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Abstract
In this work we study chiral symmetry breaking phases at high chemical potential using the two-flavour Nambu–
Jona-Lasinio model as an effective low-energy model of Quantum chromodynamics. First we discuss the theoretical
framework and the case of a homogeneous mass modulation, while developing methods to calculate the phase
transition boundaries. Afterwards, we choose an inhomogeneous mass modulation and transfer the methods to
calculate the phase boundaries to the case of spatially dependent condensates. Since earlier works have found
a second inhomogeneous phase ("continent") at high chemical potential, we mainly focus our research on that
region of the phase diagram. Nonetheless, as it turns out, the continent does not only exist at high chemical
potentials, but also at high temperatures regardless of the chemical potential, i.e. the continent encircles the
restored phase entirely. Furthermore, the continent may extend to arbitrarily high temperatures and chemical
potentials. Its existence is due to the medium contribution, which renders the vacuum contribution insignificant at
high temperatures and chemical potential.

Zusammenfassung
In dieser Arbeit untersuchen wir die chirale Symmetrie brechende Phasen bei hohem chemischen Potential mittels
dem zwei-Flavour Nambu–Jona-Lasinio Modell, einem effektiven Niederenergie-Modell der Quantenchromodyna-
mik. Zunächst diskutieren wir das theoretische Gerüst und den Fall einer homogenen Massenmodulation, während
wir auch Methoden entwickeln, um die Grenzen der Phasenübergänge zu berechnen. Danach wählen wir eine inho-
mogene Massenmodulation und übertragen die Methoden auf ortsabhängige Kondensate. Da frühere Arbeiten eine
zweite inhomogene Phase ("Kontinent") bei hohen chemischen Potential entdeckt haben, werden wir uns haupt-
sächlich diesen Bereich des Phasendiagrammes zuwenden. Wie sich herausstellt, finden wir den Kontinent aber
nicht nur bei genügend hohen chemischen Potentialen, sondern auch bei hohen Temperaturen, unabhängig vom
chemischen Potential. Der Kontinent umschließt also die restaurierte Phase vollkommen. Des Weiteren kann der
Kontinent auch bei beliebig hohen Temperaturen und chemischen Potentialen existieren. Der Grund seiner Exis-
tenz ist der Medium-Beitrag, welcher den Vakuum-Beitrag bei hohen Temperaturen und chemischen Potentialen
bedeutungslos macht.
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1 Introduction
The quest of understanding matter began in Ancient Greece, where philosophers coined the concepts of "atoms"
(Greek for "indivisible") and "void" in order to describe it. Yet, it was not until the 19th century and the advance-
ment in chemistry that atoms became widely accepted to be the constituents of matter. Further investigations led
to the discovery of the first subatomic particle, the electron, by Thomson in 1897 [1], the postulation of the nuc-
leus by Rutherford in 1911 [2] and the subsequent discovery of the proton, again by Rutherford, in 1917 [3]. In
1932 Chadwick discovered the neutron [4] and, in the same year, Heisenberg postulated that proton and neutron
were two states of the same particle with different isospin [5]. During the next couple of decades, more and more
particles were found. This led Gell-Mann and Zweig, independently of each other, to the postulation of quarks
as the constituents of hadrons in 1964 [6, 7, 8]. Experiments conducted by Breidenbach et al. [9] and Bloom
et al. [10] in 1968 comfirmed that the proton does indeed consist of smaller particles. This discovery eventually
led to the formulation of quantum chromodynamics (QCD) in 1973 [11].
Today, QCD is widely accepted to properly describe the strong interaction between quarks. It features the phenom-
ena of confinement, i.e. unbound quarks are not observed in nature, and asymptotic freedom, i.e. a vanishing
coupling constant at high energy scales. Its Lagrangian is given by

LQC D =ψc1, f

�

i /Dc1c2
−m f δc1c2

�

ψc2, f −
1
4

F a
µν F a,µν , (1.1)

where f ∈ {u, d, s, c, b, t} denote the flavours, c1, c2 ∈ {r, g, b} the colours, m f the mass of the flavour f , ψ and

ψ =ψ†γ0 the quark fields, which are coupled to the gluon fields Aa
µ by the covariant derivative Dµ = ∂µ − i gAa

