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1 Motivation

It is widely believed that quantum chromodynamics (QCD) is the correct quantum �eld
theory of the strong interaction at energy scales available in recent experiments today. In
the high energy limit QCD can be treated perturbatively, this treatment fails in the low
and intermediate energy region. In these regions, many phenomena like con�nement or
chiral symmetry breaking occur.
For large baryon density and/or temperature quarks are believed to be no longer con�ned
inside hadrons, because the hadrons have a big overlap and loose their individuality. The
conjecture of such a quark-gluon plasma (QGP) came up in the 70s and we are quite
certain that it existed a few microseconds after the big bang.
At the end of the 90s a phenomenon named "colour superconductivity" received a lot of
attention. Colour superconductivity is the formation of Cooper pairs of quarks in the
quark-gluon plasma and is assumed to occur in the region of low temperature and high
baryon density. It had already been mentioned in 1975 [1]. First investigations of colour
superconductivity in quark matter using perturbative one-gluon exchange interactions re-
vealed only small diquark pairing gaps of about 1 MeV [2, 3]. However, the relevance of
this state of matter had almost completely been ignored until the end of the 90s. More re-
cent investigations employing low-energy models of QCD showed that the diquark pairing
gaps can be as large as 100 MeV [4�7]. Because larger pairing gaps imply larger critical
temperatures, the colour superconducting region could extend far into the temperature
direction of the QCD phase diagram. An example of how a phase diagram of QCD could
look like is shown in Fig. 1. Following these studies, more systematic approaches revealed
a very rich phase structure of cold and dense quark matter [8�12]. This rich structure is
possible because there are few constraints on the details of the Cooper pairing, allowing
for a multitude of colour-superconducting phases.
The most prominent colour superconducting phases with large pairing gaps are the two-
�avour colour superconducting phase (2SC) and the colour-�avour locked phase (CFL).

Figure 1: A schematic QCD phase diagram taken from [13]. T is the temperature and µ
is the quark chemical potential. This phase diagram considers only two colour supercon-
ducting phases, the familiar "hadronic phase" in the lower left corner, where quarks and
gluons are con�ned, and the QGP.
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The CFL phase requires approximate SU(3) �avour symmetry that is realized at rather
large densities.
The environment in nature that could provide the conditions for colour superconductivity
to occur are the interiors of compact stars, with temperatures clearly below 1 MeV and
central densities exceeding the nuclear saturation density by about one order of magni-
tude. In general it is expected that colour-superconducting phases with large pairing gaps
like 2SC or CFL are energetically favoured compared to spin-1 phases. For two reasons
this might not be true in the case in the interior of a compact star. First, the densities
might not be large enough to allow for the CFL phase to exist in this environment. Sec-
ond, due to the requirement of charge and colour neutrality the star must obey, there may
be no 2SC pairing in this environment [14]. This setting could allow for colour supercon-
ducting phases where quarks of di�erent �avours pair independently. In these phases the
Cooper pair of quarks carries spin 1.
Compact star phenomenology puts another constraint on the colour superconducting
phase in its interior. To describe neutron star cooling data the colour superconduct-
ing phase should full�ll some constraints [15]: All excitation modes should be gapped, the
smallest energy gap should be of the order of 10 - 100 keV and decrease with the density in
the physically interesting region, which lies roughly between 300-500 MeV quark chemical
potential µ. A possible spin-1 phase that could ful�ll these requirements is the so called
colour spin locked phase (CSL), that has also been found to be the most stable spin-1
phase at asymptotically high densities [16]. This phase has recently been investigated in
an NJL type model [17] and promises to be a viable candidate for the phase of matter
being realized in the interior of compact stars.
A recent version of the QCD phase diagram is shown in Fig. 2 (taken from [11]), where
we can see the multitude of colour superconducting phases. The investigation in [11]
neglected the CSL phase, that could exist in the region of temperature T . 10 MeV and
chemical potential µ between 370 MeV and 440 MeV of the phase diagram in Fig. 2.
Much of the work done in the �eld of colour superconductivity has been done using
models of the QCD interaction. This is sensible because a perturbative treatment of
QCD fails in the interesting low temperature and intermediate density regime. A non-
perturbative, model independent treatment of QCD is challenging, yet, inevitable to get
reliable results. One of these non-perturbative approaches to QCD is possible within the
framework of Dyson-Schwinger equations (DSEs). Dyson-Schwinger equations provide a
set of coupled integral equations that are the quantum equations of motion of the Green
functions of a quantum �eld theory. If they are solved completely, the whole dynamics
of the theory under consideration is understood. For QCD there are, up to now, only
solutions of subsets of the whole set of DSEs. The main problem to overcome is the non-
linear coupling amongst the equations. To get to subsets of equations that can be solved,
one uses truncations that decouple the desired subset of the DSEs. The solutions of these
subsets of equations are of course only approximations to the solution of the full set, yet,
they provided many intersting and usefull results. In our analysis, we will, except for
medium modi�cations, decouple the quark from the gauge boson sector, assuming that
the backreaction of quarks on the gauge boson sector is small.
This work is organised in the following form: First we will discuss the essentials of QCD
needed here, along with the derivation of the Dyson-Schwinger equations for the quark
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Figure 2: A part of the phase diagram of QCD. T is the temperature and µ is the quark
chemical potential. Taken from [11].

propagator. We will continue with the introduction of the approximations being used
and explain the Nambu-Gor'kov formalism that allows for an elegant treatment of colour
superconductivity. A discussion of the colour-spin locked phase will conclude the intro-
duction. The next two sections will focus on the solutions to the DSEs for the quark
propagator. In the end we will focus on the resulting excitation spectra and �nish with a
summary of what we accomplished and an outlook.
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2 Introduction

2.1 QCD essentials

The QCD partition function

A quantum �eld theory can be de�ned by a Lagrangian. The Lagrangian that we use to
describe QCD in Euclidian space-time is given by

LQCD = ψ̄ (− /D +m) ψ +
1

4
F a
µνF

a
µν . (1)

This Lagrangian is Lorentz invariant, invariant under local SU(3)c gauge transformations
and renormalisable. Quarks are represented by Dirac spinors ψ and ψ̄. Local gauge
invariance is ensured by the covariant derivative in the fundamental representation of the
gauge group SU(3)c,

Dµ = ∂µ + igAaµt
a, (2)

where the ta are the generators of the gauge group SU(3)c and A
a
µ are the gauge �elds

representing the gluons. g is the gauge coupling constant. The generators ta of the gauge
group obey the commutation relation

[ta, tb] = ifabctc, (3)

where fabc are the structure constants of the gauge group. F a
µν is the gluon �eld strength

tensor, given by

F a
µν = ∂µA

a
ν − ∂νAaµ − gfabcAbµAcν . (4)

To quantise the theory it is advantageous to work in the path integral formalism. Therefore
we introduce the partition function

Z[J, η, η̄] =

∫
DADψ̄Dψ exp

[
−SQCD −

∫
d4x

(
AaµJ

a
µ + η̄ψ + ψ̄η

)]
, (5)

where we used the abbreviation SQCD =
∫
d4x LQCD for the QCD action. Jaµ , η̄ and η are

external source terms for the gauge �elds, quark and adjoint quark �elds respectively. η̄
and η are Grassmann valued.

Gauge �xing

The quantisation of a gauge theory can be complicated due to gauge invariance. By per-
forming the path integral, we integrate over all possible con�gurations of Dirac and gauge
�elds. This means a multiple counting of physically equivalent con�gurations, namely
those that are connected by a gauge transformation. The integration thus generates an
in�nite constant - the volume of the gauge group - that can be absorbed in the normali-
sation of the partition function.
Due to gauge freedom we cannot de�ne a perturbative gauge �eld propagator. This is
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a consequence of the zero eigenmodes that exist in the quadratic part of the gauge �eld
Lagrangian, which therefore cannot be inverted. The troublesome modes are the modes
that are gauge equivalent to Aaµ = 0.
To de�ne a gauge �eld propagator we have to �x a gauge. This is preferably done via the
Faddeev-Popov procedure, whose main idea is to separate the integration over the gauge
�elds in an integration over di�erent gauge orbits and an integration along those orbits.
In practice this is done by inserting the identity

1 =

∫
Dα δ [G(Aα)]Det

[
δG(Aα)

δα

]
(6)

into the partition function, where G(Aα) is a function that encodes the gauge �xing
condition and Aα is the gauge �eld A, transformed through a �nite gauge transformation:

(Aα)aµt
a = e−iα

ata
[
Abµt

b +
i

g
∂µ

]
eiα

ctc . (7)

Using the gauge �xing condition

G(A) = ∂µA
a
µ(x)− ωa(x), (8)

where ω is an arbitrary function, the functional determinant in Eq. (6) takes the explicit
form

Det

[
δG(Aα)

δα

]
= Det

[
−∂µDab

µ

]
, (9)

where Dab
µ = ∂µδ

ab + gfabcAcµ is the covariant derivative in the adjoint representation. In
contrast to abelian gauge theories - where the functional determinant is independent of
A and can thus be absorbed in the normalisation of the partition function - the determi-
nant introduces new terms in the Lagrangian. Faddeev and Popov wrote the functional
determinant as a functional integral over a set of anticommuting �elds in the adjoint
representation

Det
[
−∂µDab

µ

]
=

∫
DcDc̄ exp

[
i

∫
d4x c̄(−∂µDab

µ )c

]
. (10)

The �elds c and c̄, called "Faddeev-Popov ghosts", are scalar Grassmannian �elds that
violate the spin-statistic theorem and thus cannot be asymptotic states. However they
serve as negative degrees of freedom that cancel unphysical longitudinal polarisations of
the gluons and are necessary to preserve unitarity.
Eventually we want to write the gauge �xing term δ [G(Aα)] as a Gaussian integral.
Together with the ghost �eld action this gives the gauge �xing action term

Sgf =

∫
d4x

(
(∂µA

a
µ)

2

2ξ
− ic̄(−∂µDab

µ )c

)
, (11)

that has to be added to the QCD action in the partition function. ξ is a freely adjustable
gauge parameter. We will work in Landau gauge:

G(A) = ∂µA
a
µ(x) = 0, ξ = 0. (12)

6



ξ = 0 enforces an in�nite weight in the Gaussian integral and thereby restricts even
quantum �uctuations to ∂µAµ = 0. The partition function is �nally given by

Z[J, η, η̄, σ, σ̄] = (13)

N
∫
DADψ̄DψDc̄Dc exp

[
−SQCD − Sgf +

∫
d4x

(
AaµJ

a
µ + η̄ψ + ψ̄η + σ̄c+ c̄σ

)]
,

where N is the normalisation constant of the partition function. A �nite chemical poten-
tial µ for the quark current is practically introduced as a Lagrange multiplier [18]:

SQCD → SQCD −
∫
d4x ψ̄µγ4ψ. (14)

Renormalisation

The theory de�ned in Eq. (13) is not renormalised, therefore loop integrals will give
divergent results. To overcome this we need to renormalise the theory by rescaling the
�elds:

Aaµ →
√
Z3A

a
µ , c̄

acb → Z̃3c̄
acb , ψ̄ψ → Z2ψ̄ψ , g → Zgg , ξ → Zξξ. (15)

Note that in Landau gauge the gauge paramter ξ does not get renormalised. The �ve
independent renormalisation constants Z3, Z̃3, Z2, Zg, Zξ depend upon the regularisation
scheme. There are �ve additional renormalisation constants, Z1, Z̃1, Z1F , Z4, Z̃4, that are
related to the ones in Eq. (15) via Slavnov-Taylor identities:

Z1 = ZgZ
3/2
3 , Z̃1 = ZgZ̃3Z

1/2
3 , Z1F = ZgZ

1/2
3 Z2 , Z4 = Z2

GZ
2
3 , Z̃4 = Z2

g Z̃
2
3 . (16)

These renormalisation constants are needed in the renormalisation of the vertex.

2.2 Dyson-Schwinger equations

Dyson-Schwinger equations (DSEs) provide an excellent method to approach continuum
QCD in the strong coupling regime. DSEs are a nonperturbative method of analysing a
quantum �eld theory. The DSEs are an enumerable in�nity of coupled integral equations
and their solutions are the n-point Green functions of the theory.
In this section, without allowing for colour superconductivity, we are going to derive the
QCD gap equation [19] which is a basis for studying dynamical symmetry breaking in
QCD. The QCD gap equation is a good example of a Dyson-Schwinger equation (DSE),
since it shows all the characteristics of a DSE: its solution is a 2-point function (the quark
propagator) while its kernel involves higher n-point, here n = 3, functions; in our case
these are the gluon propagator, a 2-point function and the quark-gluon vertex, a 3-point
function.
The coupling between equations, i.e., that the equation for a given m-point function always
involves at least one n-point function with n > m, requires a truncation of the tower of
DSEs in order to solve the set of equations. One systematic and familiar truncation is
a weak coupling expansion that reproduces perturbation theory. We will not persue this
path, instead we will use the quenched abelian approximation, that decouples the quark
DSE from the rest of the DSEs.
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The unrenormalised DSE

For clarity in our notation we will �rst derive the unrenormalised DSE and later renor-
malise it.
The main idea behind Dyson-Schwinger equations is the observation that the integral of
a total derivative vanishes, see e.g. [20]. To get the quark Dyson-Schwinger equation we
take the derivative of the partition function with respect to ψ̄. For ease of notation, we
will collect all source terms in Ssource =

∫
d4x

(
AaµJ

a
µ + η̄ψ + ψ̄η + σ̄c+ c̄σ

)
.

0 =

∫
DADψ̄DψDc̄Dc δ

δψ̄(x)
exp [−SQCD − Sgf + Ssource]

=

∫
DADψ̄DψDc̄Dc

[
δSQCD
δψ̄(x)

+ η(x)

]
exp [−SQCD − Sgf + Ssource]

=

[
δSQCD
δψ̄(x)

(
δ

iδJµA(x)
,

δ

iδη̄(x)
,− δ

iδη(x)

)
+ η(x)

]
Z(J, η, η̄) (17)

=

[
η(x) +

(
/∂ − γ4µ−m+ igγµta

δ

iδJaµ(x)

)
δ

iδη̄(x)

]
Z(J, η, η̄).

