become tame enough, albeit vast, to treat them

analytically. Using identities for the scalar products such as w - ¢ = %(w2 +¢* — (w—1q)?)
1

and w-k = 3(—w? —k*+ (w+k)?) one can swap back and forth between integrals involving

these scalar products directly and the general form of the triangle integral,
(s, v, v5) = / () (w — )2 (w + K™, (52)

It is sometimes helpful to visualize that the triangle integral (or equally the vertex) depends
on the geometry of a triangle with sides of lengths ¢, k£ and p. Integrals of this kind occur in
the calculation with both negative and positive values for either of the exponents vy, vs, v3.
We now try to reduce the number of integrals to only a few master integrals with certain
values for the exponents.

The first task is to remove the integrals with positive exponents. To do so, one can expand
the factor in (52) which has a positive exponent in terms of scalar products and then
rewrite the integrals as vector and tensor integrals!'. Using the integral identities from

10ne can do the calculation more carefully, taking into consideration that there are not only vector
integrals with two scales but also some with only one scale and scalar integrals. However, tensor integrals
will turn up eventually, and so, since a brute force calculation is necessary, one might as well treat the
integrals as all being dependent on two scales.
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appendix C one thus finds

Tk
I(V1717V3) = (q2+q'k)‘[(yl)07y3>+(1—’_%)](”1_{—1707”3)
q-k
—?](Vl,(),ljz;—f—l), (53)
Tk
I(vi,v9,1) = (k2+Q’k)](V1,V270)+<1+%)I(V1+1,V270)
-k
_q?[(ylvlJZ—i_laO)? (54)

I(1,v,13) = (q2—q-p)l(1,ug,l/3)+(1—%> I(1,ve + 1, v3)

q-p
+FI<1,V27V3+1) (55)

to decompose the triangle integral where one of the exponents is one and the others are
negative. The one-loop calculations also implicate triangle integrals of the kind

212 _ d(g - k)2
[(V1727V3) = [(V1707V2> (q4+2qkq2_q d—<f ))
Ag-k)? 2¢-k(@+K) ., ¢k —d(q-k)?
2 2
k2 + k2 T (d—1)k?
+1(11 +2,0,10) <1+2 2 (d— 1kt
21.2 2
¢k —d(g-k)?* gk
+[(V1+1707V2+1) (2 (d_1>k4 —2 k2
¢K —dg- k)’ gk
(d—1)k? k?
¢°k* —d(q - k)*
(d— 1)kt

+[(l/1 + 1,0, 1/2) <

+[<V1, 0, V9 + 1) <2

(11,0, v + 2) (56)

Thus, it is possible to remove all positive exponents from within the triangle integrals. In
addition, values for the {1;} are encountered where one of them is zero turning the triangle
integrals into two-point integrals. If these incorporate any further positive exponents, the
identity

1(0,1,v) = I(0,0,v 4+ 1) + (¢ — k)*1(0,0,v) (57)

can be applied to finally end up with integrals with negative exponents only. Using the
method of integration by parts, see [Tka81, Che81|, one can now manipulate the tri-
angle and two-point integrals such that exponents with 1; < —1 can be increased, cf.
[Wat00]. At the end of the day one is left with only four integrals, namely I(1,1,1) =:
D (k; q,p), 1(1,0,1) = ED(k), I(1,1,0) = ED(g) and 1(0,1,1) = ZD(p).
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From eq. (57) one can anticipate that some apparently divergent integrals of the kind
[dw/)w?, [d*w/(w — q)? and [d*w/(w + k)? will occur. Allowing shifts of the integra-
tion variable, these contributions mutually cancel in each graph separately for any gauge
parameter. However, the integral [ ddw/w4 remains. It is originated in the part of the
gluon propagator that is proportional to its momentum vector. Consequently, this integral
vanishes only in the Feynman gauge (£ = 1). We omit this term referring to [Col84],
ch. 4, where it is stated that integrals of this type actually are zero in the framework of
dimensional regularization.

The procedure of manipulating the various integrals can now be applied to the pertur-
bative version of (38) to obtain the one-loop ghost-gluon vertex in arbitrary dimension
and covariant gauge. The calculation is straightforward but tedious and only the lengthy
results are stated here:!2

AR % p%) = % {%fﬁ(d’(k‘; 4, p) [(—(p2 — ) (P + P)(d*(E = 1)° +8£(2¢ — 3)—
2d(3 — TE +4€%)) — kS (4 4 d*(€ —1)® — 8¢ + 1262 — 2d(1 — 5¢ + 4€2)) +
K (p*(d?(§ — 1)* = 8+ 326 — 2d(—3 + £ + 28%)) + ¢*(d*(§ — 1)* + 6d(1 + £ — 2¢%) +
8(6—1+3¢%))) + K (¢"(d*(§ = 1)* + 4(3 = 10€ + £%) — 2d(7T — 96 +2¢%)) —
20°¢%(20 + d*(€ — 1) — 28¢ — 2d(5 — 7€ + 26%)) + p*(d*(€ = 1)" -
2d(7 — 13 + 6£%) + 4(3 — 16 + 7€%))))] +
=D(q) [K(§ = 1)(d(5 = 9§) — 6+ d*(§ — 1) +168) — 2k*(—¢*(8 + 3d(§ — 1)—
106)(1+ &) + p*(€ = 1)(d(4 — 88) =2+ d*(€ —1) +14€)) + (p* — ¢*) (P*(§ — 1) ¥
(24 d(3 — 7€) + d*(€ — 1) + 126) +d>(€ — 1) +128) 4 ¢*(6 — 7d(€ — 1) +
d*(¢ — 1) — 26¢ +12¢%))] +
2D (k) [—k4(d(8 —6€) +4(E —5) + A2 (E —1)(E— 1) + (0 — ) (d*(E — 1)°+
8E(2¢ — 3) — 2d(3 — TE + 4€2)) + 2K*(¢*(2 + d + 2&* — d€?) +
P*(2 + d + 12€ — 4d€ — 1062 + 3d€?))] +
ED(p) [K(6 — 5d(€ — 1)° + d*(€ — 1)° — 14€ + 4€%) — 2k*((—8 + 3d)p*(€ — 1)°+
P2+ d* (€ —1)° — 146 + 146 + 887 — 2d(2 — 5 + 3¢6%))) — (p* — ¢*) (p°(6 —
7d(E —1)° + d*(€ —1)* — 226 +126%) + (AP (€ — 1) +
d(—3 410 — 7€) + 2(—1 — 7€ + 6£)))] } (58a)

12Note that all angles have been eliminated in favor of the absolute values of ¢, k and p.
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e {30 ki) [2 - 2+ dle - 1)~ 6)(E - 1+
(d—4)(P* — )’ (0? + ¢)(d(E — 1) — 4€)(€ — 1) + 2k°(€ — 1)(—2(d — 3)¢*(1 + &) +
PH=2+d(2—68) 4+ d*(§ — 1) + 68)) — 2k*(p° — ¢*)(p*(§ — 1) (=2 + d(6 — 10§) +
(€ —1)+228) +2(d — 3)g (€2 — 1) — p*P(16 + d?(€ — 1)® — 32¢ — 4d(3 — 4€ +
£%))) — 2k (2p* (1 +2d(6 — 1) = 7E)(E — 1) — ¢* (€ — 1)(—2+ d(4 — 88) +
d*(€ — 1) + 148) + p*P(d*(€ — 1)* — 4d(3 — 5E + 2€2) + 4(T — 14€ + 3¢2))] +
=D (g) |(3 — d)(p* — ¢*)* (P> + ¢*)(d(€ — 1) — 4E)(€ — 1) + k°(€ — 1)(d(5 — 9€) — 4+
d* (€ — 1) 4 16€) + K2 (p*(€ — 1)(—4 4+ d(11 — 23€) + 3d*(€ — 1) +
408) — ¢*(4 4 d*(€ — 1)® — 52€ + 3262 + d(—9 + 226 — 13€2)) — 2P (P (€ — 1) +
d(—9 + 14 — 56%) + 4(2 = 5+ €%))) + k' (—p*(€ — 1) (=8 + d(13 — 25¢) +
3d*(€ — 1) +44€) + ¢*(d*(€ — 1)* = 3d(5 — 6€ + &%) — 4(—8 + 11E + €H))] +
=D (k) (4= d)p* — ¢)'(d(E ~ 1) ~4E)(E ~ 1) — KA (§ — 1) +4(6 - 9 + &)
2d(5 — 8¢ + 36%)) + k*(—¢*(—8 — 4d(—2+ &) + d*(£ — 1)) (£ — 1) + p*(12d(¢ — 1) +
(6 —1)7 = 16(—2 426 + &) + K2 (p° — ¢*)(—a*(d*(§ — 1)* + 4&(—T + 5¢) —
2d(3 — 8¢ + 5¢)) + p*(d*(§ — 1)° — 2d(1 — 8¢ + T€%) + 4(—2 — 5¢ + 967)))] +
=) [(d = 3)(p? — ) (0 + ¢P)(A(E — 1) — 4)(€ — 1) + K(A(1L - 46 + €)+
(€ — 1) = 5d(§ —1)*) = K" (P (P (6 = 1)* +4( —2 - 3¢%) + d(2 =3+ &) +
P(d*(€ —1)* +d(106 — 3 — 7€) + 4(3¢* — 2 — 5€))) — k(¢ (4(3 — 26 + &%) +
d2(€ —1)° = 5d(€ — 1)) — 2% (d2(€ — 1)° + d(226 — 9€% — 13) + 4(5 — 11€ +
A€%)) + p*(d2(€ — 1)° + d(—5 + 18€ — 13€2) + 4(3 — 8¢ + 7€) } - (58D)