µ
λa

2 ,

λa being the Gell-Mann matrices and g the coupling constant, while F a
µν = ∂µAa

ν − ∂νA
a
µ + g f abcAb

µAc
ν denotes the

gluon field strength tensor, with f abc being the structure constants of the corresponding Lie-algebra.
The QCD phase diagram has been subject of intense investigation. Lattice QCD, i.e. non-pertubative calculations,
has produced several results for high temperatures and evidence for a crossover transition between the chirally
broken and the chirally restored phase has been found [12]. However, lattice QCD exhibits a "sign-problem" [13]
for non-vanishing chemical potentials. Therefore, one has to make use of other methods, for example effective
models, like the Nambu–Jona-Lasinio model [14] or the Quark-Meson model, to study the region of non-vanishing
chemical potential.
In this work we will make use of the Nambu–Jona-Lasinio model to investigate the phase diagram, which has been
extensively done. It is widely believed, that quarks exhibit a homogeneously broken phase1 in the low temperature,
low chemical potential region and for higher temperatures, while in the region of low temperature and medium
chemical potential, an inhomogeneous generated mass function becomes favoured, forming the "island". At higher
energies, the generated mass function vanishes and the quark "enter" the chirally restored phase, which is believed
to extend to arbitrarily high temperatures and chemical potentials. However, Buballa and Carignano [15] found
a second inhomogeneously, chirally broken phase in the low temperature, high chemical potential region, "the
continent", which seems to extend to arbitrarily high chemical potentials. Furthermore, it seems that the higher
the chemical potential, the higher the temperature at which a second chirally broken phase exists.
In this work we will build on the results obtained in [15] and investigate the extend of the continent in the
high chemical potential region. To that end, we will first derive an expression for the thermodynamic potential
and choose a regularisation in chapter 2, before investigating the mass function and thermodynamic potential for
spatially constant (homogeneous) mass modulations in chapter 3. In that chapter we will also develop methods
with which we will calculate the phase transition boundaries and, hence, the phase diagram. In chapter 4, we
will introduce a spatially dependent, i.e. inhomogeneous, mass modulation and transfer the methods to calculate
the transition boundaries to that case. Furthermore we will discuss its phase diagram and, especially, the second
inhomogeneous phase.

1 The chiral symmetry is spontaneously broken and the quark’s generated mass function is homogeneous
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2 Nambu–Jona-Lasinio Model
In 1961 Nambu and Jona-Lasinio proposed a model explaining the dynamical mass generation for nucleons, in ana-
logy with the theory of superconductivity [16, 17]. At that time quarks had yet to be discovered and the standard
model, as well as the QCD, yet to be developed. Nevertheless the model successfully explained the dynamic mass
generation of the constituents as the spontaneous breaking of chiral symmetry due to their interaction. Therefore
it was later reinterpreted as an effective, low energy model of QCD by simply changing the nucleonic fields for
quark fields. A downside of the model is the lack of gluon fields and their dynamics. This restricts the applicabil-
ity severely as the basic QCD features of confinement and asymptotic freedom are not reflected. Nonetheless the
Nambu–Jona-Lasinio (NJL) model reflects the chiral symmetry of QCD very well and is therefore used to study this
phenomenon.

2.1 The NJL Lagrangian

In this work we will restrict ourselves to a N f = 2 flavours version of the NJL model, including the up and down
quark, a scalar-isoscalar and pseudoscalar-isovector four-point interaction. Yet, the model can be extended to
include more flavours [18, 19] and more complicated interaction terms.
Our two-flavour NJL Lagrangian reads

LNJ L =ψ(i /∂ −m)ψ+ Gs((ψψ)
2 + (ψiγ5~τψ)2) . (2.1)

ψ and ψ = ψ† γ0 describe quark and antiquark fields and are Dirac spinors in 3+1 dimensions with components
in flavour and colour space (i.e. 4N f Nc components in total). ~τ =

�

τ1,τ2,τ3
�T

denotes the Pauli matrices in
isospin space, whereas Gs denotes the scalar coupling constant and has the dimension of an inverse mass squared.
m = diag (mu, md) denotes the bare quark mass matrix, with mu and md being the masses of the up and down
quark, respectively, which we will assume to be degenerate, i.e. mu = md = m.
The first term is the usual textbook Lagrangian for a free field obeying the Dirac equation. The second term reflects
the four-point interaction and consists of a scalar (ψψ) and pseudoscalar (ψiγ5~τψ) term. Due to the four-point
interaction, the NJL model is non-renormalisable, which means that we will have to implement some sort of regu-
larisation scheme later on (see section 2.3).