This form of the DSE is quite unwieldy. The steps necessary to transform it into a more
concise form are given in appendix B, here we only quote the result:

δ4(x− y) =
(
/∂x − γ4µ−m

)
S(x, y) +∫

d4zd4wd4v igγµtaD
µν
ab (x, z)S(x,w)Γbν(w, v, z)S(v, y) (18)

=

∫
d4v
[(
/∂x − γ4µ−m

)
δ4(x− v)+

ig

∫
d4wd4z γµtaD

µν
ab (x, z)S(x,w)Γbν(w, v, z)

]
S(v, y). (19)

We introduced the full quark propagator S(x, y), the full gluon propagator Dµν
ab (x, y) and

the full quark-gluon vertex Γaµ(x, y, z). Their de�nition is also given in appendix B.
De�ning the proper quark self-energy

Σ(x, y) = ig

∫
d4wd4z γµtaD

µν
ab (x, z)S(x,w)Γbν(w, v, z), (20)

the quark DSE takes a simple form:

δ4(x− y) =

∫
d4v
[(
/∂x − γ4µ−m

)
δ4(x− v) + Σ(x, v)

]
S(v, y). (21)

The property of Green functions to be translationally invariant in the absence of external
sources can be used to Fourier transform the QCD gap equation, Eq. (18), into momentum
space. After some simple algebraic manipulations we get

S−1(p) = S−1
0 (p) + Σ(p), (22)

Σ(p) = −g2

∫
d4q

(2π)4
Γµ0 a S(q) Γνb (p, q) D

µν
ab (p− q). (23)
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�1 = �1 +
Figure 3: The diagrammatic Dyson-Schwinger equation for the quark propagator. White
circles represent full vertices, bare vertices are represented by black dots. Bare quark
propagators are shown as black lines, full quark propagators have a shaded circle. The
curly line with a shaded circle is the full gluon propagator.

This equation is graphically shown in Fig. 3. We will mainly deal with this equation.
Provided we know the vertex Γµa(p, q) and the gluon propagator Dab

µν(p − q), we can
compute the quark propagator. The derivation of the Dyson-Schwinger equation for the
quark propagator in the CSL phase is completely analogue to the one in this section, we
will do this later.

The renormalised DSE

By renormalising the theory, several quantities in the gap equation undergo changes, i.e.
they are multiplied by renormalisation constants. As we can see from Eq. (15) the inverse
bare propagator S−1

0 acquires a factor of Z2. The selfenergy receives a factor of ZgZ2

√
Z3

from the bare vertex, this factor is just Z1F in Eq. (16). Thus the renormalised quark
DSE is:

S−1(p) = Z2S
−1
0 (p) + Z1FΣ(p), (24)

Σ(p) = −g2

∫
d4q

(2π)4
Γµ0 a S(q) Γµb (p, q) D

µν
ab (p− q). (25)

Solving the QCD gap equation

To solve the QCD gap equation, Eq. (24), we will make use of the quenched abelian
approximation. This decouples the QCD gap equation from the in�nite tower of DSEs.
The only unknown is then the full quark propagator. For simplicity let us neglect the
chemical potential for a moment. A Lorentz invariant parametrisation of the full quark
propagator S is then given by

S(p) =
Z(p2, ν)

i/p+M(p2)
. (26)

/p ≡ pµ γµ is de�ned according to the Feynmann convention. The Lorentz scalars Z(p2, ν)
and M(p2) are referred to as the quark wave function renormalisation and the dressed
quark mass-function respectively. ν is the renormalisation point, that M(p2) is indepen-
dent of.
Inserting this parametrisation into the QCD gap equation, Eq. (24), we can trace out
scalar equations for the quark wave function renormalisation and the dressed quark mass-
function. This scheme will be employed throughout this work, however, in a more elabo-
rate fashion.
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2.3 Truncations

As mentioned at the beginning of the previous section, the DSE for a n-point Green func-
tion always depends on at least one m-point function, with m > n. An example, that
we presented above, is the QCD gap equation, Eq. (25) (n = 2), it is coupled to the
quark-gluon vertex (m = 3). Another Green function the QCD gap equation is coupled
to is the gluon propagator, a two-point function.
Because the gluon propagator and the quark-gluon vertex satisfy their own DSEs, they
also couple the QCD gap equation to other equations of the in�nite tower of equations.
Therefore, we have to know the values of these Green functions for all values of their
momentum arguments. Provided that this is known, the quark propagator can be deter-
mined from Eq. (24).
In Landau gauge, that we will be working in, these Green functions were investigated
for the chirally broken phase at zero chemical potential by DSE studies and by lattice
QCD calculations, see e.g. [21, 22]. In Landau gauge, the vacuum gluon propagator is
parameterised by a single dressing function Z(k2),

Dab
µν(k

2) = δab
(
δµν −

kµkν
k2

)
Z(k2)

k2
. (27)

k2 = (p − q)2 is the squared di�erence between the external momentum p and the loop
momentum q in the QCD gap equation, Eq.(24).
For the quark-gluon vertex we will use an approximation that separates the vertex into
its tree-level form and a multiplicative dressing function.

Γaµ(p, q) = iΓ((p− q)2)γµ
λa

2
. (28)

The unknown dressing function Γ(k2) encodes the non-perturbative behaviour of QCD and
it has been chosen such that the quark propagator is multiplicatively renormalisable and
in agreement with perturbation theory in the ultraviolet [21]. It can also be determined
from quenched lattice QCD calculations of the quark and gluon propagator [22]. The
dressing functions enter the QCD gap equation only in terms of their product

αs(k
2) =

Z1F

Z2
2

g2

4π
Z(k2)Γ(k2). (29)

Here Z1F is the quark-gluon coupling and Z2 the quark-wave-function renormalisation
constant, respectively. We will call αs(k

2) the e�ective strong running coupling because,
especially in the framework of DSEs, it is a possible non-perturbative extension of the
strong coupling into the infrared.
Throughout this work we will use two di�ernt e�ective strong running couplings. One is
obtained from DSE studies of the Yang-Mills sector of QCD [21], we will call it αI(k

2).
The e�ective strong running coupling extracted from lattice QCD simulations [22] will be
named αII(k

2). The two e�ective strong running couplings as a function of k2 are shown
in Fig. 4. Their infrared behaviour is quite di�erent. Also their coupling strength di�ers
signi�cantly. The e�ective strong running coupling αI(k

2) can be viewed as a lower bound
to the coupling strength, whereas αII is a good upper bound to the coupling strength.
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Figure 4: The e�ective strong running couplings αI(k
2) and αII(k

2) as a function of k2

αII is parametrised such that the dressed quark mass function M(p2) (cf. Eq. (26)) is
compatible with the results of lattice QCD calculations. αI gives a dressed quark mass
function M(p2) that is by a factor 3 smaller in the infrared, than M(p2) calculated using
αII . We can interpret this as a sign of stronger breaking of chiral symmetry by αII .
For a non-vanishing quark chemical potential we expect the gluon propagator and the
quark-gluon vertex to be modi�ed compared to the vacuum. To account for the medium
e�ects we will include damping and screening of the gluons by particle-hole excitations.
In practice we add the in-medium polarisation tensor with 'bare' quark propagators to the
inverse gluon propagator [23]. This is not self-consistent and needs to be investigated in
further studies. Nevertheless, the resulting quark DSE turns out to be a generalisation of
the so called "hard dense loop" (HDL) resummation scheme. The important di�erence is
that the infrared behaviour of the gluon propagator and quark-gluon vertex is non-trivial.
The HDL approximation is an extension of perturbation theory and takes medium mod-
i�cations into account, a detailed treatment can be found in the literature, see e.g. [24].
The general idea is that the chemical potential µ introduces a new, "hard" scale that sep-
arates the scale of momenta. Momenta much smaller than µ are "soft". Calculating loop
diagrams in this scheme one uses the assumption that internal momenta in loop diagrams
are exclusively "hard", i.e. the absolute value of the spatial momentum is approximated
by the chemical potential µ.
The name "HDL resummation scheme" arises from the observation that the DSE, e.g. for
the gluon propagator, is given by (neglecting Dirac and colour indices)

D = D0 −D0ΠD. (30)

HereD denotes the full gluon propagator, D0 is the bare gluon propagator and Π the gluon
selfenergy. By iterating this equation it becomes apparent that it stands for an in�nite
series of diagrams. Thus the solution is a resummed propagator, where the selfenergy Π,
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Figure 5: Diagrammatical representation of the approximate DSE for the gluon propaga-
tor used in [21]. Lines with empty circles denote full propagators, whereas lines without
a circle denote bare propagators. Dots represent bare vertices, black circles denote full
vertices. Curly lines represent gluons, dashed lines ghosts and regular lines quarks.

that is being resummed is computed using the HDL approximation.
To include the medium modi�cations we start from the approximate DSE for the gluon
propagator in Landau gauge that was used in [21] to calculate αI(k

2). It is shown dia-
grammatically in Fig. 5. In the approximation two diagrams involving more than one
loop were neglected, because their in�uence is expected to be rather weak, however, they
lead to mod�cations in the intermediate momentum region. This DSE was solved in the
vacuum. We would like to solve it approximately in the medium. Going from the vacuum
to the medium, we assume that the main modi�cation originates from the last term in
the DSE in Fig. 5, where the loop involves quarks. We approximate the �rst three terms
to be equal to the corresponding terms in the vacuum and the vertices are assumed to
remain unchanged in the medium.
The �nal step is to add and subtract the last term of the gluon DSE in Fig. 5, evaluated in
the vacuum, and rearrange the diagrams. This is shown in Fig. (6). The �rst four terms
on the right hand side are precisely the full gluon propagator in the vacuum obtained in
the approximation used in [21]. We will call the remaining two term the renormalised
medium polarisation tensor.

−1

≈

−1

+ + +

+ −

= vac
−1

+ −

Figure 6: Diagrammatical representation of the DSE for the gluon propagator in medium.
Lines with empty circles denote full propagators, whereas lines without a circle denote
bare propagators, in the vacuum. Lines with shaded circles represent full propagators in
the medium. Dots represent bare vertices, black circles denote full vertices in the vacuum.
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The renormalised medium polarisation tensor is then given by

Πmed ab
µν(p) =

1

2
Z1F

∫
d4q

(2π)4
TrD,c,f

([
Γ(0)a
µ S(q)Γbν(q, p− q)S(p− q)

]
− [. . .]µ=0

)
.(31)

TrD,c,f denotes traces in Dirac, colour and �avour space. For the �rst part we employ the
approximation of vanishing quark self-energies and the vertex (29). Then this expression
can be straightforwardly reduced to

Πmed ab
µν(p) = −Z1F

Z2
2

g2Nf

2
δabΓ(p2)

∫
d4q

(2π)4
TrD

(
[γµS0(q)γνS0(p− q)]− [. . .]µ=0

)
= −δab2πNfαs(p

2)

Z(p2)

∫
d4q

(2π)4
TrD

(
[γµS0(q)γνS0(p− q)]− [. . .]µ=0

)
. (32)

The medium polarisation tensor can be decomposed according to its tensor structure.
This decomposition can be done with the help of projectors on the spatially transverse
and longitudinal subspace orthogonal to pµ,

P T
44 = P T

i4 = P T
4i = 0, P T

ij = δij −
pipj
~p2

, (33)

and

PL
µν = (δµν − pµpν/p2)− P T

µν , (34)

respectively. Then two functions, G(|~p|, p4) and F (|~p|, p4), are su�cient to write the
medium polarisation tensor in the form

Z(p2)Πab
µν(p) = G(p)δabP T

µν + F (p)δabPL
µν .

(35)

The evaluation of these functions is well known perturbatively. Compared to the pertur-
bative result only the coupling constant is replaced by the running coupling. For small
external momenta the result is

G(|~p|, p4) = m2(p2)
ip4

|~p|

[(
1−

(
ip4

|~p|

)2
)
Q

(
ip4

|~p|

)
+
ip4

|~p|

]
, (36)

F (|~p|, p4) = 2m2(p2)
p2

4 + ~p2

~p2

[
1− ip4

|~p|
Q

(
ip4

|~p|

)]
, (37)

with Q(x) = 1
2
ln x+1

x−1
and

m2(p2) = Nfαs(p
2)µ2/π. (38)

m(p2) can be interpreted as an e�ective mass of the gluons. Eventually the inverse medium
gluon propagator is given by adding the medium polarisation tensor to the inverse vacuum
gluon propagator. The medium gluon propagator is then

Dab
µν(p) ≈

(
Dvac−1
µν (p2) + Πmed ab

µν(p)
)−1

= δab
(

p2

p2 +G(p)
P T
µν +

p2

p2 + F (p)
PL
µν

)
Z(p2)

p2
. (39)
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Taking into account this form of the in-medium polarisation, Debye screening and Landau
damping are included, similar to the HDL approximation. It becomes evident that these
phenomena have a non-perturbative origin and require the knowledge of the infrared
behaviour of Green functions, in particular of αs(k

2). This procedure could be re�ned
by using dressed quark propagators instead of bare quark propagators when solving Eq.
(32).

2.4 Colour superconductivity

In systems of fermions with equal Fermi energies and an attractive interaction, according
to Cooper's theorem [25], a formation of Cooper pairs occurs. In ordinary metallic su-
perconductors the microscopic interaction between electrons is repulsive, yet, the phonon
exchange in superconductors renders the interaction attractive.
The microscopic interaction between quarks is already attractive in certain channels. For
su�ciently cold and dense quark matter, where quarks are presumeably decon�ned, this
interaction is given predominantly by one-gluon exchange. The interaction can also be
given by instanton inspired models, also NJL type interactions are possible. Then the
quarks at their Fermi surface rearrange in order to form a ground state characterised by
the existence of quark Cooper pairs [2�4].
In our analysis we expect only the three lightest �avours to be colour-superconducting,
even though the CSL phase we are going to consider, is �avour independent. This as-
sumption is justi�ed since the interesting regime of the quark chemical potential never
exceeds the charm-quark mass. Therefore charm, bottom and top quarks are too heavy,
even at low, non-zero temperatures their abundance is exponentially suppressed.