Bk ¢*,p") =

In the 3-dimensional case the scalar integrals yield the following results (see appendix C):

1
¥ (k,q,p) = : 59
1

=) = : 60
(9) S (60)

In the Landau gauge, the expression A and B then shrink from (58) down to

2N, Tk® —5k(p — q)* + TK2(p+q) — 9(p — 0)*(p+ ¢
A(kQ;QQ,p2)| clo = 932 ( )128k ( ) ( )7 ( ) , (61a)

Q-3 pq (k+p+q)
2 gch 1 5 4 3

B, q*p")] e=0 = (K” + 5k (p+q) + 3k(p — a)°(p + @)+

w o

2 256k3pq (k+p+q)
(p+q)* = 2K*(p — q)(4p> + 9pq — 3¢%) + k*(6¢* + 14pq — 4p*)) . (61b)

3(p—q)

w
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A simple choice of the momentum configuration is given by choosing all momenta to be of
the same magnitude. One obtains

92N, 21 +12¢ — €21

A(p27p27p2) ’d:?) 9 384 D 3 (623)
2 2
g3N, 27+ 66 — 21
B(p?, p*p?)| s 5 T (62b)

Evidently, in the ultraviolet momentum regime the one-loop contributions vanish on ac-
count of asymptotic freedom.

In order to check the result for any dimension, one can inspect the implications of the
Slavnov-Taylor identity for the ghost-gluon vertex as discussed in section 5.3. In the
infrared limit of the incoming ghost momentum p the result (58) yields

1
lim (A(k*; %, p%) = B(K*; 0%, p%)) = 7 0aN£2(a) (63)
p—

and thus fulfills the first condition given by eq. (44a) for £ = 0. The second condition (44b)

requires the function B to be finite in this limit. For d = 4 the two-point integrals have a

simple pole (see appendix C) and therefore it is not trivial to show the finiteness of B in

this case. For dimensions d, however, in which the two-point integrals are finite, we find

lim B(k*; ¢, p*) ~ lim (C12(p) + Cog*® (k. 0, p)) (64)
where the coefficients C; and Cy yield (C] + Cy) ~ £. For d = 3, the integrals involved in
(64) can be related by Z(p) = ¢*®(—q, ¢, p). Hence, the function B stays finite in the limit
p — 0 for £ = 0 in this case. Thus, it was explicitely shown that for d = 3 the perturbative
one-loop ghost-gluon vertex reduces to the bare vertex as the incoming ghost momentum
goes to zero if and only if the gauge parameter is chosen to be £ = 0 (Landau gauge).

Further investigations of the case d = 3 show that the implication (46) for the infrared limit
of the outcoming ghost momentum ¢ is fulfilled for any gauge parameter £&. In the limit
k — 0, the perturbative vertex suffices (48) and thus reduces the vertex to its tree-level
value in this limit. The latter result is also found for d = 3 and any gauge parameter &.

For any spacetime dimension other than d = 3, the validity of some of the implications of
the vertex’s STT are found to be restricted to the choice & = 1 (Feynman gauge)'3. Since
the Feynman gauge is also the only choice for which the [ d4w Jw* terms mutually cancel, it
seems possible that the violation of the STI for { # 1 is due to the fact that the [ d%w/w?
terms were erased by hand (see above). A closer focus on d # 3 therefore requires a check
if the integration by parts method produces additional surface terms or if the neglect of
[@%/w" terms is justified as stated in [Col84].

13The terms which do not satisfy the STI’s implication are proportional to (d — 3)(& — 1).
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Whereas it was shown for d = 3 that the perturbative vertex reduces to the bare vertex in
the infrared limit of any one of the momenta, the object (A — B) diverges if all momenta
are taken to zero, also for the Landau gauge,

2N, 15 + 18¢ — &2
li A 2 2 2 _ B 2 2 2 =1 93 Y
lim (A(p*,p*,p*) = B(o*,p*,p")) e 768p

(65)
Compared to eq. (63), this indicates that the functions A and B have non-interchangeable
infrared limits. This issue will be addressed again in the next section. Nonetheless, eq.
(65) represents an infrared singularity of perturbation theory. It is with great anticipation
to find out whether or not this singularity persists for the non-perturbative vertex. An
infrared singular non-perturbative ghost-gluon vertex could be fatal for the assumptions
made for the propagators.

6.2 Non-perturbative results

The following computation of the ghost-gluon vertex in the Landau gauge with non-
perturbative propagators employs the Dyson-Schwinger equation (36) in such a way that
the bare ghost-gluon vertex is used as a starting point of an iteration. The exact non-
perturbative ghost-gluon vertex (leaving aside the truncation of four-point functions) would
require a full iteration to self-consistency, a highly complicated task since the propagators
would have to be calculated simultaneously. A reasonable approach is therefore to do only
one iteration step. Zwanziger’s hypothesis and non-renormalization indicates that the bare
vertex is quite close to the fixed point of the iteration. The outcome of the calculation will
tell us more about the validity of this statement.

The numerical integration of the loop momenta has been carried out using exponentially
stretched Gauss-Legendre quadrature [Pre92], taking into account the pole structure of the
integrand. For more details on dealing with triangle integrals analytically and numerically,
see appendix C.4. The perturbative results for d = 3 given in section 6.1 have been checked
and verified numerically. Some minor deviations occurred in the infrared behavior apart
from the limits concerned with the STI. These might be understood to be due to the neglect
of the integrals of the form [ d%w/w* in the analytical calculations.

Throughout, the results will be displayed for three- and four-dimensional spacetime, in
order to directly point out the differences and similarities. For the practical implementation
of the calculation one has to bear in mind some subtle differences between four and three
dimensions. First of all, the gauge coupling in three dimensions, g3, has a mass dimension
of 1/2 whereas in four dimensions it is just a number. This can be seen directly from the
dimensionless action where the kinetic parts determine the dimension of the fields and as
a consequence the coupling terms lead to [Mut98]

[ga] = [mass|@~2) | (66)
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Secondly, one is not to forget the dimension dependence of the phase space factor (2r)~% in
the integrals and contractions of the kind g, g*” = d. For the integration in d-dimensional
spherical coordinates, the details given in [Vel94] will be helpful. The dressing functions of
the propagators for four and three dimensions are to be distinguished as shown in section
4.

The strongest implication from first principle on the vertex to be checked is the reduction
to the bare vertex in the infrared limit of the incoming ghost momentum p. The technical
issue of taking infrared limits numerically is outlined in appendix E. According to (44),
the vanishing of (A — B) and a finite function B yields a bare vertex in the limit p — 0.
In addition, the STT implies that for a vanishing outcoming ghost momentum ¢, the whole
vertex is supposed to vanish in the manner given by (46). In figure 5 it can be seen that
this turns out to be well-fulfilled both in four and three dimensions. It is worth pointing
out that both graphs in fig. 2 which contribute to the vertex apart from the bare vertex
comply with the implications of the STI separately.