The NJL Lagrangian shares several important symmetries with QCD. Firstly, it is invariant under a global U(1)V
phase transformation

ψ→ exp (−iα)ψ and ψ→ψexp (iα) , (2.2)

with α ∈ R, leading to the conservation of the baryon number.
The assumption that the bare masses are degenerate renders the Lagrangian invariant under a vector SU(2)V
transformation

ψ→ exp
�

−i~τ · ~θ/2
�

ψ and ψ→ψexp
�

i~τ · ~θ/2
�

, (2.3)

with ~θ ∈ R3, resulting in the conservation of isospin.
Performing an axial SU(2)A transformation

ψ→ exp
�

−iγ5~τ · ~θ/2
�

ψ and ψ→ψexp
�

−iγ5~τ · ~θ/2
�

, (2.4)

with ~θ ∈ R3, one can show that the Lagrangian is invariant if we assume the bare masses of the up and down quark
to be degenerate.
The combination of the latter two SU(2)V ⊗ SU(2)A = SU(2)L ⊗ SU(2)R is called chiral symmetry. It is explicitly
broken by a non-vanishing bare mass as the Lagrangian is not invariant under SU(2)A transformations in that case.
However, even in the chiral limit (m → 0) the SU(2)A invariance is spontaneously broken by the condensates
leading to the appearance of Goldstone bosons [20].
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2.2 Thermodynamic Potential

In order to examine the spontaneous chiral symmetry breaking, we first have to derive an expression for the
thermodynamic potential describing the system. In the following we use a slightly altered prescription that has
been outlined in [21].
As we do not want to limit the number of particles within our system, our choice falls upon the grand potential ω
per volume V

ω(T,µ)
V

= Ω(T,µ) = −
1
β V

logZ (T,µ) , (2.5)

where T denotes the temperature, µ the chemical potential, β = 1
T the inverse temperature and Z the grand

canonical partition function.
In statistical physics the partition function Z is given by

Z = Tr e−β(Ĥ−µN̂) ,

where Ĥ denotes the Hamilton operator and N̂ the particle number operator. This trace can be transformed into a
functional integral of the form [22]

Z =
∫

DψDψ exp

�

−
∫

[0,β]×V

d xE (LE −µN )

�

, (2.6)

where we switched to Euclidean space with the Euclidean Lagrangian LE = −LNJ L(t = −iτ) and the Euclidean
position vector xE = (τ, ~x) with the imaginary time τ = i t. Furthermore, we introduced the particle number
density N =ψγ0ψ.
Before we are able to solve the functional integral and, therefore, obtain an expression for the grand potential, we
linearise the Lagrangian using a mean-field approximation. To this end we expand the values of the scalar and
pseudoscalar condensates around their respective expectation values. Using the abbreviations φS(~x)

.
=
¬

ψψ
¶

and

~φP(~x)
.
=
¬

ψiγ5~τψ
¶

1, while neglecting second order terms and assuming the condensates to be time independent,

we obtain2

ψψ= φS +δφS ⇔ δφS =ψψ−φS ⇒
�

ψψ
�2
≈ 2ψφSψ−φ2

S ,

ψiγ5~τψ= ~φP +δ ~φP ⇔ δ ~φP =ψiγ5~τψ− ~φP ⇒
�

ψiγ5~τψ
�2
≈ 2ψiγ5~τ ~φPψ− ~φ2

P .
(2.7)

After plugging this approximation into our Lagrangian and rearranging the terms, our mean-field Lagrangian in
Euclidean space reads

LM F =ψ
�

γ0∂τ − iγ j∂ j +m− 2GS

�

φS(~x) + iγ5~τ · ~φP(~x)
��

ψ+ GS

�

φ2
S(~x) + ~φ

2
P(~x)

�

. (2.8)