Diquark condensates

A diquark condensate, characterising a colour-superconducting state as its order param-
eter is de�ned as the expectation value〈

ψTCOψ
〉
, (40)

where ψ is a quark �eld operator with spin, �avour and colour degrees of freedom. C =
γ2γ4 is the charge conjugation operator. ψT is the transposed quark �eld operator. The
operator O acts in Dirac, colour and �avour space, and can be expressed by a sum of
elements of the form

O = ODirac ⊗Ocolour ⊗Oflavour. (41)

The only constraint on the operator O is given by the Pauli principle, that manifests itself
in the anticommutation relations of the quark �eld operators:

ψTCOψ = (CO)ijψiψj = −(CO)ijψjψi = −ψT (CO)Tψ, (42)

thus the operator CO has to be totally antisymmetric. Equivalently we can require the
condition OT = COC−1. Because there are many operators in Dirac, colour and �avour
space, one can see that there is a multitude of di�erent ways that one can build up
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antisymmetric symmetric
Dirac γµ, σµν , pµ, γ5, 1, γµγ5, γµpµ
SU(3) λ2, λ5, λ7 λ1, λ3, λ4, λ6, λ8

Table 1: Symmetry properties of Dirac operators and the generators of SU(3) under
transposition. λi denotes Gell-Mann matrices.

the operator O in Eq. (40). The operators that can be used to construct O and their
behaviour under transposition is is listed in Table (1). The SU(3) operators act in colour
space. Since we are going to consider only one-�avour superconductors we assume that
the operator in �avour space is the identity operator: Oflavour = 1. In the operator O
also derivativelike operators can appear.
A �nite diquark condensate will lead to a dynamical symmetry breaking, which equiva-
lently characterises the phase. This means that all quantities arising in the treatment of
the colour-superconducting phase have to respect the symmetries, the diquark condensate
respects.

Derivation of the gap equation

We are going to treat colour superconductivity within the Nambu-Gor'kov formalism [26].
This is a convenient way of introducing diquark condensates. First we introduce bispinors

Ψ =

(
ψ
ψc

)
, Ψ̄ =

(
ψ̄, ψ̄c

)
, (43)

where the charge conjugate spinors ψc and ψ̄c are de�ned by

ψc = Cψ̄T , ψ̄c = ψTC, C = γ2γ4. (44)

We will exploit the observation that the action is scalar, S = ST , to write the fermionic
part of the QCD action in terms of bispinors.

SQCD = STQCD =

(∫
d4x ψ̄

(
− /D + µγ4 +m

)
ψ

)T
= −

∫
d4x ψT

(
−
←−
/DT + µγ4T +m

)
ψ̄T

=

∫
d4x ψTC

(
− /Dc − µγ4 +m

)
Cψ̄T

=

∫
d4x ψ̄c

(
− /Dc − µγ4 +m

)
ψc, (45)

where /Dc = γ · (∂ − igAaλaT ) is the charge conjugate covariant derivative in the funda-
mental representation of the gauge group SU(3)c. It is now possible to write the fermionic
part of the QCD action in Nambu-Gor'kov space as

SQCD,F =
1

2

∫
d4x Ψ̄(x)D−1

0 Ψ(x) , (46)
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where we introduced

D−1
0 ≡

(
D+

0 0
0 D−

0

)
≡
(
− /D + µγ4 +m0 0

0 − /Dc − µγ4 +m0

)
, (47)

The factor 1/2 in Eq. (46) compensates the doubling of degrees of freedom in Nambu-
Gor'kov space. The derivation of the Dyson-Schwinger equation for the quark propagator
is completely analogous to the derivation without colour superconductivity, we simply
have to incorporate the Nambu-Gor'kov structure. The DSE for the quark propagator is
given by

S−1 = Z2S−1
0 + Z1FΣ. (48)

In Nambu-Gor'kov space the structure is of the same form as the QCD gap equation, which
should be expected. The Fourier transformed bare quark propagator in Nambu-Gor'kov
space is

S0(p) =

(
S+

0 0
0 S−0

)
≡

(
(−i~/p− i/ωp +m0)

−1 0

0 (−i~/p− i/ω∗p +m0)
−1

)
(49)

where we introduced the notation

~/p ≡ ~p · ~γ, /ωp ≡ ωpγ4 ≡ (p4 + iµ)γ4. (50)

The selfenergy has more structure than in non-superconducting matter. We denote its
components by

Σ ≡
(

Σ+ Φ−

Φ+ Σ−

)
, (51)

where the components Σ± are the regular selfenergies and the components Φ± are called
gap functions. In momentum space they are the wavefunction of a diquark. The selfenergy
is obtained via

Σ(p) = −
∫

d4q

(2π)4
Γµ0 aS(q)Γνb (p, q)D

µν
ab (p− q). (52)

Again we encounter a feature of DSEs that a 2-point function is related to other 2- and
3-point functions. Only this time we have to deal with an additional 2×2 matrix structure
in Nambu-Gor'kov space.
In order to get the full quark propagator we have to solve the Dyson-Schwinger equations,
Eq.(48), self-consistently. In Nambu-Gor'kov space we denote the full quark propagator
by

S =

(
S+ T−

T+ S−

)
(53)

where T± are called the anomalous propagators that are characteristic for colour super-
conductivity.
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We can compute the components of S by formally inverting its Nambu-Gor'kov structure
and using the DSE, Eq. (48). The resulting matrix equation can then be solved for its
components. We end up with the following set of equations

T± = −Z1F

(
Z2S

∓
0
−1

+ Z1FΣ∓
)−1

Φ±S±, (54)

S±
−1

= Z2S
±
0
−1

+ Z1FΣ± − Z2
1FΦ∓

(
Z2S

∓
0
−1

+ Z1FΣ∓
)−1

Φ±, (55)

for the normal and anomalous quark propagator. Eq. (55) is identical to the QCD gap
equation Eq. (25), except that it is now coupled to the gap functions. If the gap function
vanishes, i.e. we have a non-superconducting state, Eq. (55) reduces to the familiar QCD
gap equation, as we expect it.
The connection to the order parameter of colour superconductivity, the diquark conden-
sate, Eq. (40), can be established using

〈
ψTCOψ

〉
= −Z1FZ2

∫
d4p

(2π)4
Tr
[
COT+

]
(56)

The gap functions are not the energy gaps in the excitation spectrum of the quasiparticles.
However they are closely related to the gaps in the excitation spectrum and will be used
to estimate the size of the gap.
To compute the normal selfenergy and the gap functions we have to know the quark-gluon
vertex and the gluon propagator. The bare and full vertex in Nambu-Gor'kov space are
given by

Γµ0 a =

(
i
2
gγµλa 0

0 − i
2
gγµλTa

)
, Γµa(p, q) =

(
igΓ+,µ

a (p, q) X−,µ
a (p, q)

X+,µ
a (p, q) −igΓ−,µa (p, q)

)
. (57)

The quark-gluon vertex satis�es its own DSE, that we will not solve. Instead we will
approximate the vertex. The �rst approximation is that the vertex is diagonal in Nambu-
Gor'kov space: X± = 0. This means neglecting o�-diagonal elements that could be
induced in a colour-superconducting state. This must be subject of further investigations
because it is not clear why there should not be o�-diagonal elements. However, their
in�uence on the results is presumably small, since we expect them to be induced.
Furthermore we employ the abelian approximation already used in the non-superconducting
phase. The 11-component in Nambu-Gor'kov space of the quark-gluon vertex is:

Γ+,µ
a (p, q) = Γ((p− q)2)γµ

λa
2
, (58)

where Γ(k2) is taken from quenched vacuum studies. We will specify the 22-component
later.
The gluon propagator does not undergo any changes compared to the non-superconducting
phase, because we only modi�ed the fermionic part of the theory. Thus the gluon propa-

17



gator is given by Eq. (39). The selfenergies are

Σ+ = −4π
Z2

Z1F

∫
d4q

(2π)4
γµ
λa
2
S+(q)γν

λa
2

(
α(k2)

k2 +G(k)
P T
µν +

α(k2)

k2 + F (k)
PL
µν

)
(59)

Σ− = −4π
Z2

Z1F

∫
d4q

(2π)4
γµ
λTa
2
S−(q)γν

λTa
2

(
α(k2)

k2 +G(k)
P T
µν +

α(k2)

k2 + F (k)
PL
µν

)
(60)

Φ+ = 4π
Z2

Z1F

∫
d4q

(2π)4
γµ
λTa
2
T+(q)γν

λa
2

(
α(k2)

k2 +G(k)
P T
µν +

α(k2)

k2 + F (k)
PL
µν

)
(61)

Φ− = 4π
Z2

Z1F

∫
d4q

(2π)4
γµ
λa
2
T−(q)γν

λTa
2

(
α(k2)

k2 +G(k)
P T
µν +

α(k2)

k2 + F (k)
PL
µν

)
, (62)

where k = p− q and the projectors P T and PL are de�ned relative to k.
To reduce the number of variables being used, we can use the fact that the components
of the quark propagator in Nambu-Gor'kov space are related to each other due to the
constraint that the action must be real and invariant under charge conjugation [3, 27].
These relations are:

S−(p) = −C(S+(−p))TC (63)

T−(p) = γ4(T
+(p))†γ4 (64)

where C = γ2γ4 is the charge conjugation matrix introduced above. We also have relations
for the quark-gluon-vertex:

Γ−,µa (p, q) = −C(Γ+,µ
a (−p,−q))TC

X−,µ
a (p, q) = γ4(X

+,µ
a (p, q))Tγ4

and for the selfenergy:

Σ−(p) = −C(Σ+(−p))TC (65)

Φ−(p) = γ4(Φ
+(p))†γ4 (66)

this allows us to use only the "+" components of the quark propagator in Nambu-Gor'kov
space.

2.5 Colour-Spin locking

Symmetries in one-�avour colour superconductors

In perturbative QCD one-gluon exchange is the dominating interaction between quarks.
It is attractive in the antisymmetric colour antitriplet channel, therefore, we will focus on
pairing in this channel.
For relativistic particles, spin S and angular momentum L are not themselves good quan-
tum numbers, the total spin J = L+ S is a good quantum number. This is why possible
diquark wave functions should be classi�ed by their total spin J . In the antisymmetric
colour triplet channel, a single quark �avour cannot pair in the total spin J = 0 channel,

18



but in the J = 1 channel. This owes to the fact that the wavefunction must be antisym-
metric. An exhaustive discussion of possible pairing patterns for a single quark �avour
can be found in [16, 28]. The diquark wavefunction can also contain contributions of total
spin di�erent from J = 1, these contributions are in the symmetric colour channel and
are induced by the pairing in the J = 1 channel.
For the pairing of quarks to total spin J = 1 in an antisymmetric colour channel, the
operator O in Eq. (40) therefore needs to be build up by the generators of SO(3)c and
SU(2)J . SO(3)c ⊂ SU(3)c is the rotational subgroup of SU(3)c, its generators are the
generators of rotations. However, they act in colour space. We will associate SO(3)c
with a 'colour spin' Ω. SU(2)J is the group of rotations acting in real space, it is locally
isomorphic to SO(3)J .
The precise pairing pattern is determined by the coupling of SO(3)c and SO(3)J . The so

called colour spin locked phase is de�ned by locking total spin ~J and colour spin ~Ω, such
that SO(3)c × SO(3)J is broken down to SO(3)c+J . Another spin-1 phase is the polar
phase, that locks only the 3-components of colour and total spin.
As discussed in section 2.4, the starting point for the investigation of a colour-supercon-
ducting phase is the order parameter, the diquark condensate. The operator O in Eq.
(40) is build up by the generators of SO(3)c and SU(2)J . Thus a general parametrisation
of the diquark condensate, Eq. (40), in a spin-1 phase is of the form

∆ij〈ψ̄cλiγjψ〉 (67)

where the gamma matrices γ1, γ2, γ3 are the spatial generators of SU(2)J and the λi's

are the antisymmetric generators of SO(3)c, i.e. ~λ = (λ7,−λ5, λ2). The 3 × 3 matrix
∆ parametrises the order parameter that spontaneously breaks the original symmetry
group of the system. In the present case this symmetry group is SO(3)c × SO(3)J . The
transformation behaviour of ∆ in Eq. (67) is then given by

∆→ ∆′ = UT∆V, (68)

where U ∈ SO(3)c and V ∈ SO(3)J .

CSL symmetry

The colour-superconducting phase we are going to consider throughout the rest of this
work is the so called colour-spin locked (CSL) phase . It is a spin-1 phase, that turned out
to be the most stable spin-1 colour-superconducting phase in the weak coupling regime
[16]. It is characterised by the locking of total spin ~J and 'colour spin' ~Ω. The CSL phase

is symmetric under a joint transformation of ~J and ~Ω that we will call CSL transformation.
The CSL phase is given by setting (cf. [16])

∆ =

 1 0 0
0 1 0
0 0 1

 . (69)

Remember that the transformation behaviour of ∆ in Eq. (67) is given by

∆→ ∆′ = UT∆V, (70)
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where U ∈ SO(3)c and V ∈ SO(3)J . It is immediately clear that the condensate is
invariant under a CSL transformation, if UT = V −1. Since U and V are orthogonal
matrices this implies UT = V −1 = V T . This clari�es the name "colour-spin locking".
We will now elaborate on the CSL symmetry in order to derive the most general ansatz for
a CSL symmetric phase. One �avour QCD exhibits SU(3)c×SO(3)J ×UA(1) symmetry.
In the presence of a diquark condensate this symmetry will be broken. As explained above,
in the colour-spin locked phase SO(3)c and SO(3)J are, in the presence of the diquark
condensates, broken down to a SO(3)c+J symmetry. We saw that only a combination

of SO(3)c and SO(3)J preserves CSL symmetry. 1
2
~σ + ~L are the generators of SO(3)J ,

where ~σ = iγ5γ4~γ and ~L are the angular momentum operators. ~λ = (λ7,−λ5, λ2) are the
generators of SO(3)c and also antisymmetric generators of SU(3)c. The generators of a
CSL transformation are:

~G =
1

2
~σ + ~L+ ~λ. (71)

One can verify that the generators ~G satisfy the SO(3) commutation relations

[Gi, Gj] = iεijkGk. (72)

Con�rming that the breaking pattern

SU(3)ac ⊗ SO(3)J → SO(3)c+J (73)

is realized.