With both implications from the STI fulfilled, it can be concluded that gauge invariance of
physical quantities is not (additionally) broken in the infrared limit by this particular choice
of the vertex. Although the results have been somewhat expected with non-renormalization
of the vertex in mind, the verification of the STI’s implications are crucial for the validity
of this construction of the vertex.

We now turn our attention to the infrared limit of the gluon momentum where one cannot
rely on statements from first principle. The behavior found is shown in fig. 6. Both in four
and three dimensions the vertex reduces almost to its tree-level form. According to (48),
the function B stays finite, whereas A(0; p?, p*) stays small relative to the tree-level value.
In the ultraviolet of the momentum p?, the function A(0; p?, p?) approaches the tree-level
value due to asymptotic freedom, in the infrared it shows a small undershoot of about
10% — 15%.

The deviation of the vertex from the tree-level value found in the limit & — 0 is small
enough to argue that it might be an artifact of the truncation on the one hand, and on the
other hand it is likely to decrease after further iteration steps. Zwanziger’s hypothesis of a
bare ghost-gluon vertex in the infrared is thus approximately fulfilled. The above results
therefore strengthens the evidence for the Zwanziger-Gribov scenario with infrared ghost
dominance in the Landau gauge.

The qualitative behavior for intermediate and ultraviolet momenta has shown to be similar
for all momentum configurations. To investigate this further, let us consider the vertex for
all three momenta of the same magnitude, i.e. the kinetic point (p?%; p?, p?). The transverse
projection of the non-perturbative vertex (39) compared to the perturbative one is plotted
in fig. 7. For four as well as for three dimensions, the vertex is found to not deviate far
from the bare vertex for the whole range of momenta. Deviations are in the range of 15%.

The results for three dimensions show, starting from about 10g2, a perturbative behavior
which is mirrored in the fact that the propagators also become perturbative in this mo-
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Figure 5: The infrared limit for the ghost momenta of the vertex in four dimensions (upper
plots) and three dimensions (lower plots). Evidently (left panel), A(¢% ¢* 0) = B(q¢*; ¢*,0)
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Figure 7: d = 3 (left) and d = 4 (right) vertex for momenta equal in magnitude. Pertur-
bative behavior and reduction to bare vertex in the UV are shown.

31



6 RESULTS

mentum regime (see figs. 3 and 4). Because for d = 3 the gauge coupling constant has a
mass dimension of 1/2; a perturbation series of a Green function must always involve terms
with powers of g2/p with some momentum p, instead of just g5. Other scales with a mass
dimension are not available in the finite three-dimensional YM theory. In the ultraviolet,
the resummed perturbative Green function therefore is well-approximated by leading-order
perturbation theory. Asymptotic freedom for d = 3 is thus articulated in the reduction of
the non-perturbative vertex to the one-loop perturbative vertex.

In four dimensions, the non-perturbative vertex fails to equal leading-order perturbation
theory. The dimensionless gauge coupling g4 does not guarantee that the first terms of
an expansion in g, are leading in the ultraviolet, as for d = 3. A resummation would be
necessary to find a perturbative vertex asymptotic to the non-perturbative one. The per-
turbative one-loop vertex actually yields all but a constant for the kinetic point (p?; p?, p*)
and is therefore not displayed in figure 7. This can be understood from dimensional argu-
ments. Since there is no parameter with a mass dimension in d = 4 perturbation theory,
due to the non-renormalization of the vertex, and the function A is to be dimensionless, it
can only depend on ratios of the momenta. Therefore, at a kinetic point where all momenta
are the same, A produces a constant.

0.25

GGZ —— . GGZ ——
02t /\\ GZZ ——- 1 0.15 t /\\ G7ZZ — —- 1

L L L L L _0. 15 I I I I I
0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000
P [GeV] P lgs’]

Figure 8: Separate contributions to the vertex for d = 4 (left) and d = 3 (right). GGZ
is the contribution to A from the graph with two ghost- and one gluon propagator, GZZ
accounts for the graph with one ghost- and two gluon propagators (see fig. 2).

The characteristic bump found for the intermediate momentum regime is reminiscent of the
bump in the gluon propagator, see figs. 3 and 4. The origin of the bump in fig. 7 is actually
found in the graph that contributes with two gluon propagators inside the loop, see fig. 8,
so that we are led to the conclusion that the behavior of the gluon propagator presumably
dictates the behavior of the vertex for intermediate momenta. The contributions from the
two different graphs to the function A shown in fig. 8 also provide an explanation for the sign
change at intermediate momenta. It is shown that the graph with two ghost propagators
is the leading contribution in the infrared with a negative sign. In the sum of the two

32



6 RESULTS

graphs the function A will therefore undergo a sign change. The infrared dominance of the
graph with the two ghost propagators in the loop indicates that the infrared behavior of
the vertex be dictated by ghosts.

Since the vertex depends on three independent scales, one can hardly display all momentum
configurations. A generalization of the specific choices considered above is given by the
kinematic points (p?; ap?, p?) and (p?; p?, ap?) where momentum conservation constrains a €
[0,4]. Varying a, the behavior of the functions A and B is shown in fig. 9. At this point it
is worth while to look at the symmetry properties of the vertex. The function A(p?; p?, ap?)
yields the exact same behavior as A(p?; ap?, p?) shown in fig. 9 for all parameters a. The
value of the gluon momentum does not alter this behavior. The inspections of the STT in
figure 5 provide supplementary results. Hence, the symmetry property (40) is fulfilled. For
the function B, on the other hand, a (anti)symmetry is neither expected nor found (see sec.
5.2). The combination B — (1+ A)/2 does not show any antisymmetry either, as predicted
for gauges that are not manifestly ghost-antighost symmetric. The symmetry properties
will not be altered by the quantitative behavior of the propagators, the distinction between
four and three dimensions is therefore redundant. Nevertheless, the three-dimensional
results are depicted here as well for completeness.

The plots in fig. 9 most effectively expose one of the features of the vertex functions A
and B: the infrared limits of these functions seem to be non-uniform. Depending on the
geometry of the triangle formed by the three momenta, A (or B) will approach different
values for all momenta at zero. This behavior was already found for the perturbative
vertex, see page 28. The entire non-perturbative vertex, on the other hand, multiplying
the functions A and B with ¢, and k,, resp., has an unambiguous infrared limit. For a
further discussion on this issue, see appendix E.

The running coupling in four dimensions as it was investigated in [Sme98b] can now undergo
a correction by the ghost-gluon vertex. The renormalization constant of the vertex, Z;,
had been defined in the infrared limit of the incoming ghost momentum to exploit non-
renormalization and obtain Z; = 1, see eq. (29). Now we can redefine the renormalization
constant by Z;(p®) = 1+ A(0; p?, p?) [Cuc04] and find a running coupling a = ¢2/(4n)
with vertex correction [Mut98]

a(p®) = Z3(p*)G*(p*) Z(p*) . (67)

The result is depicted in fig. 10 and shows that this definition enforces a bump in the run-
ning coupling!4, a behavior which seems peculiar for the renormalization group because the
(3 function acquires a non-trivial zero [Alk03]. However, this may be due to the truncation
since intermediate momenta are the least trustworthy regime of the truncation scheme. It
is still under debate to which extent this is a problematic feature of the solutions.

14This behavior is similar to the results for the propagators shown in sec. 4.
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Figure 9: Non-symmetric momentum configurations of the 4d vertex (upper plots) and
the 3d vertex (lower plots). It is found that A(p?;ap? p®) = A(p* p? ap?) (left panel).
The function B (right panel) does not show any symmetry properties, i.e. B(k?;aq?, p?) #
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Figure 10: Vertex correction to the running coupling given in ref. [Fis02]. The result for a
without vertex correction is a fit which eliminates the bump that usually occurs.