Comparing this Lagrangian with the original one (eq. (2.1)), we can define a mass operator M̂(~x), the so called
constituent quark mass

M̂(~x) = m− 2GS

�

φS(~x) + iγ5~τ · ~φP(~x)
�

. (2.9)

Our mean-field Lagrangian now looks very much like the original. Especially if we switch back to Minkowski space

LM F =ψ
�

i /∂ − M̂(~x)
�

ψ− GS

�

φ2
S(~x) + ~φ

2
P(~x)

�

. (2.10)

Identifying the inverse propagator

S−1 = γ0
�

−∂τ +µ−
�

−iγ0γ j∂ j + γ
0M̂(~x)

��

= −γ0
�

∂τ −µ+He f f (~x)
�

, (2.11)

1 Strictly speaking we expand each component separatly, i.e. φa
P(~x)

.
=
¬

ψiγ5τaψ
¶

and combine them again aftewards.
2 To provide better readability we omitted the space dependency of the condensates.
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with the effective HamiltonianHe f f
3, and denoting the field-independent part as V (~x)≡ GS

�

φ2
S(~x) + ~φ

2
P(~x)

�

, the
partition function reads

Z =
∫

DψDψ ex p

�

∫

[0,β]×V

d xE (ψS−1ψ−V (~x))

�

. (2.12)

The field-independent part does not depend on any quark-spinor and, hence, it is nothing more than a constant
factor regarding the functional integral. Therefore, we are able to split the partition function into two factors Zkin
(containing the functional integral) and Zcond .
The kinetic part of the partition function yields (see appendix B.1)

Zkin = det
S−1

T
.

As the partition function can be split into two factors, the grand potential splits up into two summands. In total we
obtain

Ω= Ωkin +Ωcond = −
T
V

logZkin −
T
V

logZcond = −
T
V

logdet
S−1

T
+

T
V

∫

[0,β]×V

d4 xE V (~x) . (2.13)

Using the relation log det A= Tr log A, we can rewrite the kinetic term of the grand potential (eq. (2.13)) as follows

Ωkin = −
T
V

logdet
S−1

T
= −

T
V

Tr log
S−1

T
, (2.14)

where the trace has to be taken over the Dirac, colour and flavour space, as well as over the Euclidean space
[0,β]× V . As the condensates φS(~x) and ~φP(~x) only depend trivially on the colour, the trace over the colour space
amounts to a degeneracy factor Nc .
Assuming that the pseudoscalar condensates have a fixed direction in isospin space, it follows that ~τ · ~φP(~x) =
τ3φP(~x), if we choose the 3-direction. As a result the mass operator simplifies to

M̂(~x) = m− 2GS

�

φS(~x) + iγ5τ3φP(~x)
�

and our effective Hamiltonian becomes a direct product of two HamiltoniansHe f f =H+ ⊗H−, with

H+ = −iγ0γ j∂ j + γ
0M(~x) =

�

iσ j∂ j M(~x)
M∗(~x) −iσ j∂ j

�

, (2.15)

H− = −iγ0γ j∂ j + γ
0M∗(~x) =

�

iσ j∂ j M∗(~x)
M(~x) −iσ j∂ j

�

, (2.16)

where we used the chiral representation of the γ-matrices and the mass function

M(~x) = m− 2GS (φS(~x) + iφP(~x)) (2.17)

As we assume isospin invariance, the two Hamiltonians are isospectral and we may restrict ourselves to one and,
from now on, denote H ≡ H+ by implication. The trace over flavour space now amounts to another degeneracy
factor N f .
We are now left with the trace over the Dirac and Euclidean space. For this, we assume that the inverse propagator
in frequency-momentum space (cf. B.1)

S−1
p,p′,n =

�

iγ0ωn + γ
0µ− γ j p j

�

δ~p,~p′ −
∑

~q

M~qδ~p,~p′−~q =
�

iγ0ωn + γ
0µ
�

δ~p,~p′ −H~p,~p′

3 This approach will be helpful later on as our task will be to diagonalise the effective Hamiltonian.
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has already been diagonalised and call it Sp,n. We obtain