The CSL ansatz

Having de�ned the CSL phase and determined its symmetry pattern, we can elaborate on
the most general parametrisation of the propagator S+, the anomalous propagator T+,
the normal selfenergy Σ+ and the gap function Φ+.
Therefore we have to �nd all tensor structures Pa that are invariant under a CSL trans-
formation, i.e Pa = P ′

a = U †PaU, U ∈ SO(3)c+J . These are

P1,ij = γ4δij

P2,ij = γ5γ4

(
p̂ · ~λij

)
P3,ij = iγ5

(
~γ · ~λij

)
P4,ij = γ4 (p̂ip̂j)

P5,ij = (γip̂j + p̂iγj)

γ5 , /̂p

and scalars in colour-spin space. The notation is such that Dirac indices are supressed
and i, j are colour indices. An example is instructive, α, β are Dirac indices:

(P3)
αβ
ij =

3∑
a=1

(λa)ij (γ5γa)
αβ.
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These tensor structures form an algebra, thus we can be assured that an ansatz containing
all tensor structures is selfconsistent. The full ansatz for the an even parity gap function
is

Φ+ =
5∑
i=1

(
φC,i + iγ4/̂pφA,i + γ4φB,i + i/̂pφD,i

)
γ5 Pi. (74)

Remember that /̂p = p̂ · ~γ.
One also has to make sure that a colour-superconducting phase does not carry a colour
charge. The colour charge is proportional to

ρa(x) ∝ 1

2
TrD,c,NG

[
S(x)Γ

(0)a
4

]
. (75)

We checked that in our ansatz after performing the traces and integrating the colour
charge vanishes.

Coupled channels

The general idea behind this ansatz is to couple the abstract spins, the diquark carries,
to zero total spin. These spins are the total spin of the quark-antiquark pair, given by its
spin and its angular momentum, and their 'colour spin'.
The colour structure of a single quark spinor transforms under a CSL transformation in
the adjoint representation, i.e. like a spin 1 particle. Two quarks can therefore couple
to 'colour spin' 0, 1 and 2. In 3 × 3 matrix representation of the group SO(3)c, this
corresponds to unity, antisymmetric and symmetric matrices respectively.
The spins can couple to spin 0 and 1, which is given by a unit matrix in Dirac space and
~σ = iγ5γ4~γ, respectively.
Finally the orbital angular momenta have to couple the sum of colour and spin transfor-
mation exactly to zero in order to get a invariant expression for the propagator. Therefore,
we will need L = 0, 1, 2, 3 contributions to the gap function.
This now allows us to determine the number of tensor structures needed to construct the
full ansatz. Therefore, we count the number of di�erent ways of coupling spin (S=0,1)
and 'colour spin' (ω=0,1,2). For S=0 we can couple ω and S in three di�erent ways to
0,1 and 2. We can couple S=1 with ω=0 in one way to 1, with ω=1 in three ways to
0,1,2 and with ω=2 in three ways to 1,2,3. So we have alltogether 10 di�erent ways of
coupling ω and S. This number doubles for massive quarks because in this case we have
two distinct quark doublets of opposite chirality.
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3 Colour-Spin locking with an ansatz for the colour-

spin structure

A �rst approach to the colour-spin locked phase is to constrain the ansatz for the gap
function, Eq. (74), in a manner that allows, to some extend, treating the problem an-
alytically. Therefore, we will concentrate on the attractive channels and �x the colour
structure of the gap function. This ansatz for the gap function is not self-consistent and
needs to be investigated further. Still it is a good exercise to gain �rst insight into the
properties of the colour-spin locked phase.
Having de�ned the ansatz for the gap function, the next step will be to compute the quark
propagator and the anomalous propagator, eventually we will arrive at the gap equation
and solve it numerically.

3.1 Ansatz for the colour-spin structure of the gap function

We start with an Ansatz for the structure of the gap function as proposed e.g. in [16, 29].
The quarks under consideration are assumed to be massless. Then we parametrise the
gap function by

Φ+(p) =
Z2

Z1F

∑
e=±

φe(p)Λ
e
p̂Mp̂, (76)

where we introduced energy projectors and the scalar gap function φe:

Λ±
p̂ =

1

2

(
1± iγ4~p~γ

|~p|

)
. (77)

The use of energy projectors allows for a good interpretation of the results, because
the coe�cient functions to the energy projectors are related to the energy gaps in the
excitation spectrum. This will become clear when we have an expression for the quark
propagator.
The matrixMp̂ de�nes the colour, �avour and (partly) Dirac structure of the gap function.
It is implicitly de�ned by the CSL symmetry of the colour-superconducting phase since
it is a part of Φ+. We also have the freedom to chose it such that it commutes with the
energy projectors Λ±

p̂ : [
Mp̂,Λ

±
p̂

]
= 0. (78)

This is achieved by setting [27]

Mp = ~λ · (αp̂+ βi~γ⊥(p̂)) , (79)

where we de�ned ~γ⊥(p̂) ≡ ~γ − p̂(p̂ · ~γ). The antisymmetric 3x3 matrices (λi)jk =
−iεijk, i, j, k = 1, 2, 3 form a basis of the colour antitriplet. At this point it can be
seen that we are considering the attractive channel of the diquark wave function. α and
β are freely adjustable parameters for which we require α2 + β2 = 1. Since rescaling of α
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and β does not change any observable (cf. [16]), this can safely be done.
In Eq. (79) the �rst term on the right hand side, proportional to p̂i, describes pairing
of quarks with the same chirality. This is easily understood since it commutes with the
chirality projectors (1 ± γ5)/2. By contrast the second term, proportional to ~γ⊥(p̂) cor-
responds to pairing of quarks of opposite chirality. Again this can be seen by commuting
it with the chirality projectors and noting that it �ips the sign of chirality.
As in [16], we will consider only two of the in�nitely many possible parametrisations of
the gap function

• α = 0 , β = 1 called the "transverse case"

• α = β = 1√
2
called the "mixed case"

This nomenclature was introduced in [16, 30]. The choice Mp = i~λ · ~γ⊥(p̂) uses a Dirac
structure that is perpendicular to ~p in real space, that justi�es the name "transverse case".
Since the choice α = β implies an admixture of ~λ · p̂, that has been called "longitudinal"
in [30], it is reasonable to call this choice "mixed case".
With Eq. (76) we compute an identity, which will be important for obtaining the full
quark propagator,

Φ− (Z2[S
−
0 ]−1 + Z1FΣ−)−1

Φ+
(
Z2[S

−
0 ]−1 + Z1FΣ−) =

(
Z2

Z1F

)2∑
e=±

|φe|2 Lp̂Λ−e
p̂ , (80)

where we de�ned Lp̂ = γ4 M†
p̂ Mp̂ γ4. The commutation properties of the matrix Mp̂

are important for deriving this result. Using the parametrisation of the gap matrix, Eq.
(79), we can write the matrix Lp̂ explicitely:

(Lp̂)
mn = (α2 + 2β2)δmn − [αp̂m + βiγm⊥ (p̂)] [αp̂n − βiγn⊥(p̂)] , (81)

where m,n are colour indices and we supressed Dirac indices. The eigenvalues of the
matrix Lp̂ are

λ1,2 = 1
2
α2 + 2β2 ± α

√
α2 + 8β2 (4-fold each) λ3 = α2 (4-fold). (82)

Since Lp̂ is a hermitian matrix, it has real eigenvalues λr and can be expanded in terms
of a complete set of orthogonal projectors, Prp̂ . With our parametrisation of Mp̂ we
can see from Eq. (82) that there are only two distinct eigenvalues for the cases under
consideration. The projectors can be obtained using the formula

P1/2
p̂ =

Lp̂ − λ2/1

λ1/2 − λ2/1

. (83)

Since the matrix Mp commutes with the energy projectors so does the matrix Lp̂ and
consequently also the projectors onto eigenspaces of Lp̂, Prp̂ :

[
Mp̂,Prp̂

]
= 0. This property

will be used extensively in the following.
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3.2 The quark propagator and the gap equation

Using the results above we can now compute the inverse full propagator, this is done
in appendix C. First, however, we have to introduce a notation for the normal quark
selfenergy. Since the quark propagator will be decomposed onto energy projectors and
the projectors Prp̂ , it would be reasonable to do the same decomposition with the normal
quark selfenergy. It would presumably be given by

Σ+(p) =
Z2

Z1F

∑
e=±,r

(e|~p|ΣA,r(p) + iωpΣC,r(p)) γ4Prp̂Λe
p̂. (84)

However, the inverse full quark propagator, Eq. (55), can then not be inverted analytically.
Therefore, we make the assumption, that in Eq. (84) ΣA,1 ≡ ΣA,2 ≡ ΣA and likewise
ΣC,1 ≡ ΣC,2 ≡ ΣC . Since the sum P1

p̂ + P2
p̂ is the identity matrix in colour and Dirac

space, the normal quark selfenergy is given by

Σ+(p) =
Z2

Z1F

∑
e=±,r

(e|~p|ΣA(p) + iωpΣC(p)) γ4Λ
e
p̂. (85)

The normal quark selfenergy Σ+ is computed using Eq. (59). Since we expect the gaps
to be rather small, we approximate the full quark propagator in Eq. (59) by the full
quark propagator that we obtain by solving Eq. (24), i.e. for quark matter in the non-
superconducting state.
Doing this approximation is not a neglect, but dictated by the CSL phase. Yet the
implications are not too serious since we will include the normal selfenergy self-consistently
in the next section, where we will also treat the gap function self-consistently.
The full propagator is

S+(p) =
1

Z2
2

∑
e=±,r

−e|~p|(1 + Σ∗
A(p)) + iω∗p(1 + Σ∗

C(p))

|e|~p|(1 + ΣA(p)) + iωp(1 + ΣC(p))|2 + λr |φe(p)|2
γ4Prp̂Λ−e

p̂ . (86)

This results allows for an illuminating interpretation. The poles of the full propagator
that de�ne the excitation spectrum are given by the solution of the equation

0 = |e|~p|(1 + ΣA(p)) + iωp(1 + ΣC(p))|2 + λr |φe(p)|2

= |e|~p|(1 + ΣA(p)) + i(p4 + iµ)(1 + ΣC(p))|2 + λr |φe(p)|2 . (87)

For conciseness let us neglect the normal quark selfenergies ΣA and ΣC and approximate
the gap functions φe(p) by a real constant, ∆. This will a�ect the dispersion excitation
spectrum only quantitatively. Then the poles are located where p2

4+(e|~p|−µ)2+λr∆
2 = 0.

Finally we establish the connection with Minkowski space by the relation p2
4 = −p2

0, where
p0 is the zero component of the momentum in Minkowski space. The poles are now located
at

p0 = ±
√

(e|~p| − µ)2 + λr∆2. (88)
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Figure 7: The excitation spectrum for quasiparticles in a non-superconducting state (left)
and in a superconductor (right). The dashed lines show the quasi-antiparticles free energy
ε, the full lines show the quasi-particles free energy.

For quasi-antiparticles and quasi-antiparticles-holes in the superconducting state, i.e.
e = −1, the dispersion branches are almost unchanged compared to the dispersion
branches for quasi-antiparticles and quasi-antiparticles-holes in the non-superconducting
state. Since ∆ will be very small compared to µ, ∆ � µ, the dispersion relations are
simply p0 ≈ ±(|~p|+ µ).
The dispersion branches for quasi-particles and quasi-holes, i.e. e = +1, in the super-
conducting state, however, di�er signi�cantly from the corresponding dispersion branches
in the non-superconducting state. The most prominent feature is the energy gap at the
Fermi surface, |~p| = µ, between the quasi-particle and quasi-hole branches. Fig. 7 demon-
strates the di�erence between the non-superconducting and the superconducting phase.
The gap in the superconducting phase is arti�cially magni�ed by a factor of 30. We see
that the costs in free energy to excite quasiparticle-quasihole pairs at the Fermi surface
is 2λr∆. Only if λr = 0 there is a gapless mode in the excitation spectrum.
We will comment more on the excitation spectra later, especially on the question whether
there is an ungapped mode or not. For now we continue with the solution of the gap
equation. The next ingredient needed to solve the DSE, is the anomalous propagator. To
compute the anomalous propagator we use the identity[

Z2(S
−
0 )−1 + Z1FΣ−]−1

Φ+
[
Z2(S

−
0 )−1 + Z1FΣ−] =

Z2

Z1F

∑
e′

[φe′(p)] γ4Mp̂γ4Λ
−e′
p̂ , (89)

that is derived in the appendix C. Using this identity, Eq. (86) and Eq. (55), the
anomalous propagator can be expressed as

T+(p) =
1

Z2

∑
e′=±,r

φe′(p)
γ4Mp̂γ4Prp̂Λ−e′

p̂

|e′|~p|(1 + ΣA(p)) + iωp(1 + ΣC(p))|2 + λr |φe′(p)|2
(90)

=:
∑

e′=±,r

γ4Mp̂γ4Pr~pΛ−e′
p̂ T+

e′,r(p).
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Now we can formulate the gap equation, Eq. (61), in terms of the functions φe. To get

scalar equations for the functions φe we plug Eq. (90) into Eq. (61), multiply the resulting

equation from the right withM†
p̂Λ

e
p̂ and take the trace over Dirac and colour space. The

resulting equations are:

φe(p) = 4π
∫

d4q
(2π)4

∑
e′=±,r

T+
e′,r(q)T µν,ee

′

r (p, q)
(

α(k2)
k2+G(k)P

T
µν + α(k2)

k2+F (k)P
L
µν

)
(91)

T µν,ee′r (p, q) = −Tr[γµ λa
2 γ

4Mq̂γ
4Pr

q̂ Λ−e′
q̂

λa
2 γ

νM†
p̂Λ

e
p̂]

Tr[Mp̂M†
p̂Λ

e
p̂]

.(92)

The traces and the summation over spacetime indices are done using the program Math-
ematica. Integrating the resulting formulae is done numerically. A very similar procedure
was used to compute the components ΣA and ΣC of the normal quark selfenergy.