STI-motivated vertices

Previous studies [Ler02] considered constructions of the ghost-gluon vertex motivated by
the corresponding STT [Sme98b]|, such as the one given by eq. (49). The assessment of this
construction required an insertion of the vertex into the DSEs for the propagators, finding
the propagators do not react sensitively to the altered vertex input. By means of the
computational mechanism developed here it is now feasible to investigate further the STI-
motivated ansatz for the ghost-gluon vertex. Instead of the bare vertex, the construction
(49) has been used as an input into the DSE for the ghost-gluon vertex. The three-gluon
vertex is used at tree-level, as before. The results show, see fig. 11, that one iteration step
leads to a function A of the vertex that is qualitatively as well as quantitatively more similar
to the bare vertex than it is to the input, i.e. the STI-motivated vertex. The deviation
of the function B from zero can be ignored since in the Landau gauge these contributions
will be eliminated when contracted with transverse gluon propagators.

With the calculation understood in terms of an iteration, one can estimate the bare vertex
to be closer to the fixed point than the STI-motivated vertex is. This indicates that the
bare ghost-gluon vertex is a better choice for DSE studies than the construction from the
STTI given by (49). Moreover, the infrared behavior of the STI-motivated vertex does not
comply with Zwanziger’s hypothesis since it is singular for zero gluon momentum. The
STT for the vertex does apparently not provide enough information for constructing the
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Figure 11: By comparison, the input and output of the STI-motivated ghost-gluon vertex.
The function A (left) and the function B (right) are shown on the upper row for d = 4,
and for d = 3 on the lower row.
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vertex from it.

Another vertex ansatz developed and discussed in [Sme98b, Ler02] which is motivated by

the STT of the vertex,
. G(k?
Iu(kiq,p) = un%q% ) (68)

but does not satisfy the symmetry property (40) was investigated as well. Qualitatively, it
showed the same reduction to a vertex close to tree-level as the other STI-motivated vertex
discussed above.

Generally speaking, the DSE of the ghost-gluon vertex has turned out to be quite insensitive
to the input of the ghost-gluon vertex into its right hand side. The propagators, on the
other hand, are the objects which determine the behavior of the vertex most influentially.
An investigation has been done varying the fit parameters of the propagators slightly to
observe the influence on the vertex. The outcome was that the quantitative behavior is
dictated by the changes of the propagators. As above, the ghost propagator dominates the
infrared, whereas the gluon propagator determines the intermediate momentum regime.

Comparison to lattice data

Recently, lattice calculations on the Landau gauge ghost-gluon vertex for d = 4 have
become available [Cuc04]. The SU(2) results obtained there are for the kinematic points
(0; p%,p?), i.e. the infrared limit of the gluon leg which is not known from first principles.
The results are, as can be seen in fig. 12, in good agreement with the SU(2) results from
DSE studies presented here!®. It seems that for a symmetric lattice direction'® the data
comply better with our results than for the asymmetric direction. In the infrared limit
of all momenta, the lattice calculation is limited due the finite lattice size. The smallest
momentum p available on the lattice is 366 MeV, and this only at the expense of an
asymmetrical lattice direction. Therefore, the behavior for p — 0 with the undershoot
still remains a crucial prediction of the DSE calculations. The agreement with lattice
data is a confirmation of the calculations performed here. It indicates that the truncation
induced breaking of gauge invariance is under good control. Lattice theory does not involve
any truncation artifacts as for DSE studies and it also does not suffer from any such
formal weak points as the mathematically rigorous definition of the path integral formalism.
Nevertheless, for the lattice theory the question is only deferred to other problems, such
as whether or not the continuum limit can be defined rigorously.

5By assumption, the coupling g4 has been used as for SU(3), but N, has been set to 2.
16Symmetric and asymmetric directions on the lattice are distinguished to account for the systematic
errors due to the breaking of rotational symmetry.
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Figure 12: Comparison of the DSE results to recent lattice data [Cuc04]. On the left panel,
the lattice data were obtained with a symmetric lattice direction, one the right panel with
an asymmetric one.

7 Conclusions

The non-perturbative ghost-gluon vertex has been approximately calculated. For this
purpose, its Dyson-Schwinger equation has been derived and a solution to it has been
pursued by means of an iteration employing non-perturbative propagators. A specific
feature of the Landau gauge, the non-renormalization of the vertex, has motivated to
choose the bare vertex as a starting point. Performing one iteration step has resulted
in a vertex which qualitatively as well as quantitatively resembles its bare form. The
infrared behavior of the result satisfies the constraints imposed by gauge invariance, i.e.
the Slavnov-Taylor identities: For vanishing incoming or outcoming ghost momentum, the
vertex remains bare. In the generally unknown infrared limit of the gluon momentum, the
vertex also remains approximately bare, confirming Zwanziger’s hypothesis. On account of
asymptotic freedom, the tree-level value is attained in the ultraviolet. Very similar results
have been obtained using another vertex input motivated by the Slavnov-Taylor identity.
The mapping of the iteration has shown to be quite insensitive to the starting point and
always yields an output close to the bare vertex.

The non-perturbative propagators which were employed from previous studies had been
calculated with a bare ghost-gluon vertex as an ansatz. The outcome of the calculations in
this thesis justify this assumption a posteriori and provide a more profound confirmation
of the features of the propagators, in particular gluon confinement in the four-dimensional
vacuum theory. For the three-dimensional investigations, support is given for remnant
long-range interactions in the high-temperature phase of Yang-Mills theory.

Having verified Zwanziger’s hypothesis, the evidence is strengthened for the Zwanziger-
Gribov confinement scenario and the associated understanding that the Green functions
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of Yang-Mills theory are dominated by ghosts in the infrared. Gluon confinement is thus
understood to be due to long-range correlations mediated by ghost interactions. While
this is a property of the propagators, the ghost-gluon vertex itself has also shown to be
dominated by ghosts in the infrared and by gluons in the intermediate momentum regime.

The error of the results is determined by the truncation adopted for solving the Dyson-
Schwinger equation. Due to the mutual coupling of the Green functions, the error of the
ghost-gluon vertex is influenced by the one of the propagators. These were analytically
solved in the infrared and in the ultraviolet. The vertex is therefore likely to be trustworthy
in these momentum regimes as well. Furthermore, the Slavnov-Taylor identity proved
certain infrared limits to be correct and perturbation theory ensures the validity of the
results in the ultraviolet. Hence, the error for intermediate momenta is the only one which
has to be vaguely estimated. A helpful piece of information here are results from lattice
calculations which showed a good agreement with the results found here.

Future studies of Yang-Mills theory in Landau gauge are now provided with a consolidated
argument for choosing a bare ghost-gluon vertex as an approximation. A less divergent
gauge than others, the Landau gauge has proven to be well-suited for an intensified focus
on Dyson-Schwinger investigations of Yang-Mills theory and also the theory of Quantum
Chromodynamics.

Part of the results obtained here is to be published:

e W. S., A. Maas, J. Wambach, R. Alkofer, The ghost-gluon vertex in Landau gauge
Yang-Mills theory, http://arxiv.org/abs/hep-ph /0411060, to be published in the pro-
ceedings of the ”International School of Subnuclear Physics 2004”7, Erice, Italy

e W.S., A. Maas, J. Wambach, R. Alkofer, Infrared behaviour of the ghost-gluon vertex
in Landau gauge Yang-Mills theory, http://arxiv.org/abs/hep-ph/0411052, submit-
ted to Phys. Lett. B
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A NOTATIONS

A Notations

A.1 Conventions
e The metric g, defined by p-z = g,,p'z" is Euclidian in all calculations:

Guv = 5},LV

A distinction between covariant and contravariant tensorial structures is therefore
not necessary.

e Natural units are used where
In this system we have
[length] = [time] = [energy] ' = [mass] " .

o (Greek as well as Latin indices are summed.

e For momentum integrals the shorthand

a'p =

(2m)
is used.
e Integral measures are abbreviated in an intuitive manner,

d[zyz| = dxdydz , D[Aéc] = DADeDe. (69)

A.2 Structure constants

The contractions of structure constants that occur in the loop graphs of both the DSE
for the propagators and the DSE for the ghost-gluon vertex can be computed using the
algebra of the Lie group

(X, XP] =ifreXe, (70)
where the X are the generators of the group. One can now define the adjoint representa-
tion by the matrices

) = —ifere (71)

that suffice the same algebra. For SU(N,), the contractions yield
pacd phed Ny gab (72)
fpade fbeg pegd %chabc (73)
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B DERIVATION OF THE DSE FOR THE GHOST-GLUON VERTEX

B Derivation of the DSE for the ghost-gluon vertex

To derive the DSE for the ghost-gluon vertex it is only necessary to consider an action
that involves all contributions from ghosts, although due to the mutual coupling of the
Green functions, the entire Lagrangian is implicitly relevant. The ghost part of the action
of Yang-Mills theories reads

Sgn[A, c,¢] = /ddw (c"0%c* + gdfabcéaﬁuAchb) . (74)

We introduce Jjj, 0% and o as sources for the fields A7, ¢* and ¢, respectively, so that
we can define the generating functionals Z, W and I' according to (20), (4) and (10). The
fields and sources are then given by

owo oW, W,

R T

5T Y or -, or

@ = 0, ﬁ_0—7 @_Jlm (75)

where we use left and right derivatives for Grassmann fields as described in section 3.