−
1
βV

TrV4,Dirac log
�

βS−1
�

= −
1
βV

Trp,Dirac log
�

βS−1
p,n

�

= −
1
βV

log
�

det
�

iβγ0
�

det (ωn − iµ+ iH )
�

= −
1
βV

∑

Eν,n

log
�

β4 (ωn − iµ+ iEν)
�

,

(2.18)

where Eν denote the eigenvalues of the Hamiltonian in frequency-momentum and Dirac space. We can calculate
the sum over all n by summing Matsubara frequencies (cf. B.2) and obtain

Ωkin = −
NcN f

βV

∑

Eν

log
�

2 cosh
�

β
Eν −µ

2

��

= −
NcN f

V

∑

Eν

�

Eν −µ
2

+ T log
�

1+ e−
Eν−µ

T

�

�

.
(2.19)

In general, the sum over Eν depends on the chosen mass modulation and, hence, we cannot simplify it without the
loss of generality. However, in the course of this work we will only consider mass modulations due to which the
eigenvalues Eν will come in pairs of opposite sign, i.e. ±|Eν|. As a result, we can perform one part of the sum and
our grand potential yields

Ωkin = −
NcN f

V

∑

Eν>0

�

Eν + T log
�

1+ e−
Eν−µ

T

�

+ T log
�

1+ e−
Eν+µ

T

��

, (2.20)

where we now only have to sum over all positive eigenvalues.
Furthermore, we will be able to diagonalise the Hamiltonian analytically and, as a result, the respective Hamilto-
nians will be block diagonal in momentum-Dirac space. Therefore the sum over all Eν > 0 will become a sum over
all momenta ~p and a sum over all positive eigenvalues Eλ = Eλ (~p; M) of the respective Hamiltonian in Dirac space
(cf. 3.1 and 4.2). As a result, our grand potential will take on the form

Ωkin = −
NcN f

V

∑

~p

∑

Eλ>0

�

Eλ + T log
�

1+ e−
Eλ−µ

T

�

+ T log
�

1+ e−
Eλ+µ

T

��

→−NcN f

∫

d3p

(2π)3
∑

Eλ>0

�

Eλ + T log
�

1+ e−
Eλ−µ

T

�

+ T log
�

1+ e−
Eλ+µ

T

��

.

(2.21)

where Eλ denote the eigenvalues in Dirac space and we took the continuum limit.
The first term of the integrand describes the divergent zero-point energy of the vacuum fv ac(Eλ), which we will
have to regularise (see section 2.3). The second and third summands can be combined and describe the medium
contribution fmed(Eλ, T,µ). They are also directly related to the quark and anti-quark occupation numbers, which
is evident if one takes the derivative with respect to µ. Thus they describe the contributions of quark and antiquarks.

Now that we have calculated the kinetic part of the grand potential and have defined an effective mass M , our
last task is to calculate the condensate contribution to the potential. For this purpose, we first solve the mass
function (eq. (2.17)) for the sum of the scalar and pseudoscalar condensate and afterwards we take the square of
the absolute value

φ2
S(~x) +φ

2
P(~x) =

|M(~x)−m|2

4G2
S

.

Plugging this into our condensate contribution V , we obtain

Ωcond =
T
V

∫

V4

d4 xE
|M(~x)−m|2

4GS
=

1
4GSV

∫

V

d3 x |M(~x)−m|2 , (2.22)

5



where we performed the integration over the imaginary time, since we will consider the condensates to be time
independent. However, we will allow a spatial modulation later on and, hence, we cannot perform the integration
over position space just yet.
As a result, we have found an overall expression for our grand potential

Ω=
1
V

∫

V

d3 x
|M(~x)−m|2

4GS
−

NcN f

V

∑

Eν>0

( fv ac(Eν) + fmed(Eν, T,µ)) , (2.23)

with

fv ac(Eν) = Eν and fmed(Eν, T,µ) = T log
�

1+ e−
Eν+µ

T

�

+ T log
�

1+ e−
Eν−µ

T

�

. (2.24)

Apart from regularising the vacuum contribution fv ac and defining a modulation for our mass function, we are
basically ready to evaluate the grand potential, and, thus, to examine the mass function, by looking for its global
minimum with respect to M(~x). To that end we could minimise the potential directly. Or we could look for its
extrema by searching for the roots of its functional derivative with respect to the constituent quark mass M(~x).
Using the first procedure we would end up with all local minima while the latter would return all local maxima
in addition to all local minima. Therefore we will have to calculate the values of the grand potential for all found
solutions, regardless of the procedure we use, and by doing so we identify the global minimum of the potential.
Repeating this procedure for several temperatures T with a fixed chemical potential µ or vice versa, will then give
us the mass function in dependence of T or µ. In the course of this work we will employ the latter procedure for
reasons which will become evident in section 3.3.