Solutions

We solved the DSE in four di�erent cases: For the transverse and mixed case of the CSL
phase, using two di�erent e�ective strong running couplings discussed in section 2.3.
Examples of the scalar gap functions φ± are shown in Fig. 8 and 9 for a chemical potential
of µ = 1 GeV, using the e�ective strong running coupling αI . The use of αII instead of
αI will only slightly alter the shape and the value of the scalar gap functions. Note the
sharp peak in the gap function φ+ for the quasiparticles and the fact that the scalar gap
function for quasiparticles is about one order of magnitude larger than the gap function
for anti-quasiparticles.
The focus rests on the value of the scalar gap functions at the Fermi surface since we will
use these values for an estimate of the energy gaps in the excitation spectrum. As ex-
plained above, in momentum regions away from the Fermi surface the excitation spectrum
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Figure 8: The gap functions φ±(p) for µ = 1 GeV, using the e�ective strong running
coupling αII , as a function of total momentum p and the momentum angle χ. The plots
display the results for the mixed case. p is the absolute momentum, χ is in hyperspherical
coordinates the angle between the spatial momentum and the temporal momentum, i.e.
p3 = p sin(χ), p4 = p cos(χ). A de�nition of these coordinates is given in appendix D.
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Figure 9: The gap functions φ±(p) for µ = 1 GeV, using the e�ective strong running
coupling αII , as a function of total momentum p and the momentum angle χ. The plots
display the results for the transverse case.

is nearly unchanged by the presence of a diquark condensate. The behaviour of the value
of the gap functions as a function of µ is shown in Fig. 10. In this �gure we compared
the transverse and the mixed case. We also showed the in�uence of the e�ective strong
running coupling in Fig. 11.
It turns out that the in�uence of the choice of the e�ective running coupling on the gap
functions is rather small. By contrast, the e�ect of this choice on the running quark mass
is signi�cant. Thus it is interesting to see that the size of the gaps at the Fermi surface
hardly changes with the e�ective strong running coupling. This is encouraging because
small dependence of the gap function on the e�ective strong running coupling a�rms
us that the in�uence of medium modi�cations on the gluon propagator is not going to
introduce sizable e�ects on the gap functions.
What is surprising is the size of the scalar gap functions. Extrapolating weak coupling
results [16], that are obtained for high chemical potential, to the intermediate region of
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Figure 10: The peak values of the gap functions φ± as a function of chemical potential
for the two di�erent cases. The left graph shows the results that were obtained using the
e�ective strong running coupling αI , in the right graph we used αII .
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Figure 11: The peak values of the gap functions φ± as a function of chemical potential
and the in�uence of the strong running coupling. In the left graph the results for the
mixed case are displayed, the right graph shows the results for the transverse case.

the chemical potential we are working in, one would have expected values of 100 keV - 1
MeV for the size of the scalar gap functions. That our result is about one ot two orders
of magnitude larger owes to some part that an extrapolation of a weak coupling result
is not reliable in this region. Previous calculations [23] showed that in the intermediate
region of the chemical potential the values of the gap function at the Fermi surface is
signi�cantly larger.
Another di�erence to the weak coupling results is that the values of the gap function at
the Fermi surface in the CSL phase are not as supressed in our calculation as it is in the
weak coupling limit. There, however, the longitudinal parts of the gluon propagator lead
to a larger supression that we do not observe in our calculations.

3.3 CJT pressure di�erence

The CSL phase is not the only possible colour-superconducting spin-1 phase. A priori it
is not apparent, which of the possible phases is being realised in nature. This question
can be decided by �nding the phase that minimises the e�ective potential Veff . At the
stationary point of the e�ective potential this is equivalent to �nding the maximum of the
thermodynamic pressure or the maximum of the e�ective action A. Thus we search for
the maximum of the e�ective action. For our purposes it is su�cient to compute only the
pressure di�erence between the superconducting and the non-superconducting phases.
In weak coupling studies it was found that the transverse CSL phase is the most stable
spin-1 phase [16]. It will be interesting to explore whether the same holds true in our
approach.
The starting point is the e�ective action. We neglect the backreaction of the quarks
onto the gluon sector, thus the only part of the e�ective action that is varying between
superconducting and non-superconducting phases is given by (cf. [16])

A[S] = −1

2
Trp,D,c,N [LnS−1] +

1

2
Trp,D,c,N [1− S−1

0 S]− Γ2[S]. (93)
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The functional Γ2[S] denotes the sum of all two-particle irreducible diagrams without
external legs and with internal lines given by the gluon and quark propagators. Trp,D,c,N
denotes the trace over Nambu-Gor'kov, Dirac and colour space and the integration over
momentum space.
Because we cannot solve the quark DSE exactly, we have to approximate Γ2[S]. This was
done in [16] and we get:

Γ2[S] ' 1
4
Trp,D,c,N [ΣS] = 1

4
Trp,D,c,N [1− S−1

0 S]. (94)

Thus we end up with

A[S] = −1
2
Trp,D,c,N [LnS−1] + 1

4
Trp,D,c,N [1− S−1

0 S]. (95)

We can evaluate the traces analytically and use the results to compute the e�ective action.
The details can be found in appendix C.
To check the results we make an estimate for the pressure di�erence, using the formula

∆pest =
µ2Tr[Lp̂F

]

16π2
(φ+(pF ))2, (96)

that was derived in the weak coupling limit [16]. Here φ+(pF ) denotes that the gap
function is evaluated at the Fermi surface. This is an approximation to the e�ective
action A[S] and should not be taken as an exact benchmark for our results.

Results

To decide which is the preferred phase we compare the pressure di�erence of the mixed
and the transverse phase to normal quark matter. The two cases will be compared for the
two e�ective strong running couplings αI and αII seperately. We will concentrate on the
physically interesting region from 300 MeV to 500 MeV chemical potential. The results
are shown in Fig. 12. In both cases the mixed case yields a higher pressure and is thus
the stable phase. This is interesting, since it is not in agreement with the weak coupling
result [16]. Comparing the pressure di�erence calculated using Eq. (95) and the estimate
for the pressure di�erence, Eq. (96), it turns out that the estimate is surprisingly good.

Coherence lenght

Finally we also computed the coherence length, the method is described in [31], and
contrasted it with the mean particle distance λ =

3
√
π2/µ of non-interacting quarks as

determined from the density. The results is shown in Fig. 13 as a function of chemical
potential µ. The results are larger than for spin-0 phases [23], however, not substantially
larger. This can be understood with the behaviour of the Pippard length ξP = 1/πφ+(pF ),
which gives a rough estimate of the coherence length. Since the scalar gap function φ+(pF )
in the CSL phase is not substantially smaller than in the spin-0 phases, the coherence
length is not substantially larger. Furthermore is the density larger and therefore the
ration ξ/λ is smaller.
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4 Colour-spin locking with self-consistent colour-spin

structure

Until now we only considered a �xed colour-spin structure of the gap matrix. Since this
truncation is not self-consistent, this is unsatisfactory. Thus we aim for a selfconsistent,
dynamic determination of the gap structure in the CSL phase. We already determined
the maximally allowed set of colour-spin tensor structures that is invariant unter a CSL-
transformation in section 2.5. In this section we are �rst going to consider massless
quarks, this allows us to impose chirality and furthermore parity conditions, which reduce
the number of colour-spin tensor structures needed for a selfconsistent solution. Later
we will extend the analysis to massive quarks which has important implications on the
excitation spectrum.

4.1 QCD symmetries

We will brie�y discuss some symmetries of QCD that allow us to simplify the calculation
and especially reduce the numerical e�ort.

Parity

Parity is a discrete symmetry, it sends (t, ~x) → (t,−~x). In momentum space this means
that a three momentum vector is sent to its negative: ~p → −~p. A Dirac spinor in
coordinate space transforms under parity like ψ′(t, ~x) = ηPγ4ψ(t,−~x), where ηP = ±1
is the intrinsic parity. Using this result we can determine how charge conjugate spinors
transform under a parity transformation ψ̄′C(t, ~x) = −ψ̄C(t,−~x)γ4ηP . Using these two
results we know that the Nambu-Gor'kov propagator transforms under parity as

S ′(~p) =

(
γ4 0
0 −γ4

)
S(−~p)

(
γ4 0
0 −γ4

)
, (97)

in components: S ′(~p) = γ4S(−~p)γ4 and T
′(~p) = −γ4T (−~p)γ4. In this chapter we will only

consider the '+'-components of the Nambu-Gorkov space since we can always translate
the '-'-components into '+'-components by virtue of the Eqns. (63) - (65). We say, that
the phase has even parity, if S ′(p) = S(p) and T ′(p) = T (p). Odd parity is de�ned by
S ′(p) = S(p) and T ′(p) = −T (p). Written explicitly, we require for an even/odd parity
phase:

S(~p) = γ4S(−~p)γ4, (98)

T (~p) = ∓γ4T (−~p)γ4 (99)

Chirality

A chiral transformation is a symmetry of the kinetic term in the QCD Lagrangian, Eq.
(1), if the mass term vanishes. An in�nitesimal chiral transformation (UA(1)) is given by
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ψ′ = (1 + iεγ5)ψ. Using ψC = Cψ̄T , we are lead to conclude, that ψ′C = (1 + iεγ5)ψC and
therefore

S ′ =

(
1 + iεγ5 0

0 1 + iεγ5

)
S
(

1 + iεγ5 0
0 1 + iεγ5

)
. (100)

However, in a Nambu-Gor'kov space, we formally have two independent chiral transfor-
mations on ψ and ψC , describing the pairing of same and opposite chirality, respectively.
We could therefore also require

S ′ =

(
1 + iεγ5 0

0 1− iεγ5

)
S
(

1 + iεγ5 0
0 1− iεγ5

)
. (101)

Like chirality

For like chirality we require

{γ5, S} = 0 and [γ5, T ] = 0. (102)

Opposite chirality

For opposite chirality we require

{γ5, S} = 0 and {γ5, T} = 0. (103)

4.2 Colour spin locking of massless quarks

First we compute the quark propagator in the CSL phase for massless quarks. This was
done �rst, because the analysis for massless quarks uses only half the tensor structures
that are needed in the massive case. Thus it is easier to investigate. Once we showed it
to be working, it is a simple task to extend the analysis to massive quarks.
We will use the ansatz, Eq. (74), discussed in section 2.5 and impose chirality conditions.

The normal propagator S for massless quarks

For the normal propagator, we require S(~p) = γ4S(−~p)γ4 and {γ5, S} = 0, cf. Eq.
(98) and (103) respectively. This requirement can be ful�lled by the following tensor
structures in colour-Dirac space, where i, j ∈ {1, 2, 3} denote colour indices, the indices
in Dirac space are suppressed:

P1,ij = γ4δij

P2,ij = γ5γ4

(
p̂ · ~λij

)
P3,ij = iγ5

(
~γ · ~λij

)
P4,ij = γ4 (p̂ip̂j)

P5,ij = (γip̂j + p̂iγj) .

The quark propagator for massless quarks in the CSL phase is given by

S+ = Z2

5∑
i=1

(
SC,i + iγ4/̂pSA,i

)
Pi. (104)
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This constitutes the ten di�erent ways of coupling the 'spins', con�rming all possible
couplings are realized. The selfenergy has the same structure:

Σ+ =
Z2

Z1F

5∑
i=1

(
ΣC,i + iγ4/̂pΣA,i

)
Pi. (105)

The anomalous propagator T and the gap Φ for massless quarks

For the anomalous propagator, we require T (~p) = −γ4T (−~p)γ4 and {γ5, T} = 0. This
condition is easily satis�ed by de�ning Mi = γ5Pi and using these tensor structures to
build up the anomalous propagator T and the gap Φ.

M1,ij = γ5γ4δij

M2,ij = γ4

(
p̂ · ~λij

)
M3,ij = i

(
~γ · ~λij

)
M4,ij = γ5γ4 (p̂ip̂j)

M5,ij = γ5 (γip̂j + p̂iγj) ,

With these de�nitions the anomalous propagator and the gap have the structure

T = Z2

5∑
i=1

(
TC,i + iγ4/̂pTA,i

)
Mi. (106)

Φ =
Z2

Z1F

5∑
i=1

(
φC,i + iγ4/̂pφA,i

)
Mi. (107)

The algebra

Having chosen a tensor structure for our ansatz, we need to see if the algebra closes, in
particular to determine, what products of structures lie in the chosen basis. This is done
using Mathematica and all products turned out, to lie in the algebra, thus the algebra
closes. This is necessary for the ansatz to be selfconsistent.

Solving the DSE for the quark propagator

To solve the DSE for the quark propagator we proceed in several steps. We start with
a bare quark propagator and introduce a small perturbation into the quark propagator
by setting the gap functions to constant values that are close to their expected �nal peak
values. Then we solve the gap equations, Eq. (61) iteratively.
The �rst step in the iteration is to compute an updated value for the selfenergy, which
is then used to compute ((S−0 )−1 + Σ−)−1. We get the anomalous propagator using Eq.
(55). It is used in the gap equation to get an updated value for the gap functions.
Having computed an updated value for the gap functions we use these to compute the
inverse quark propagator via Eq. (55) and invert it. After that the procedure starts over
again until an approximate �xpoint of the equation is reached.
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Inversion of the propagator

The inversion of the normal propagator is very important for solving the coupled system
of equations. Unfortunately it is merely impossible to compute this analytically, but it
can be done numerically using an LU decomposition. To check for the accuracy of the
inversion we compared the results in di�erent limiting cases of the full ansatz with the
previously obtained analytic results and deviations are indiscernible.
The idea is to multiply two propagators S1, S2 and see how the coe�cient functions
are related if we set the product equal to the identity operator. Therefore we de�ne
SQ =

∑5
i=1

(
SQ,C,i + iγ4/̂pSQ,A,i

)
Qi where Qi = γ4Pi, i.e.

Q1,ij = δij

Q2,ij = −γ5

(
p̂ · ~λij

)
Q3,ij = iγ4γ5

(
~γ · ~λij

)
Q4,ij = (p̂ip̂j)

Q5,ij = γ4 (γip̂j + p̂iγj) .

We take the product of the two propagators S1, S2 and determine the functions SQ,C,i and
SQ,A,i if we set S1 · S2 = SQ.
From this we get a system of equations for the coe�cients, where we set SQ,C,i = 1 and
all other components to zero. Solving this set for the coe�cients S2,C,i and S2,A,i we get
S2 which is the inverse normal propagator of S1.