Following the steps from eq. (30), one possible way of writing down a DSE is to start with

0 = /D[AEC] 5de(y) exp {—Sgh[A, ¢, ¢+ /ddx (A% + 5% + E“Ua)}

589h [A? Ca E] b
RO ' 76
< scb(y) +0°(y) (76)
Retaining non-zero sources we now apply the variation
0 5T 5
= [ <hine ¢ ‘ -
500(2,’) / ,U(SEd(U)(SCC(Z) (SO'd(U) -+ vanis Ing terms ( )

Some terms vanish because the functionals can depend only on pairs of Grassmann fields.
Throughout the calculation, great care is mandatory when dropping terms since most
of them vanish only when setting sources to zero. However, for the sake of readability,
vanishing terms are discarded beforehand.

Equation (76) then yields
5T 0S,n
0= dd gn —d - 5()(15 - b —=d ) 78
[t (Gt = 800 ) = o)) @
The last term in the above equation will not contribute. To deal with the first term in eq.
(78) we use

= 0Yc(y) + gdfbghafjAZ(y)cg(y) . (79)
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B DERIVATION OF THE DSE FOR THE GHOST-GLUON VERTEX

Omitting source terms, the emerging full 2-point correlation function can be rewritten

using (*(y)c(v)) = % as shown in (7) and after usage of the relation
~b ~b =d 2 2
5<x_y)5ab:5f (y):/ddz&f (y) oc(z)  _ /ddz _ T oW
do*(x) dct(z) doe(x) dcl(z)oct(y) 05 (x)do?(2)
(80)
equation (78) turns into
52—FZ[J 7,0 = 0%"5(y — 2)Z[J,7,0]
6c°(y)dce(2) o= Y 77
raaf 9y [t S (W) . 6
P dcd(v)dee(z) '

Form here, setting sources to zero directly leads to the DSE for the ghost propagator.
To see this, we have to decompose the full 3-point correlation function making use of the
identity (8) and then set all sources to zero (abbreviated by n = 0) to find

. 53
(Au@)(y)e(z)) = 5J2(2)05" (y)d0°(2)
g g W 52T S2W
- 6Je(x) /d [st] 55°(1y)do™(s) 6¢™(s)dcn(t) 6" (t)do(2)
B / Lt 52 52 53T 52
- 5Je()0JE(r) 652 () 0™ (5) S AL (r)3e™ (5)dc™ (£) 35 (£)00°(2)
. S
0.J2(x)0a" (y)doc(2)
=0 _ / dUlrst] Dk (x — r) DY (y — )0k (s 5, 8) De(t — ) (82)

defining the ghost and gluon propagators in position space

~ %
D¥(x—y) = ———r 83
¢ —y) 52° ()0 (y) = ) (83)
~ W
Dip(x—y) = —vems| (84)
z ST,
as well as the proper ghost-gluon vertex in position space
. 5T
(25 y, 2) == (85)
5A#(x)5c (y)oce(2) =0
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B DERIVATION OF THE DSE FOR THE GHOST-GLUON VERTEX

Plugging this into eq. (81) directly yields the DSE for the ghost propagator in position
space. To find the DSE for the ghost-gluon vertex, we maintain the sources at non-zero
values and apply to equation (81) the derivative

0 —/ddu 5’ )
5A/‘j(m) 5AZ(I)5AS(U) dJ¢e(u)

+ vanishing terms . (86)

Since all the necessary derivatives are performed after this, one can immediately set sources
to zero to find the proper ghost-gluon vertex:

rabe( .. _ bgh oy d 53F h g —d
Ly, 2) = gaf 8p/d v 5Az(x)56d(v)5cc(z) <Ap(y)c (y)e ('U)>

o 52T 5°T e N
raal ™04 [ ) o s AW A )

(87)

n=0

According to (9), the decomposition of the full 4-point correlation function using (82) yields

(A )AL (W) ()2 (v))],

- W W 5 5w
ST (0) 579 )oo(w) |, STR) ST ()t (w) |,
52w 5w
T S ooty |, ] st
{_ 52w 52w 5T BW
0Jg(u)0J¥(r) 059 (y) oo™ (s) SAK(r)dc™ (s)dcn(t) 6.Jh(y)da" (t)do?(v)
BW 5w 5T U
a 0J"(y)0Jg(w)d.J% (1) 059 (y)da™(s) S AL (r)de™ (s)dc(t) 0" (t)do?(v)
B / W 52W 52W
0.J5(u)d I3 (r) 0.7} (y)6. i (w) 659 (y)do™ (s)
54T 5w
8 SAL (w)d Ak (r)de™(s)den(t) da"(t)do? (v)
B 52w W 5T W 38)
6J5(u)oJ5 (1) 0.Jh(y) 0T (y)dom(s) S AL (r)dc™ (s)ocn(t) 6o (t)dod(v) }‘ _0 (

The last term of the last line in eq. (88) produces a 3PI-graph which, however, cancels
in eq. (87) with the first term. We now introduce two further definitions. The proper
three-gluon vertex shall be denoted by

) 5T
Fand — *
(w0, 7) 6J ()0 T (w)o i (r) =0 ’ !
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B DERIVATION OF THE DSE FOR THE GHOST-GLUON VERTEX

and the proper 4-point Green function involving two gluons and two ghosts is defined by

] 5T
l—magc . = .
o (W; 23, 2) 0 Az (w)d Af,(x)6c? (t)oee(2) |, ”

After further decompositions of connected into proper 3-point correlation functions equiv-
alent to (82), and using (80), eq. (87) can be rewritten!” as

Loz, 2) = gaf*™040(y — 2)0(y — 2)
+gaf"moy / d*[rstw] D" (y — ) DE™ (y — w)Te (23w, 1) D& (r — s)T9(t; 5, 2)
+gafm™" oY / d*[rstw]Def (y — ) D (y — w)Td (z, w, ) DY (r — )T (s ¢, 2)

—gdfmbhag / dd[tw]bg’(y - t)f:,‘zgc(w, x:t, z)[);’},"(y —w) . (91)

The last step to take is to identify the bare ghost-gluon vertex which is derived from the
action (74) as

L% (25 y, 2) == 53_‘,?%
5Af;(x)5c (y)oce(z)

= gaf ™0 (y — x)0(y — 2) (92)
whence one readily obtains

gaf""" 05 Dps(y — ) DE" (y — w) = / d*[uv] D" (uy y, 0) Dy (u — ) DE" (0 — w) . (93)

Using this relation, one can remove the spacetime derivatives in favor of bare ghost-gluon
vertices and finally arrive at the complete DSE for the ghost-gluon vertex in position space:

Po(eiy,2) = [O%(riy,2)
+ / d[rstuvw] DR (v — w)f‘znd(x; w, ) D% (1 — 5)T9(t; s, z)DZg(u - t)f&o)hbm(u; Y,v)
+ / dd[rstuvw]ﬁ;’,i”(u - w)le’f‘i(x, w, ) D (r — 8)T9(s; 1, 2) D (v — t)f‘f)o)mbh(u; Y,v)
- / d*[tuvw] DY (v — t)f’;zgc(w, x;t, z)f)zzn(u - w)fg))mbh(u; Y,v) (94)