6



2.3 Regularisation

In the course of this work, we will only consider mass modulations due to which part of the sum over all eigenvalues
Eν in our kinetic grand potential (eq. (2.19)) will become a sum and subsequently, by taking the continuum limit,
an integral over the momentum ~p and a sum over all positive Dirac eigenvalues Eλ (cf. ch. 3.1 and 4.2). That is,
our kinetic potential will be of the form

Ωkin = −
NcN f

V

∑

Eν

�

Eν −µ
2

+ T log
�

1+ e−
Eν−µ

T

�

�

→−NcN f

∫

d3p

(2π)3
∑

Eλ>0

( fv ac (Eλ (~p; M)) + fmed (Eλ (~p; M) , T,µ))

= −NcN f (Ωv ac +Ωmed) ,

(2.25)

with fv ac and fmed as defined in eq. (2.24).
While the medium contribution Ωmed will be finite, the vacuum contribution Ωv ac will be infinite. And since the
NJL-Lagrangian is non-renormalisable due to the four-point interaction, we have to make use of a regularisation
scheme in order to render it finite.
All regularisation schemes have in common that they apply some sort of cutoff parameter Λ. Once one has chosen a
regularisation scheme, the cutoff parameter can be determined in a way that the model reproduces known proper-
ties of the investigated particles, for example the constituent quark mass or the pion mass and pion decay constant
in the vacuum. Yet not all schemes are suited for every problem, which basically means that we have to choose our
regularisation scheme carefully, as not to get stuck with artifacts, which would limit our insight into the behaviour
of said particles. In the following we briefly discuss two often applied regularization schemes. A more detailed
discussion can be found in [23].

2.3.1 Sharp 3-Momentum Cutoff

Using a sharp three-momentum cutoff, we are able to render the vacuum potential Ωv ac finite by restricting the
absolute value of the momentum to values lower than the cutoff (p ≤ Λ)

∫

d3p

(2π)3
fv ac(~p; M)→

∫ Λ
d3p

(2π)3
fv ac(~p; M) . (2.26)

This regularization scheme has the advantage that the integral can be performed analytically in special cases.
However, this scheme breaks Lorentz invariance and if we do not consider our mass modulation to be spatially
constant the sharp 3-momentum cutoff would limit the coupled momenta. As we want to introduce a spatially
dependent modulation later on, this regularisation scheme would therefore lead to unwanted artifacts and, hence,
does not fulfill our requirements which is why we will not use it.

2.3.2 Pauli-Villars Regularisation

The Pauli-Villars regularisation renders the vacuum potential finite by subtracting a function with the same asymp-
totic behaviour as the original one, in our case fv ac

∫

d3p

(2π)3
fv ac(~p; M)→

∫

d3p

(2π)3

n
∑

j=0

c j

q

f 2
v ac(~p; M) + jΛ2 . (2.27)

The cutoff parameter Λ acts on the quark energy in contrast to the sharp 3-momentum cutoff that acts on the
quark momenta. Another difference is, that the Pauli-Villars regularisation is Lorentz invariant. The number of
counterterms n depends on the degree of divergence of the original function. Although two counterterms would be
sufficient in our case, as two will render the gap-equations (cf. chapter 3) finite, we will in fact use three in order
to ensure better convergence and to render the thermodynamical potential finite as well. The coefficients c j are
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calculated in appendix C.2 and yield c j = {1,−3,3,−1}. As with a sharp 3-momentum cutoff, the integral can only
be solved analytically in special cases. Therefore, we will have to calculate it numerically alongside the medium
contribution. However, since this regularisation scheme renders the vacuum contribution finite without limiting
the coupled momenta, we will use it and from this point onward the vacuum contribution fv ac is given by