Results

The results for the scalar gap functions are shown in Fig. 14, where we plotted only the
results for the four large scalar gap functions. The other scalar gap functions are several
orders of magnitude smaller. This is not surprising since these scalar gap functions are
only induced by the Cooper pairing in the attractive channel.
The ansatz for the gap function in section 3, Eq. (76), in the transverse case corresponds
to setting φA,2 = φC,3, φA,3 = φC,2 and all other scalar gap function to zero. We see that
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Figure 14: The values of the gap functions at the Fermi surface for the two most important
tensor structures in the case of massless quarks. The left graph shows the results using
the e�ective strong running coupling αI , the right graph shows the results using αII
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a selfconsistent colour-spin structure is di�erent from the one used in section 3.

4.3 Colour spin locking of massive quarks

Now we turn to the case of massive quarks. We will employ the same formalism developed
in the previous section, but allowing for massive quarks. The case of massive quarks
is of special interest because for neutron star phenomenology it could have important
implications. This is because we expect no gapless modes in the excitation spectrum
for massive quarks (cf. [17]), whereas we found gapless modes in the massless case. A
detailed discussion of the excitation spectrum of quarks in the CSL phase is presented in
the next section. We are also interested in the question whether there is a spontaneous
breaking of chiral symmetry in CSL phase. Including quark masses also means that these
masses have to be renormalised. The quark masses given in the particle data book [32]
are computed using the MS renormalisation scheme. By contrast we work in a MOM
renormalisation scheme. Therefore the quark masses used here might not coincide with
the corresponding quark masses in the particle data book. However, the di�erences in the
renormalised quark mass between the two renormalisation schemes is negligible compared
to the experimental uncertainties in the particle data book. In addition we will also
investigate the in�uence of the quark mass on the scalar gap functions. If this in�uence is
rather small we can safely employ our MOM renormalisation scheme to renormalise the
quark mass.

The normal propagator S for massive quarks

To allow for massive quarks we have to drop the requirement of chirality. Thus we only
require for the normal propagator S(~p) = γ4S(−~p)γ4. Note that we simply dropped the
requirement that the propagator has to anticommute with γ5.
Imposing chirality enabled us to drop half of the terms allowed by CSL symmetry and
parity. These have to be included for a calculation with massive quarks. This can easily
be realized by keeping the tensor structures Pi and Mi and replace

XC,i + iγ4/̂pXA,i → XC,i + iγ4/̂pXA,i + γ4XB,i + i/̂pXD,i, (108)

where X can be any of the objects S,Σ, T, φ.
The quark propagator for massive quarks in the CSL phase is then given by

S+ = Z2

5∑
i=1

(
SC,i + iγ4/̂pSA,i + γ4SB,i + i/̂pSD,i

)
Pi. (109)

The selfenergy has the same structure:

Σ+ =
Z2

Z1F

5∑
i=1

(
ΣC,i + iγ4/̂pΣA,i + γ4ΣB,i + i/̂pΣD,i

)
Pi. (110)
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The anomalous propagator T and the gap Φ for massive quarks

For the anomalous propagator, we now only require T (~p) = −γ4T (−~p)γ4, this condition
is again easily satis�ed by de�ning Mi = γ5Pi and using these tensor structures to build
the anomalous propagator T and the gap Φ.
Following the prescription, Eq. (108) and using the de�nitions for Mi the anomalous
propagator and the gap have the structure

T = Z2

5∑
i=1

(
TC,i + iγ4/̂pTA,i + γ4TB,i + i/̂pTD,i

)
Mi. (111)

Φ =
Z2

Z1F

5∑
i=1

(
φC,i + iγ4/̂pφA,i + γ4φB,i + i/̂pφD,i

)
Mi. (112)

Solving the DSE using this parametrisation is completely analogous to the massless case.

4.4 Results for massive quarks using αI

First we will discuss the results that were obtained using the e�ective strong running
coupling αI . The behaviour of the scalar gap functions as functions of µ is shown in Fig.
15. Here we focus only on the scalar gap functions to the tensor structures P2 and P3.
These correspond to the attractive colour channel and will be signi�cantly larger than the
other scalar gap functions. The scalar gap functions φA,i and φC,i coincide quite well with
the ones obtained in the massless case. The other scalar gap φB,i and φD,i functions did
of course not appear in the analysis of the massless case.
As pointed out before, we are interested in the e�ect of the quark mass on the scalar
gap functions. Fig. 16 shows the values of the gap functions at the Fermi surface for
various quark masses. There we can nicely see that for small chemical potential µ the gap
functions φB,2 and φD,2 depend strongly on the quark mass, whereas the gap functions
φA,2 and φC,2 are nearly independent of the quark mass. At higher chemical potential,
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Figure 15: The values of the gap functions φA,B,C,D;2,3 at the Fermi surface for massive
quarks with a renormalised quark mass of 18.4 MeV at the renormalisation point ν = 2
GeV
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the dependence of φB,2 and φD,2 on the quark mass is relatively weak. That the functions
φB,i and φD,i depend on the quark mass is not surprising since they are related to chiral
symmetry breaking. Unexpected is that the scalar gap functions φB,2 and φD,2 are �nite
even at vanishing quark masses. This will be very important for the excitation spectrum,
since all excitation modes will be gapped for non-vanishing φB,2 (cf. Section 5).
The dependence of the size of the gaps is also shown in Fig. 18. Again we can clearly see
the e�ect of the quark masses on the scalar gap functions φB,i and φD,i.
Because for compact star phenomenology the region of chemical potentials between 300
and 500 MeV is most interesting, we want to show this region in more detail. The values
of the gap functions at the Fermi surface are shown in Fig. 17. Here we see a wiggling in
some of the curves, this is because the gaps are very small and are therefore numerically
di�cult to handle. The dominating scalar gap functions, however, show a more regular
behaviour.
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Figure 16: The values of the gap functions φA,B,C,D;2 at the Fermi surface for di�erent
renormalised quark masses at the renormalisation point ν = 2 GeV, plotted as a function
of chemical potential µ.
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Figure 17: The values of the gap functions φA,B,C,D;2 at the Fermi surface for di�erent
renormalised quark masses at the renormalisation point ν = 2 GeV, plotted as a function
of chemical potential µ.
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Figure 18: The e�ect of the quark mass on the scalar gap functions. The left graph
shows how the value of the scalar gap functions φB,2, φC,2 and φD,2 at the Fermi surface
behaves for a chemical potential µ = 400 MeV. Because the value for φD,2 is one order
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di�erent chemical potentials. We multiplied the values of φB,2 at the Fermi surface by 4
for µ = 400MeV . The renormalisation point is ν = 2 GeV.
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4.5 Results for massive quarks using αII

We are now going to investigate the solutions of the quark DSE using the e�ective strong
running coupling αII . Compared to the results obtained using αI the results di�er only
quantitatively, therefore, we are only going to show the analogous �gures to the �gures
we showed above and comment on the di�erences.
Fig. 19 shows the gap functions at the Fermi surface as a function of chemical potential
for the two most important tensor structures. It is interesting that for chemical potentials
of about 1 GeV the gap function φB,2 gets larger than φC,2. This is di�erent from the
previous results for the e�ective strong running coupling αI . Also the values of the scalar
gap functions at the Fermi surface are generally larger than in the case where we used
αI . This is not surprising since αII yielded a stronger chiral symmetry breaking in the
infrared, therefore, we also expected it to generate larger scalar gap functions.
Again we are interested in the dependence of the gap functions on the quark masses. The
gap functions at the Fermi function as a function of chemical potential are shown in Fig.
20 and 21. What we can see is that there is again a dependence of φB,2 and φD,2 on the
quark mass, however, it is much less pronounced than in the previous case.
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Figure 19: The scalar gap functions φA,B,C,D;2,3 for a renormalised quark mass of 18 MeV
at the renormalisation point ν = 2 GeV.
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Figure 20: The gap functions φA,B,C,D;2,3 for di�erent renormalised quark masses at the
renormalisation point ν = 2 GeV, plotted as a function of chemical potential µ.
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Figure 21: The gap functions φA,B,C,D;2,3 for di�erent renormalised quark masses at the
renormalisation point ν = 2 GeV, plotted as a function of chemical potential µ.
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5 Dispersion relations

A dispersion relation is the relation between the free energy of an excitation and its corre-
sponding momentum. We are going to study the dispersion relations of the quasiparticles
and quasiholes in the CSL phase. If there is an energy gap between the quasiparticle and
the quasihole dispersion relation, the corresponding excitation mode is called gapped.
There are two qualitatively di�erent types of excitation spectra in colour superconduc-
tivity, excitation spectra that consist of (a) only gapped excitation modes or (b) one or
more ungapped modes. An example is shown in Fig. 22, the right panel shows type (a)
and the left panel shows type (b), only positive free energies are shown.
In the case of an ungapped mode the free energy ε(p) of that modes is of the type
ε(p) = ±

√
(p+ eµ)2, where p is the absolute value of the three-momentum. For e = −1

modes of positive free energy correspond to quasiparticle excitations, modes of negative
free energy to quasi-hole excitations. A dispersion relation with e = +1 corresponds to
quasi-antiparticle and quasi-antihole excitations.

For a gapped mode the free energy is of the form ε(p) = ±
√

(p+ eµ)2 + ∆2
eff , where

e = ±1 and ∆eff is called the e�ective gap. In the excitation spectrum the energy gap is
2∆eff . The nomenclature is like in the case of an ungapped mode.
We are especially interested in the size of the smallest energy gap in the excitation spec-
trum, in particular if there is an ungapped mode or not. Only an estimate of the size
of the energy gap is possible. The reason is that we work in Euclidean spacetime and
have no direct connection Minkowski spacetime. Since dispersion relations are de�ned
by the pole of the full quark propagator in Minkowski spacetime, we have to make some
approximations to gain access to this pole. The problem lies in performing the analytic
continuation of the selfenergies into Minkowski spacetime.
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Figure 22: Examples of excitation spectra. The left graph shows the three di�erent
excitation modes of an excitation spectrum of type (a), i.e. containig only gapped modes.
The right graph shows the two (partly degenerate) excitation modes of an excitation
spectrum of type (b), i.e. containing an ungapped mode.
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5.1 Previous investigations

As already pointed out, the question whether there is an ungapped mode in the excitation
spectrum or not, is of special interest. We will consider the results for the gap functions
that we obtained from the ansatz for the gap matrix, Eq. (112) for massive quarks and
Eq. (107) for massless quarks. The dispersion relations for massive quarks in the CSL
phase have been investigated in [17] and [33]. The authors of [33] used a DSE approach
in the weak coupling limit. Their ansatz for the gap function can be translated into our
ansatz in Eq. (112). This is achieved by setting

φC,3 = φA,2 , (113)

and all other scalar gap functions to zero, which is not selfconsistent. The authors found
that there is an ungapped mode in the excitation spectrum just as in the massless case
of the CSL phase, investigated in [16].
In an NJL type model investigation [17] it was found that there are only gapped modes
in the excitation spectrum and that the smallest e�ective gap is given by

∆eff =
M√

µ2 + ∆2
∆, (114)

whereM is the quark mass, µ is the quark chemical potential and ∆ is the gap parameter,
which in this type of model is proportional to the diquark condensates, Eq. (67). In this
investigation the quark mass is dynamically generated even for small current quark masses.
This is a remarkable contrast, for one work states that the current quark mass does not
qualitatively in�uence the excitation spectrum [33]. Whereas in the other work the current
quark mass is of utmost importance to the question on the existence of ungapped modes
in the excitation spectrum.
Now the scene for our investigation is set. First we will investigate the excitation spectrum
for massless quarks (M = 0) using the ansatz, Eq. (107), to get an idea of the excitation
spectrum. Then we will consider the full ansatz in Eq. (112) �rst for massive quarks
(M 6= 0) and also for massless quarks (M = 0). To conclude we will analyse the excitation
spectrum obtained by constraining the ansatz for the gap function to the one in Eq. (113),
keeping a mass term in the quark propagator (M 6= 0).

5.2 Obtaining the dispersion relations

The dispersion relations are obtained as a solution to the algebraic equation

0 = Det[S−1] = Det

[(
(S+

0 )−1 Φ−

Φ+ (S−0 )−1

)]
(115)

for ip4 at a given 3-momentum ~p. The quasiparticle excitation energy is obtained by
setting E(|~p|) = ip4, where Det[S−1(p4, |~p|)] = 0. We neglect the in�uence of the normal
self-energy for the quarks and replace the scalar gap functions in Φ± by their values at
the Fermi surface.
The inverse propagator has a 24× 24 matrix structure and the resulting equation cannot
be handled analytically. Instead we search numerically for solutions to Eq. (115). For
a given absolute value of the 3-momentum we expect three maybe degenerate solutions.
These solutions belong to di�erent branches of the quasiparticle excitation spectrum.
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Figure 23: Excitation energies for massless quarks for µ = 1 GeV

5.3 M = 0 , φB,i = φD,i = 0

Fig. 23 shows the excitation spectrum for a chemical potential µ = 1 GeV. The x-axis
shows the absolute value of the 3-momentum |~p| and the y-axis shows ε(|~p|). If one of
the branches of the excitation energy goes to zero at a certain absolute value of the 3-
momentum |~p|, we have an ungapped mode. In Fig. 23 this seems to be the case. A
carefull investigation con�rms that there is an ungapped mode.

5.4 M 6= 0 , φB,i 6= 0 , φD,i 6= 0

In the previous section we investigated the excitation spectrum of quarks obtained from a
selfconsistent solution of the DSE for massless quarks in the CSL phase. Now we want to
explore the excitation spectrum of massive quarks using the full gap ansatz for the CSL
phase, Eq. (112). Fig. 24 shows the result for massive quarks with a renormalised mass
of M = 18 MeV, at the renormalisation point ν = 2 GeV, for various chemical potentials.
We observe that there are only gapped modes in the excitation spectrum.
Of interest for compact star cooling phenomenology is the behaviour of the size of the
smallest e�ective gap as a function of chemical potential. This is shown in Fig. 25 for the
e�ective strong running coupling αII and in Fig. 26 for αI . It mainly follows the size of
the gap functions at the Fermi surface. This does not come as a surprise, since the full
propagator is at the Fermi surface strongly dependent on the gap functions (cf. section
3). We also see that the size of the smallest e�ective gap di�ers roughly by a factor 2
between the di�erent e�ective strong running couplings. More important, however, is that
the di�erence is only quantitative, but not qualitative.
In addition we observe that the dependence of the e�ective gap on the quark masses
is weak, particullarly for higher values of the chemical potential. Moreover does the
smallest e�ective gap not seem to go to zero if we let the mass go to zero. Consequently
we investigate the ansatz in Eq. (112) for zero current quark mass.
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Figure 24: The excitation spectra for massive quarks (renormalised mass M = 18 MeV)
at various chemical potentials µ. The upper left panel shows the excitation spectrum for
µ = 300 MeV, the upper right for µ = 500 MeV, the lower left for µ = 800MeV and the
lower right for µ = 1000 MeV. The plot shows the excitation energies as a function of the
absolute value of the 3-momentum |~p|. The e�ective strong running coupling is αII .