Applying a Fourier transform with one incoming and one outcoming ghost momentum?!®
such as

L0 (k; g, p) = / dzyz] DO (2 y, 2)eEe0vP2) = jgaq, 2 = gof**TO(q)  (95)

1"The indices and integration variables have been renamed in a convenient way.
8Here, the incoming antighost is conjugated into a ghost with reversed momentum.
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C INTEGRALS

defines the bare ghost-gluon vertex in momentum space. Following this convention, all
Green functions in momentum space (symbols with tilde) may be Fourier transformed
into momentum space (symbols without tilde), and one obtains the DSE for the ghost-
gluon vertex as it is shown in fig. 13 and written down explicitely, although excluding the
four-point function, in momentum space in eq. (36).

g 2 Q08000 --@--
/’ ‘\\ /) ‘\\ -~ ~~, .- ~~ Vg \\

Figure 13: Complete DSE for the ghost-gluon vertex

C Integrals

C.1 Vector integrals

The vector integrals one has to deal with when performing vertex calculations with three
external legs have either one or two scales. A vector integral with one scale is of the form

1(g) = / ooy f(w - 4, P K) = 4 I(¢) (96)

with some arbitrary function f that depends on the angle between ¢ and the integration
variable w and may depend on any other scale as long as there is no angle with w involved.
Due to Lorentz invariance, I,,(¢) must be proportional to g,, the proportionality factor can
be found by contracting (96) on both sides with g,

1

I(¢°) = q—Qqufu(Q) (97)

A vector integral with two external scales generally looks like
Iu(Qv k) = /ddwwuf(w ' Q7w : k7w27 q27 kQ) = Qu[q<q2) + kujk(k2> N (98)

The scalar integrals [,(¢?) and I;(k?) are found by contracting (98) once with ¢, and once
with k,

L) = (Pal(e ) =g k(o b) (99)
R(?) = @) — 0 kol (a,h) (100)

where A = ¢*k? — (q - k)? is the so-called Gram determinant.
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C.2 Tensor integrals

One also encounters integrals of the form
L (k) = / s f(w - w?) (101)

Since this object has two Lorentz indices and one scale k one can write
Lo(k) = kK, I (K*) + 6,,k* I, (k?) (102)

k,k, and ¢,, being the only Lorentz invariants with two indices. By contraction with the
transverse projector and with the metric one finds

1
2y _
IQ(k ) - (d _ 1)k2tﬂ’/(k)]/w(k) ) (103)
1

L(KY) = anfw(k) —dI (k%) . (104)
C.3 Two-point integral
The two-point integrals,

dw

=@ (a, ;q) = / : (105)

W) ((w—=q)?)°"

which are encountered in the calculations can be shown to be homogeneous functions of
the momentum ¢. By a scaling of the integration variable, w — Aw, one readily obtains

=9(a, B3 Aq) = AT ED(a, B q) - (106)

For the two-point integral can only depend on the scale, it must be of the form Z@ (o, 3; q) ~
¢". The exponent of the power law can be determined by eq. (106) to find kK = d —2a —203.

Two-point integrals can be calculated explicitely using Feynman parameters such as in

1 ! 1 — z)f 1
coCy /o (zCh + (1 — 2)C2)**F B(a, B) (107)

where B(a, (3) is the Euler beta function, and

e 1 T(n—d/2) (1"
[ @ o (5) (108)
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Applying this trick to the integrand in (105) one obtains

dwre(1 — x)P! 1
=(d) . —
=ebia) = / dx/ A1 —) + @ — )" Bla, )

- dte
— B(a,ﬁ) /O drz® 1(1 B x)ﬂ 1 W
_ 1 1 T(a+p—d/2) [ . R
- B(a>ﬁ) (47T)d/2 F(Oé + 6) /0 dI‘x’ 1(1 _ ZL‘) 1A 2

1 T(a+B-d/2)T(d/2=a)T(d/2=B) 5 a2 ap
T (@Am¥2 T(a)T(B) Td—a_p ) (109)

where we have assigned ¢ = w — xq and A = ¢*z(1 — ). Note that the power law behavior
follows the prediction from above. For the special case d = 4 and @ = = 1 the two-point

integral (109) with the expansion of the gamma function I'(¢) = 1/e+ O(1) yields a simple
1/e-pole. For d =3 and o« = 3 = 1 we are taken to the result (60).

C.4 Triangle integral

For the triangle integral over d-dimensional Euclidian spacetime,

d"w
(d)<04, ﬁ, 7 k’, Q7p) = / (w2)0‘((w — q)Z)ﬁ((w + k.)?)'y

a solution with general values for the exponents «, (3,7 is not known. The usual trick
introducing Feynman parameters leads to analytically insolvable parameter integrals. Here,
another method is used to end up at a new integral representation which might lead to
analytical solutions of specific cases.

(110)

The denominators in (110) can be rewritten in terms of gamma functions,

1 1 o
- d a—1_—Ax 111
A* " T(a) /0 S (1)
leading to a Gaussian integral of w that can be performed to yield after some algebra
Dla+p3+vy—d/2) [* 0Ly Bt
Da, B,7; k,q,p) = / dlzyz
( ) (4m)42T (a)T(B)T(7) Jo [zy7] (vyk? + x2q®> + yzp?)‘”ﬂﬂ*d/2

(112)

For a “unique” triangle, defined by a4+ 3 + v = d, a compact result can be obtained (cf.
[Vas81]),

. _ Pla+B+~—-4d/2) 1
PRt = G TN RS GYE

(113)
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The integral ®®)(1,1,1; k, ¢, p) therefore yields the result (59), in agreement with [Pel71].
There also exist a way to calculate this specific integral using conformal inversion & — & /w?

[Arn97].

For a numerical solution of the triangle integral it is advisory to take the pole structure of
the integrand into account. The Gauss-Legendre points which were used for the calculations
in section 6.2 were laid carefully around the poles. Parametrising the integral (110) by
spherical coordinates, ¢, k and q - k =: gk cos+y, one can define the azimuthal angle 6(;_1)
by w - q = wgqcosfy_1) and the next angle 042y by w - k = wk(sin0g_1) cos fg_) siny +
cos B(g_1)cosy). Note that 6, € [0,27) whereas ¢, € [0,m) V{k,1 < k < d—1}. The
integrand then becomes singular for {w = ¢, 6g—1) = 0, V0o } and {w =k, O4_1) =
T =7, Oa—2 =T}

D Integral kernels

The integral kernels A; through Ag and By through Bg in eqs. (38a) and (38b) are given
by

Ay = (krwg k—Fq w)(@w +k-w@®—q w)+q-kw® —q-w)—
¢ w—wiq-w+ (¢ +w? —2¢-w)g-w+ (g w)?)

Ay = 2w(q KR 4w k) — (g AR — g w) (B +w- k) +
(k-w)’q-kq-wk?+w- k) + E(Pw? — (¢-w)?)(w?(k* +w- k) +
q-ww? +w- k) + kq k(- (B +w - k) — (¢ w)*(w? +w- k) +
wiq-wk 4+ w4+ 2w k) +k-w(—(qg- k) (w?+q-w)(E*+w- k) +
q-k(wlqg-wk?+w-k)+ (¢ w)(w? +w- k) — Pk + w® + 2w - k) +
F(—(g-0)' (K +w - k) = P (w? +w - k) + ¢ w(k® +w’ + 2w - £))))

A3 = (P—q-w) (W +k-w—q-k—q-w)(—(k-w)qg-k+kq-w)

Ay = q-wkq-kq-ww?+2w-k)+w(q- k) (K +w? +2w- k) —
(k- w)’q- k(2k* + w4 2w - k) + B2 (K*w?q - w + (¢ - w)*(w? 4 2w - k) — ¢*w?
(K2 +w? 42w - k) + k-w((q- k)2 +w® + 2w - k) — q- k(w?(k* + ¢ - w) +
2q - ww - k) + k2 (=2¢*(K* + w? + 2w - k) + ¢ - w(2k* + w® + 2w - k))))

As = (P 4+ )W +k-w—q-k—q-w) x
(—w(q- k) + k- wq - kq-w+ K (¢°w® — (¢- w)?))