5.5 M = 0 , φB,i 6= 0 , φD,i 6= 0

We already found that the excitation spectrum of massive quarks exhibits only gapped
modes. Preceeding this observation, we discovered that quarks in the chiral limit have
an ungapped mode in the excitation spectrum, but this analysis neglected the possibility
of massless quarks having nonvanishing scalar gap functions φB or φD. These terms can
and will induce chiral symmetry violating terms in the quark propagator.
The analysis including φB and φD reveals that there are again only gapped modes in the
excitation spectrum. The resulting smallest e�ective gap in the excitation spectrum as a
function of chemical potential is shown in Fig. 25 for the e�ective strong running coupling
αII and in Fig. 26 for αI .
It turns out that the scalar gap functions φB and φD are more important for the excitation
spectrum than the current quark mass. This is a novel feature that could not be expected
from the previous investigation of the excitation spectrum of the CSL phase.
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Figure 25: The smallest e�ective gap in the excitation spectrum ∆ as a function of
chemical potential µ for massive quarks. The e�ective strong running coupling is αII .

5.6 M 6= 0 , φB,i = φD,i = 0

As pointed out at the beginning of this section, from the analysis in [33] it is expected
that there is an ungapped mode in the excitation spectrum if we restrict the ansatz for the
gap matrix to Eq.(113). This is also the result of our analysis in section 3, however, such
an ansatz is not selfconsistent. Nevertheless, we mention that doing a similar analysis by
selfconsistently solving the gap equation, Eq. (61), setting φB,i = φD,i = 0, i ∈ 1, . . . , 5,
it turns out that there is an ungapped mode in the excitation spectrum.
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Figure 26: The smallest e�ective gap in the excitation spectrum ∆ as a function of
chemical potential µ for massive quarks. The e�ective strong running coupling is αI .
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6 Summary and outlook

The subject of this thesis has been the quark propagator in the colour-superconducting
CSL phase. It has recently been investigated in the weak coupling limit and also in an
NJL type model of QCD. The colour-spin locked phase is interesting because it might be
the phase being realised in the interior of compact stars, since other phases might become
disfavoured due to neutrality conditions.
We aimed for a fully self-consistent solution of the DSE for the quark propagator in the
abelian approximation. This included dynamically determining the colour-spin structure
of the gap function rather than having to resort to an arbitrarily chosen ansatz. In
our approximation scheme we employed two di�erent interactions, that can be viewed
as opposing, limiting cases of the QCD interaction. Using di�erent interactions, we can
determine how sensitive the colour-spin locked phase is to our approximation of the DSE.
It turned out that the sensitivity is rather weak.
We found that the CSL-phase exhibits a colour-spin structure that is in the chiral limit
close to the colour-spin structure used in weak coupling calculations [16]. Yet, the full
colour-spin structure of the quark propagator is richer because of the chiral symmetry vio-
lating terms. These terms can be dynamically generated, which is energetically favoured,
and turn out to be import for the excitation spectrum. It seems worthwhile to repeat the
analysis of the CSL phase in the NJL type model including terms of this sort. In this
context it would be interesting to see if the in�uence of the current quark masses is still
as dominant as it was before.
The terms mentioned above did not only appear for �nite current quark mass, but are
generated dynamically. Moreover, their dependence on the current quark mass is rather
weak. This is advantageous since we do not have to worry about the di�erent renormali-
sation schemes, that the quark masses depend on.
Concluding our analysis, we determined the excitation spectrum for quarks in the colour-
spin locked phase. We focused on the smallest e�ective energy gap in the excitation
spectrum. Contrasting this with previous investigations of the excitation spectrum of
quarks in the colour-spin locked phase, we found that the smallest e�ective gap is mainly
driven by the gap function and only weakly dependent on the current quark masses. In
the previous investigations the current quark masses either did not qualitatively change
the excitation spectrum or were equally important as the gap function, and therefore have
to be retained in the calculation.

Our investigation of the colour-spin locked phase could be re�ned in various directions.
One direction would be to relax some of the approximations being used. In Eq. (39)
we could use functions F and G that are computed using dressed instead of bare quark
propagators, this is know as quasiparticle-random-phase-approximation. Another desir-
able improvement would be a better vertex approximation, Eq. (28). Advancing in
another direction it would be interesting to explore the behaviour of the superconducting
state for �nite temperature. Finally one could also think about other spin-1 colour-
superconducting phases, like the A-phase. This phase is even more intricate, since it is
not spatially isotropic.
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A Conventions

We will use the following conventions throughout this work, following the conventions
used in [34]

• The metric gµν that de�nes the inner product of two 4-vectors is Euclidian in all
calculations:

gµν = δµν , (116)

where δµν is the Kronecker symbol. Consequently we do not need to distinguish
between covariant and contravariant tensor structures.

• We work in natural units where

~ = c = 1.

• We use the Einstein sum convention.

• We use Euclidian gamma matrices. They are related to gamma matrices in Minkoski
space via, see e.g. [35]

γE4 = γM0 , γEa = −iγMa a = 1, 2, 3 , γE5 = −γE1 γE2 γE3 γE4 . (117)

• Greek indices run from 1 to 4.

• Latin indices run from 1 to 3.

47



B Derivation of the unrenormalised DSE for the quark

propagator

To get the quark Dyson-Schwinger equation we start by taking a functional derivative on
the generating functinal, Eq.(13), with respect to ψ̄

0 =
∫
DADψ̄DψDc̄Dc δ

δψ̄(x)
exp [−SQCD − Sgf + Ssource]

=
∫
DADψ̄DψDc̄Dc

[
δSQCD

δψ̄(x)
+ η(x)

]
exp [−SQCD − Sgf + Ssource]

=
[
δSQCD

δψ̄(x)

(
δ

iδJµA(x)
,

δ

iδη̄(x)
,− δ

iδη(x)

)
+ η(x)

]
Z(J, η, η̄)

=
[
η(x) +

(
/∂ − γ4µ−m+ igγµta

δ

iδJaµ(x)

)
δ

iδη̄(x)

]
Z(J, η, η̄). (118)

Following this step we apply a derivative with respect to η, δ/δη(y), yielding

0 = δ4(x− y)Z −
(
/∂ − γ4µ−m+ igγµta

δ

iδJaµ(x)

)
δ

iδη(y)

δ

iδη̄(x)
Z. (119)

To proceed we switch from the generating functional for complete n-point Green functions
Z(J, η, η̄) to the generating functional for "connected" n-point Green functions,W (J, η, η̄).
These two functionals are related via

Z(J, η, η̄) ≡ exp{iW (J, η, η̄)} (120)

Using this generating functional we can obtain a natural de�nition of the connected quark
two-point function S(x, y; [Aaµ]) in an interacting theory:

S(x, y; [Aaµ]) = − δ2W

δη(y)δη̄(x)
=

δ2W

δη̄(x)δη(y)
. (121)

For a theory of free fermions this de�nition reproduces the Feynmann propagator.
The derivative on the right hand side of Eq. (121) is also implicitly present in Eq. (119),
because with Eq. (120) we get the relation

δ2Z

iδη(y) iδη̄(x)
=

δ2

iδη(y) iδη̄(x)
exp(iW ) =

δ

iδη(y)

[
δW

iδη̄(x)
exp(iW )

]
=

[
i

δ2W

iδη(y) iδη̄(x)
− δW

iδη̄(x)

δW

iδη(y)

]
exp(iW ). (122)

At the end of the calculation we want to set the source terms to zero. Then the term
containing only �rst derivatives vanishes, because the derivative terms are vacuum expec-
tation values of the �elds ψ and ψ̄. So we omit the second term in brackets on the right
hand side of Eq. (122) for the rest of the analysis.
After setting η = 0 = η̄, the Dyson-Schwinger equation is

0 = δ4(x− y)Z −
(
/∂ − γ4µ−m+ igγµta

δ

iδJaµ(x)

)
Z S(x, y; [Aaµ])

= δ4(x− y)Z − Z
(
/∂ − γ4µ−m+ igγµtaA

a
µ + igγµta

δ

iδJaµ(x)

)
S(x, y; [Aaµ]). (123)
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The gauge �eld Aaµ vanishes in the absence of an external source Jaµ . It only remains to
evaluate

δS(x, y; [Aaµ])

iδJaµ(x)
=

∫
d4z

δAνb (z)

iδJµA(x)

δS

δAνb (z)
(124)

Therefore, we �rst introduce a generating functional for one-particle-irreducible (1PI)
Green functions, Γ[Aaµ, ψ, ψ̄]. It is obtained fromW (J, η, η̄) via a Legendre transformation

W (J, η, η̄) = Γ[Aaµ, ψ, ψ̄] +

∫
d4x

[
ψ̄η + η̄ψ + AaµJ

a
µ(x)

]
(125)

A 1PI n-point function, also called "proper vertex", only contains contributions that
do not become disconnected when a single propagator is removed, e.g. via functional
di�erentiation. This functional obeys

δW

δη̄
= ψ ,

δW

δη
= −ψ̄ ,

δW

δJµa
= −Aaµ. (126)

Using the chain rule we get the identy

−
∫
d4z

δ2W

δη(x)δη̄(z)

δ2Γ

δψ(z)δψ̄(y)

∣∣∣∣
η=0=η̄, ψ=0=ψ̄

=

∫
d4z

δψ(z)

δη(x)

δη(y)

δψ(z)

∣∣∣∣
η=0=η̄, ψ=0=ψ̄

=
δη(y)

δη(x)
= δ4(x− y). (127)

The result of multiplying this expression from the right with
(

δ2Γ
δψ(y)δψ̄(w)

)−1

and integrating

over y is

− δ2W

δη(x)δη̄(w)

∣∣∣∣
η=0=η̄

=

(
δ2Γ

δψ(x)δψ̄(w)

∣∣∣∣
ψ=0=ψ̄

)−1

. (128)

With this relation at hand Eq. (124) can be expressed by

δS(x, y; [Aaµ])

iδJaµ(x)
=

∫
d4z

δAνb (z)

iδJµA(x)

δ

δAνb (z)

(
δ2Γ

δψ(x)δψ̄(y)

∣∣∣∣
ψ=0=ψ̄

)−1

. (129)

To compute the derivative of the inverse we use a trick that is a generalisation of the
matrix identity

dA(x)−1

dx
= −A−1(x)

dA(x)

dx
A−1(x).

The idea is to di�erentiate the identity and rearrange terms

0 =
∫
d4v

δ

δAνb (z)

{
δ2Γ

δψ(w)δψ̄(v)

(
δ2Γ

δψ(v)δψ̄(y)

)−1
}

=
∫
d4v

(
δ

δAνb (z)
δ2Γ

δψ(w)δψ̄(v)

)(
δ2Γ

δψ(v)δψ̄(y)

)−1

+∫
d4v

δ2Γ
δψ(w)δψ̄(v)

δ

δAνb (z)

(
δ2Γ

δψ(v)δψ̄(y)

)−1

. (130)
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Now we multiply from left with
(

δ2Γ
δψ(x)δψ̄(w)

)−1

and integrate over w to get

δ

δAνb (z)

(
δ2Γ

δψ(x)δψ̄(y)

)−1

=
∫
d4wd4v

{(
δ2Γ

δψ(x)δψ̄(w)

)−1

·

(
δ

δAνb (z)
δ2Γ

δψ(w)δψ̄(v)

)(
δ2Γ

δψ(v)δψ̄(y)

)−1
}

(131)

=
∫
d4wd4v S(x,w, [Aaµ])

(
δ

δAνb (z)
δ2Γ

δψ(w)δψ̄(v)

)
S(v, y, [Aaµ]).

The term in brackets is the proper quark-gluon vertex:

Γbν(w, v, z) ≡
δ

δAνb (z)

δ2Γ

δψ(w)δψ̄(v)
.

Including this result Eq. (124) takes the form

δS(x, y; [Aaµ])

iδJaµ(x)
=

∫
d4z

δAνb (z)

iδJµA(x)

δ

δAνb (z)

(
δ2Γ

δψ(x)δψ̄(y)

∣∣∣∣
ψ=0=ψ̄

)−1

=

∫
d4zd4wd4v

δAνb (z)

iδJµA(x)
S(x,w, [Aaµ])Γ

b
ν(w, v, z)S(v, y, [Aaµ]). (132)

Finally we compute

δAνb (z)

iδJµa (x)
= − δ2W

iδJµa (x)δJνb (z)
=

(
δ2Γ

iδAµa(x)δAνb (z)

)−1

=: Dµν
ab (x, z), (133)

where we de�ned the gluon propagator Dµν
ab . The result is then

δS(x, y; [Aaµ])

iδJaµ(x)
= =

∫
d4wd4v Dµν

ab (x, z)S(x,w)Γbν(w, v, z)S(v, y). (134)

Now we can write the Dyson-Schwinger equation in the form

δ4(x− y) =
(
/∂x − γ4µ−m

)
S(x, y) +∫

d4zd4wd4v igγµtaD
µν
ab (x, z)S(x,w)Γbν(w, v, z)S(v, y) (135)

=

∫
d4v
[(
/∂x − γ4µ−m

)
δ4(x− v)+

ig

∫
d4wd4z γµtaD

µν
ab (x, z)S(x,w)Γbν(w, v, z)

]
S(v, y). (136)

De�ning the proper quark self-energy

Σ(x, y) = ig

∫
d4wd4z γµtaD

µν
ab (x, z)S(x,w)Γbν(w, v, z), (137)

we arrive at the �nal form of the DSE:

δ4(x− y) =

∫
d4v
[(
/∂x − γ4µ−m

)
δ4(x− v) + Σ(x, v)

]
S(v, y). (138)
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C Analytical calculations

We present some analytical results that are being used in section 3. The calculations re-
quire the gap function being parametrized as in section 3. Therefore, the results presented
here must not be used in section 4.