Ag = KFwi+k-w—q-k—q-w)g wk wg k—kq-w)
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By = —(¢*k-w—q-kq-w)(w(¢® +q-k)+k-wg®—q-w)—q-wlg-k+q-w))

B, = —w’(q-k)' +w(g k) (W —q-w) + K¢ (w0’ = (q-w)") (K +w’ + 2w - k) —
(k-w)’q-w((q-k)* + ¢* (K + 2w - k) + ¢ - k(=K ¢*w* + 20 (g - w)* (K> +w - k) +
2q-w)*(w? +w - k) — Pwlq - wk? + 20 + 4w - k) + (¢ - k)’ (—¢*w? (w® +
2w - k) — 2wq - w(k® + w? + 2w - k) + (- w)* (k> + 3w® + 4w - k) + k- w((q - k)
xq - w(—w’ +q-w) + (¢ k) (W’ + ¢ w) + ¢ (—w’q- wk® + 2w - k) + 2¢*w* x
(K +w? + 2w - k) — (q-w0)* (K + 2w + 2w - k) + ¢ - k(2(q - w)*(K* +w - k) —
q - w(k? 4+ 2w + 2w - k) + ¢w? (K + 2w + 4w - k)))

By = (@ —qw) (WHk-w—qk—qw) (k- w—q-kq-w)

By, = qgwk@(—uwi+qg-w) (F+w+2w-k)—q-kq-w@w® (k¥ +q-w)+
2q-ww-k)+ (k- w)’ ((¢- %)+ ¢ (K + 0 +2w-k) + (¢- k)° (w® (F* +w’ +
Qw-k)—q-w kK +2uw+4dw-k)+k-w(—(qg-k)°*+(qg- k) (w®—q-w) +
g wk+w+2w-k)+q k(@ (K +w+2w k) —

q- w2k +w+2w-k))))

By = —(w+k-w—q-k—q-w) (wq k(—k ¢+ (g k) +
kew (@ w” = (q-k)*) ¢ w+ (k—w) (k+w)q-k(g-w)?)

Bs = q-kqw(—w—k-wt+q-k+q-w) (k-wqg-k—Fkq-w)

E Infrared limits

In section 6.2, the infrared limits of any of the momenta of the vertex were studied. If
one of the momenta is taken to zero, the other two momenta may remain finite but equal
in magnitude, due to momentum conservation. Thus one obtains A(z?;0, z%), A(z?% x2,0)
or A(0; 22 z?%), for example. The limit lim, .o should then yield the same value for all
three of the above cases. But as one can see from the comparison of figures 5, 6 and 7
as well as from figure 9, it does not. So the infrared limits of the results seem to be non-
uniform at first glance. The explanation for this effect is found in the notation. The way
the infrared limits are obtained is such that the functions are not ever evaluated with one
momentum exactly at zero because the kernel would diverge. Instead, this momentum is
chosen to be much smaller than z. From investigations shown in figure 14 it is found that
at about /1000 the value of the integral approaches a constant and so one can extrapolate
to zero retaining the same constant. So A(z?;0,2?) is really supposed to be understood
as A(z%107%22 2%). Therefore it is not surprising that the limit lim, .o does not yield
the same value for either lim, o A(z?; 0, 2?), lim, o A(2?; 22, 0) or lim, o A(0; 2%, 2?) since
these are nevertheless different momentum configurations. Mathematically spoken, the
infrared limits of the function A (or B, resp.) are not interchangeable. Moreover, any
infrared limit of the kind lim, g A(ax?; bx?, cx®) depends on the geometry of the triangle
spanned by the momenta. On the other hand, the vertex I', is not as sensitive to these
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ambiguities for it multiplies the function A and B with a momentum vector. For all
momenta at zero, the vertex therefore vanishes.

—r T —r T —rT— —rT— —rT T

025 p — — — — —— - A%0,x%) 1

oo | \ AU D) — == |
A107x%107) - - -

0.15 | A(1074x2,107% 1

S o1 A10°x%10%) —-— |
(o]
T
N
< 005k ...
<
0
00SF """ """ -
0.1 f ]
0.0001 0001 001 01 1 10 100 1000 10000

x [GeV]

Figure 14: Numerical procedure of taking infrared limits. It is shown that if one momentum
is much smaller than the others, the function A approaches a constant.

51



REFERENCES

References

[AIkO1]

[A1kO03]

[AlkO4a]

[A1kO4Db)]

[App81]

[Arn97]

[Balg0]

[BecT5]

[Bjo65)

[Blo03]

[Bou98a)

[Bou98b]

[Bow04]

Alkofer, Reinhard and von Smekal, Lorenz, The infrared behavior of QCD Green’s
functions: Confinement, dynamical symmetry breaking, and hadrons as relativis-
tic bound states, Phys. Rept. 353 (2001), 281.

Alkofer, Reinhard and Fischer, Christian S. and von Smekal, Lorenz, Infrared
exponents and the running coupling of Landau gauge QCD and their relation to
confinement, Eur. Phys. J. A17 (2003), 773.

Alkofer, R. and Detmold, W. and Fischer, C. S. and Maris, P., Analytic proper-
ties of the Landau gauge gluon and quark propagators, Phys. Rev. D70 (2004),
014014.

Alkofer, Reinhard, private communication.

Appelquist, Thomas and Pisarski, Robert D., High-temperature Yang-Mills the-
ories and three-dimensional quantum chromodynamics, Phys. Rev. D23 (1981),
2305.

Arnold, Peter and Wright, David, The tricritical point of finite-temperature phase
transitions in large N(Higgs) gauge theories, Phys. Rev. D55 (1997), 6274-6286.

Ball, James S. and Chiu, Ting-Wai, Analytic properties of the vertex function in
gauge theories. 1, Phys. Rev. D22 (1980), 2542.

Becchi, C. and Rouet, A. and Stora, R., Renormalization of the Abelian Higgs-
Kibble model, Commun. Math. Phys. 42 (1975), 127-162.

Bjorken, J. D. and Drell, S. D., Relativistic quantum fields, New York, USA:
McGraw-Hill (1965).

Bloch, J. C. R., Two-loop improved truncation of the ghost-gluon Dyson-
Schwinger equations: Multiplicatively renormalizable propagators and nonper-
turbative running coupling, Few Body Syst. 33 (2003), 111-152.

Boucaud, P. and Leroy, J. P. and Micheli, J. and Pene, O. and Roiesnel, C.,
Lattice calculation of alpha(s) in momentum scheme, JHEP 10 (1998), 017.

Boucaud, P. and Leroy, J. P. and Micheli, J. and Pene, O. and Roiesnel, C.,
Three-loop beta function and non-perturbative alpha(s) in asymmetric momen-
tum scheme, JHEP 12 (1998), 004.

Bowman, Patrick O. and Heller, Urs M. and Leinweber, Derek B. and Parappilly,
Maria B. and Williams, Anthony G., Unquenched gluon propagator in Landau
gauge, Phys. Rev. D70 (2004), 034509.

52



REFERENCES

[Che81]

[Col84]

[Cuc01]

[Cuc03]

[Cuc04]

[Das97]
[Davo6]

[Dir64]

[Dys49]

[Fad67]

[Fel02]

[Feu04]

[Fis02]

[Fis03]

[Gre04]

[Gri78]

Chetyrkin, K. G. and Tkachov, F. V., Integration by parts: the algorithm to
calculate beta functions in 4 loops, Nucl. Phys. B192 (1981), 159-204.

Collins, John C., Renormalization. An introduction to remormalization, the

renormalization group, and the operator product expansion, Cambridge, Uk:
Univ. Pr. (1984) 380p.

Cucchieri, A. and Karsch, F. and Petreczky, P., Propagators and dimensional
reduction of hot SU(2) gauge theory, Phys. Rev. D64 (2001), 036001.

Cucchieri, Attilio and Mendes, Tereza and Taurines, Andre R., SU(2) Landau
gluon propagator on a 140**3 lattice, Phys. Rev. D67 (2003), 091502.

Cucchieri, A. and Mendes, T. and Mihara, A., Numerical study of the ghost-gluon
vertezx in Landau gauge, hep-lat/0408034.