C.1 Getting the quark propagator

The inverse full quark propagator is given by (cf. Eq. (55)),

(S+)−1 = Z2(S
+
0 )−1 + Z1FΣ+ − Z2

1FΦ− [Z2(S
−
0 )−1 + Z1FΣ−]−1

Φ+

using the identity in Eq. (80) this simpli�es to

(S+)−1 = Z2(S
+
0 )−1 + Z1FΣ+ −

[
Z2(S

−
0 )−1 + Z1FΣ−]Z2

2

∑
e=±

|φe(p)|2 L~pΛ−e
p̂

pulling out a factor of Z2(S
−
0 )−1 + Z1FΣ− we get

(S+)−1 =
[
Z2(S

−
0 )−1 + Z1FΣ−]−1 ·{[

Z2(S
+
0 )−1 + Z1FΣ+

] [
Z2(S

−
0 )−1 + Z1FΣ−]− Z2

2

∑
e=±

|φe(p)|2 L~pΛ−e
p̂

}

now we write the factors of the �rst term in curly brackets in terms of energy projectors
to arrive at the form

Z2
2

[
Z2(S

−
0 )−1 + Z1FΣ−]−1 ·

∑
e=±

{∑
e′=±

(−1) [−e|~p|(1 + ΣA(p))− iω~p(1 + ΣC(p))][
−e′|~p|(1 + Σ∗

A(p)) + iω∗~p(1 + Σ∗
C(p))

]
− |φe(p)|2 L~p

}
γ4Λ

−e
p̂ γ4Λ

e′

p̂

= −Z2
2

[
Z2(S

−
0 )−1 + Z1FΣ−]−1 ·

∑
e=±

{∑
e′=±

[−e|~p|(1 + ΣA(p))− iω~p(1 + ΣC(p))][
−e′|~p|(1 + Σ∗

A(p)) + iω∗~p(1 + Σ∗
C(p))

]
+ |φe(p)|2 L~p

}
Λ−e
p̂ δe,e′

= −Z2
2

[
Z2(S

−
0 )−1 + Z1FΣ−]−1 ·∑

e=±

{
|e|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))|+ |φe(p)|2 L~p

}
Λ−e
p̂ .

As a last step we use the fact that the matrix L~p can be written in terms of projectors
Pr~p and that the sum of the projectors is the identity matrix.

(S+)−1 = −Z2
2

[
Z2(S

−
0 )−1 + Z1FΣ−]−1 · (139)∑

e=±,r

{
|e|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))|+ λr |φe(p)|2

}
Pr~pΛ−e

p̂ .
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The inverse full quark propagator is then easily inverted:

S+(p) = − 1

Z2
2

[
Z2(S

−
0 )−1 + Z1FΣ−]

∑
e=±,r

Pr~pΛ
−e
p̂

|e|~p|(1 + ΣA,r(p)) + iωp(1 + ΣC,r(p))|2 + λr |φe(p)|2
. (140)

Another identity that we used in this work is derived here. It is very straightforward to
compute.[

Z2(S
−
0 )−1 + Z1FΣ−]−1

Φ+
[
Z2(S

−
0 )−1 + Z1FΣ−] =

Z2

Z1F

∑
e,e′,e′′

e|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))

e′′|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))
φe′(p)(γ4Λ

e
p̂)
−1M~pΛ

e′

p̂ γ4Λ
e′′

p̂ =

Z2

Z1F

∑
e,e′,e′′

e|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))

e′′|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))
φe′(p)γ4Λ

−e
p̂ Λe′

p̂M~pγ4δe′,−e′′ =

Z2

Z1F

∑
e,e′,e′′

e|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))

e′′|~p|(1 + ΣA(p)) + iω~p(1 + ΣC(p))
φe′(p)γ4M~pΛ

e′

p̂ γ4δe′,−e′′δe′,−e =

Z2

Z1F

∑
e′

[φe′(p)] γ4M~pγ4Λ
−e′
p̂ .

C.2 Calculating the e�ective action

To compute the e�ective action we have to perform some manipulations on the general
formula, Eq. (95),

A[S] = −1

2
Trp,D,c,f,N [LnS−1] +

1

4
Trp,D,c,f,N [1− S−1

0 S], (141)

such that we can actually compute the value of the e�ective action. The �rst step is to
do the trace over Nambu-Gor'kov space.
Two commonly known identities will be used, they are

Tr[Log[M ]] = log[Det[M ]] Det

(
A B
C D

)
= AD −BD−1CD,

where A,B,C,D and M are arbitrary matrices. With this identity at hand, we can do
the trace over Nambu-Gor'kov space to get:

A[S] = −1

2
Trp,D,c[Ln

{
[ (S+

0 )−1(p) + Σ+(p)][ (S−0 )−1(p) + Σ−(p)]

−Φ−(p)[(S−0 )−1(p) + Σ−(p)]−1Φ+(p)[(S−0 )−1(p) + Σ−(p)]
}
]

+
1

4
Trp,D,c

[
2− S+(p)(S+

0 )−1(p)− S−(p)(S−0 )−1(p)
]

(142)
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The �rst term in Eq. (142) can be further evaluated. Therefore, we will express the quark
propagators, the selfenergies and the gap functions with the help of energy projectors and
the projectors Prp̂ . We will also make use of Eq. (80).

−Trp,D,c
[
Ln
{
[ (S+

0 )−1(p) + Σ+(p)][ (S−0 )−1(p) + Σ−(p)]
−Φ−(p)[(S−0 )−1(p) + Σ−(p)]−1Φ+(p)[(S−0 )−1(p) + Σ−(p)]

}]
= −Trp,D,c

[
Ln

{
( (S+

0 )−1(p) + Σ+(p))((S−0 )−1(p) + Σ−(p))−
∑
e=±

|φe|2L~pΛ−ep̂

}]

= −Trp,D,c

[
Ln

{
−
∑

e=±,r

{
|e|~p|(1 + ΣA(p) + iωp(1 + ΣC(p))|2Prp̂ + |φe|2L~p

}
Λ−ep̂

}]

= −Trp,D,c

[
Ln

{
−
∑

e=±,r

{
|e|~p|(1 + ΣA(p) + iωp(1 + ΣC(p))|2 + λr|φe|2

}
Prp̂Λ−ep̂

}]

= −Trp

[∑
e=±,r

Ln
[
−|e|~p|(1 + ΣA(p) + iωp(1 + ΣC(p))|2 − λr|φe|2

]
TrD,c[Prp̂Λ−ep̂ ]

]
(143)

The remaining traces over colour and Dirac space can easily be evaluated. The minus
sign in the logarithm might seem spurious. However, this is not a problem since we will
eventually take the di�erence between two logarithms of this type. Doing so, the minus
sign is cancels out.
The second term in Eq. (142) can also be simpli�ed by noticing that

Tr[(S−0 )−1(p)S−(p)] = Tr[(C(S+
0 (−p))TC)−1C(S+(−p))TC] (144)

= Tr[CC−1((S+
0 (−p))T )−1C−1C(S+(−p))T ]

= Tr[((S+
0 (−p))T )−1(S+(−p))T ]

= Tr[((S+
0 (−p))−1S+(−p))T ]

= Tr[(S+
0 (−p))−1S+(−p)]. (145)

This allows us to use only the quasiparticle propagator. Tr[(S+
0 (p))−1S+(p)] is easily

evaluated

Tr[(S+
0 (p))−1S+(p)] =∑

e′,e=±,r

−[e′|~p|+ iωp][−e|~p|(1 + Σ∗
A(p)) + iω∗p(1 + Σ∗

C(p))]

|e|~p|(1 + ΣA(p)) + iωp(1 + ΣC(p))|2 + λr|φe(p)|2
TrD,c[γ4Λ

e′

p̂ γ4Pr~pΛ−e
p̂ ]

∑
e=±,r

[e|~p| − iωp][e|~p|(1 + Σ∗
A(p))− iω∗p(1 + Σ∗

C(p))]

|e|~p|(1 + ΣA(p)) + iωp(1 + ΣC(p))|2 + λr |φe(p)|2
TrD,c[Pr~pΛ−e

p̂ ]. (146)

Here we used γ4Λ
e
p̂ = Λ−e

p̂ γ4 and Λe
p̂Λ

e′

p̂ = Λe
p̂δee′ . This can now easily be implemented.

Left to do is only evaluating the traces over colour and Dirac space for Pr~pΛ
−e
p̂ . The results

are, where we used that the dependence on e in TrD,c[Pr~pΛ
−e
p̂ ] drops out,

transverse phase mixed phase
r = 1 6 4
r = 2 0 2
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D Numerical methods

D.1 Integration in hyperspherical coordinates

Any arbitrary momentum P is parametrised in hyperspherical coordinates by
P1

P2

P3

P4

 =


P sinχ sin θ sinφ
P sinχ sin θ cosφ
P sinχ cos θ
P cosχ

 , (147)

where φ should not be confused with the gap functions. An integral over all momenta is
then given by ∫

d4p

(2π)4
=

1

(2π)4

∞∫
0

dp p3

2π∫
0

dφ

π∫
0

dθ sin θ

π∫
0

dχ sin2 χ (148)

Since we are only dealing with two momenta p and q in our equations we are quite free
to choose our coordinate system. p is the external quark momentum and q is the quark
loop momentum.

Zero density

One calculation at zero density is needed for renormalisation. In this calculation we will
use O(4)-invariance to choose the coordinate system in a way such that the external quark
momentum p is purely timelike and the loop momentum q has only 3,4-components

pµ =


p1

p2

p3

p4

 =


0
0
0
p

 , qµ =


q1
q2
q3
q4

 =


0
0

q sinχ
q cosχ

 . (149)

In this case the integration over φ and θ is trivial, it simply gives a factor of 4π.

Nonzero density

At nonzero density the situation is more involved since the 4-axis is distinguished due to
the chemical potential. The diquark condensate in the CSL phase is SO(3)-symmetric
and thus does not introduce additional di�culties. We thus choose the momenta

pµ =


p1

p2

p3

p4

 =


0
0

p sinχp
p cosχp

 , qµ =


q1
q2
q3
q4

 =


0

q sinχq sin θq
q sinχq cos θq
q cosχq

 . (150)

D.2 Numerical Integration

We use a simple Riemann quadrature however we use an integration grid that is not
uniform. We manually assign more points to momentum areas that are most relevant to
the solution.
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Momentum Integrals

We only integrate from the infrared cuto� ΛIR to the ultraviolet cuto� ΛUV . As these
quantities di�er by many orders of magnitude and we expect the most important contribu-
tions to the integrals to come from the momentum region around the chemical potential,
we distribute the integration points for the momentum integrals logarithmically. This is
done via a transformation q = eq

′
and we get

ΛUV∫
ΛIR

dqq3f(q) =

ln ΛUV∫
ln ΛIR

dq′eq
′
e3q

′
f(eq

′
) =

ln ΛUV∫
ln ΛIR

dq′e4q
′
f(eq

′
). (151)

If xi,j and wi,j are the abscissas and weights for the Riemann integration this becomes

ΛUV∫
ΛIR

dqq3f(q) =
∑

i,j

wi,je
4xi,jf(exi,j), (152)

we used double indices to account for the use of non-uniform integration areas. This
means we subdivide the whole momentum range into areas with a speci�c upper and
lower bound for the values of momentum q and the angle with the 4-axis χq. An example
is shown in Fig. 27

0.001 0.01 0.1 1 10 100 1000

p [GeV]

0

0.5

1

1.5

2

2.5

3

χ

Figure 27: An example for the integration areas. Lines show the integration area bound-
aries

Angular integrals

We have three angular integrals
2π∫
0

dφ,
π∫
0

dθ sin θ,
π∫
0

dχ sin2 χ. The integral over φ can always

be performed analytically and trivially yields 2π as result, because none of the integrands
depend on φ.
For the other two integrals we again use Riemann quadrature and denote the weights and

55



abscissas for the χ/θ-integration by wχi,j/w
θ
i and χi,j/θi:

π∫
0

dθ sin θ =
∑

i

wθi sin(θi) (153)

π∫
0

dχ sin2 χ =
∑

i,j

wχi,j sin2(χi,j). (154)

For the θ-integration we only use one single set of weights and abscissas, except for the
high-momentum region where we perform a special treatment of the gluon pole 1/k2.

Solving the gap equation numerically

The gap equation is solved numerically within an iterative procedure. We assume that
the equation has at least one �xed point such that F (Φ) = Φ where F (Φ) is the integral
expression on the right hand side of Eq. (61).

D.3 Code generation

In the fully selfconsistent ansatz for the CSL phase we deal with large (12× 12) matrices
that contain entries of up to 20 di�erent functions. For example to get the anomalous
propagator we have to multiply three di�erent of these matrices and extract the individual
structures that correspond to the parametrisation of the anomalous propagator. The e�ort
needed to do this requires the use of an automated routine. Fortunately all we need is
available in the computer mathematics system Mathematica. Here we are going to outline
the steps made to build program that can solve the DSE for the quark propagator in the
CSL phase.
First we de�ne the Euclidian Dirac gamma matrices and the antisymmetric Gell-Mann
matrices in Mathematica. Now we have to de�ne a Kronecker product this is done by the
prescription to put the Dirac matrices at the position where the entries in the Gell-Mann
matrices would reside. Here is an example:

(
α β
γ δ

)
⊗

 a b c
d e f
g h i

 =


αa αb αc βa βb βc
αd αe αf βd βe βf
αg αh αi βg βh βi
γa γb γc δa δb δc
γd γe γf δd δe δf
γg γh γi δg δh δi

 . (155)

This example was only with 2 × 2 and 3 × 3 matrices but the generalisation is obvious.
The product of two objects that are Kronecker products of matrices in colour and Dirac
space is now a simple matrix multiplication.
Now all we have to do is de�ne all the quantities needed in the calculation, implement
the relations amongst each other and extract the scalar equations for the ansatz functions
out of the matrix equations. This procedure is di�erent for the two di�erent ansätze.
In the �rst case, used in section 3, we could perform most of the calculation analytically
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and thus do not have to resort extensively to computer algebra. For the fully selfconsistent
CSL analytic calculations are to tedious to be done. Therefore, we had to resort to
numerical algorithms to invert propagators and to compute the integration kernels. To
get the algebraic expressions we used Mathematica.
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