Das, A., Finite Temperature Field Theory, World Scientific, 1997.

Davydychev, Andrei I. and Osland, P. and Tarasov, O. V., Three-gluon vertex
in arbitrary gauge and dimension, Phys. Rev. D54 (1996), 4087-4113.

Dirac, P.A.M., Lectures on quantum mechanics, Academic Press (1964).

Dyson, F. J., The S matriz in quantum electrodynamics, Phys. Rev. 75 (1949),
1736.

Faddeev, L. D. and Popov, V. N., Feynman diagrams for the Yang-Mills field,
Phys. Lett. B25 (1967), 29-30.

Feldmeier, H., Informationstheorie und Quantenstatistik, Lecture notes TU
Darmstadt, in German (2002).

Feuchter, C. and Reinhardt, H., Quark and gluon confinement in Coulomb gauge,
hep-th/0402106.

Fischer, C. S. and Alkofer, R., Infrared exponents and running coupling of SU(N)
Yang-Mills theories, Phys. Lett. B536 (2002), 177-184.

Fischer, Christian S. and Alkofer, Reinhard, Non-perturbative propagators, run-
ning coupling and dynamical quark mass of Landau gauge QCD, Phys. Rev. D67
(2003), 094020.

Greensite, Jeff and Olejnik, Stefan and Zwanziger, Daniel, Center vortices and
the Gribov horizon, hep-lat/0407032.

Gribov, V. N., Quantization of non-Abelian gauge theories, Nucl. Phys. B139
(1978), 1.

23



REFERENCES

[GroT73]

[Hen92]

[Hoo72]

[1tz80]

[Kug79]

[Kug95]

[Lae03]

[Lan02]

[Ler02]

[Maa04]

[Mar78|

[Mut98]

[Nak90]

[Pas79]

[Pel71]
[Pes95]

Gross, D. J. and Wilczek, Frank, Ultraviolet behavior of non-abelian gauge the-
ories, Phys. Rev. Lett. 30 (1973), 1343-1346, Nobel prize 2004.

Henneaux, M. and Teitelboim, C., Quantization of gauge systems, Princeton,
USA: Univ. Pr. (1992) 520 p.

Hooft, Gerard 't and Veltman, M. J. G., Regularization and renormalization of
gauge fields, Nucl. Phys. B44 (1972), 189-213, Nobel prize 1999.

Itzykson, C. and Zuber, J. B., Quantum field theory, New York, USA: McGraw-
Hill (1980) 705 p. (International Series In Pure and Applied Physics).

Kugo, Taichiro and Ojima, Izumi, Local covariant operator formalism of non-
abelian gauge theories and quark confinement problem, Prog. Theor. Phys. Suppl.
66 (1979), 1.

Kugo, Taichiro, The universal renormalization factors Z(1) / Z(3) and color
confinement condition in non-Abelian gauge theory, hep-th/9511033.

Laermann, Edwin and Philipsen, Owe, Status of lattice QCD at finite tempera-
ture, Ann. Rev. Nucl. Part. Sci. 53 (2003), 163.

Langfeld, K. and others, Vortex induced confinement and the IR properties of
Green functions, hep-th/0209173.

Lerche, Christoph and Smekal, Lorenz von, On the infrared exponent for gluon
and ghost propagation in Landau gauge QCD, Phys. Rev. D65 (2002), 125006.

Maas, Axel and Wambach, Jochen and Gruter, Burghard and Alkofer, Reinhard,
High-temperature limit of Landau-gauge Yang-Mills theory, Eur. Phys. J. C37
(2004), 335-357.

Marciano, William J. and Pagels, Heinz, Quantum Chromodynamics, Phys. Rept.
36 (1978), 137.

Muta, T., Foundations Of Quantum Chromodynamics, World Scientific (1998).

Nakanishi, N. and Ojima, 1., Covariant operator formalism of gauge theories and
quantum gravity, World Sci. Lect. Notes Phys. 27 (1990), 1-434.

Passarino, G. and Veltman, M. J. G., One loop corrections for e+ e- annihilation
into mu+ mu- in the Weinberg model, Nucl. Phys. B160 (1979), 151.

Peliti, L., D’Ermao, M. and Parisi, G., Lett. Nuovo Cimento 2 (1971), 878.

Peskin, M.E. and Schroeder, D.V., An Introduction To Quantum Field Theory,
Westview (1995).

54



REFERENCES

[Pol73]

[Pre92]

[Riv87]

[Rob94]

[Sch51]

[Sla72]

[Sme97]

[Sme98al

[Sme98b]

[Tay71]

[Tka81]

[Vac95|

[Vas81]

[Vel94]

Politzer, H. David, Reliable perturbative results for strong interactions?, Phys.
Rev. Lett. 30 (1973), 1346-1349, Nobel prize 2004.

Press, William H., Teukolsky, Saul A., Vetterling, Wiliam T., Flannery, Brian
P., Numerical recipies in C, Cambridge University Press (1992).

Rivers, R. J., Path integral methods in quantum field theory, Cambridge, UK:
Univ. Pr. (1987) 339 p. (Cambridge monographs on mathematical physics).

Roberts, Craig D. and Williams, Anthony G., Dyson-Schwinger equations and
their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994), 477-575.

Schwinger, J. S.; On the Green’s functions of quantized fields. I and II, Proc.
Nat. Acad. Sc. 37 (1951), 452,455.

Slavnov, A. A., Ward identities in gauge theories, Theor. Math. Phys. 10 (1972),
99-107.

Smekal, Lorenz von and Alkofer, Reinhard and Hauck, Andreas , The infrared
behavior of gluon and ghost propagators in Landau gauge QQCD, Phys. Rev. Lett.
79 (1997), 3591-3594.

Smekal, Lorenz von, Perspectives for Hadronic Physics from Dyson-Schwinger
Equations for the Dynamics of Quark and Glue, Habilitation thesis, Universitat
Erlangen-Niirnberg (1998).

Smekal, Lorenz von and Hauck, Andreas and Alkofer, Reinhard , A solution to

coupled Dyson-Schwinger equations for gluons and ghosts in Landau gauge, Ann.
Phys. 267 (1998), 1.

Taylor, J. C., Ward identities and charge renormalization of the Yang-Mills field,
Nucl. Phys. B33 (1971), 436-444.

Tkachov, F. V., A theorem on analytical calculability of four loop renormalization
group functions, Phys. Lett. B100 (1981), 65-68.

Vachnadze, L. G. and Kiknadze, N. A. and Khelashvili, A. A., Singular power
law infrared asymptotic behavior of the gluon propagator in the covariant gauge,
Theor. Math. Phys. 102 (1995), 34-39.

Vasiliev, A. N. and Pismak, Yu. M. and Khonkonen, Yu. R., 1/N ezpansion:
calculation of the exponents eta and nu in the order 1/N**2 for arbitrary number
of dimensions, Theor. Math. Phys. 47 (1981), 465-475.

Veltman, M. J. G., Diagrammatica: The Path to Feynman rules, Cambridge,
UK: Univ. Pr. (1994) 284 p. (Cambridge lecture notes in physics, 4).

95



[Ver00] Vermaseren, J.A.M., New features of FORM, http://www.nikhef.nl/~ form/
(2000).

[Wat99] Watson, P., Perturbative constraints on the Slavnov-Taylor identity for the ghost-
gluon vertex in QCD, hep-ph/9901454.

[Wat00] Watson, Peter, The Inclusion of Ghosts in Landau Gauge Schwinger-Dyson Stud-
tes of Infrared QCD, Ph.D. thesis, Physics Department, University Of Durham,
England, 2000.

[Yan54] Yang, Chen-Ning and Mills, R. L., Conservation of isotopic spin and isotopic
gauge invariance, Phys. Rev. 96 (1954), 191-195.

[Zwa94] Daniel Zwanziger, Fundamental modular region, Boltzmann factor and area law
in lattice gauge theory, Nucl. Phys. B412 (1994), 657-730.

[Zwa04] Zwanziger, Daniel, Non-perturbative Faddeev-Popov formula and infrared limit
of QCD, Phys. Rev. D69 (2004), 016002.

26