fv ac(~p; M) =
n
∑

j=0

c j

q

E2
λ
+ jΛ2 .
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3 Homogeneous Mass Modulation
After having developed the theoretical framework in the last chapter, we are now ready to actually define a mass
modulation and to examine the mass function as well as the various phases exhibited by the quarks. In this chapter
we will focus on a spatially constant condensate, i.e. φS(~x) = φS and φP(~x) = φP = 0. As a result, we are dealing
with a homogeneous mass function as M(~x) = M holds.
We will start with calculating the grand potential and the corresponding gap equation. Afterwards we will discuss
the numerical results.

3.1 Thermodynamic Potential

With a homogeneous mass modulation, the integral in the condensate part of the potential (eq. (2.22)) is per-
formed trivially

Ωcond =
1

4GSV

∫

V

d3 x |M(~x)−m|2 =
1

4GSV

∫

V

d3 x (M −m)2 =
(M −m)2

4GS
. (3.1)

Concerning the kinetic part of the potential, our task is to find the eigenvalues of the Hamiltonian as eq. (2.19)
shows. For that, we switch to momentum space using a Fourier transformation and find

H =
�

−~σ · ~p M
M ~σ · ~p

�

. (3.2)

Thus Hamiltonian is diagonal in momentum space, as well as block diagonal in momentum-Dirac space. There-
fore, the sum over all general eigenvalues Eν in eq. (2.20) splits into a sum over all momenta ~p, which can be
transformed into an integral by taking the continuum limit, and a sum over all positive eigenvalues Eλ of the
Hamiltonian in Dirac space.
The Dirac space eigenvalues Eλ yield

Eλ = ±
Æ

~p2 +M2 , (3.3)

with a degeneracy factor of 2. Plugging those into eq. (2.21), our grand potential for a homogeneous mass
modulation reads1

Ωhom =
(M −m)2

4GS
−

NcN f

π2

∞
∫

0

dp p2

�

Æ

~p2 +M2 + T log

�

1+ e−
p
~p2+M2+µ

T

�

+ T log

�

1+ e−
p
~p2+M2−µ

T

��

, (3.4)

where we switched to spherical coordinates and performed the angular integration.

3.2 Spectral Density Function

In the previous section we derived an expression for the grand potential, in which a momentum integral is present.
We can change that momentum integral into an energy integral by the means of substitution:

∞
∫

0

dp p2 ( fv ac(p; M) + fmed(p, T,µ; M)) =

∞
∫

0

dEρ(E, M) ( fv ac(E) + fmed(E, T,µ)) .

The function ρ(E, M) is called the spectral density function and "absorbs" the terms that are a result of the substi-
tution. In our case (homogeneous constituent mass), the spectral function reads:

ρ(E; M) = θ
�

E2 −M2
�

E
p

E2 −M2 , (3.5)

where θ (..) denotes the Heaviside step function and was introduced in order to perform the integral starting at zero.

1 Our general expression for the grand potential restricts us to the positive energy eigenvalues Eλ.

9



3.3 Gap Equation

In this work we will evaluate the thermodynamic potential Ω(T,µ; M) (eq. (3.4)) by calculating the roots of its
derivative with respect to the constituent mass M , also called the gap equation,

∂Ω

∂M
!
= 0 , (3.6)

and compare the values of the grand potential at those solutions in order to identify the global minimum.
The calculation of the derivative is straightforward and yields

0= M

�

1+
2NcN f GS

π2

∫ ∞

0

dE θ (E2 −M2)
E

p
E2 −M2

( fv ac(E) + fmed(E, T,µ))

�

−m , (3.7)

where we rearranged factors as we are only interested in the zeros. We will use this equation to numerically find
the value of the favoured constituent quark mass in dependence of the temperature T and chemical potential µ.
As our major interest lies in studying spontaneous symmetry breaking, we will mostly consider the so called chiral
limit, i.e. a bare quark mass of m = 0. In this case the gap equation has the trivial solution M = 0. If the trivial
solution is favoured for a fixed temperature and chemical potential, then chiral symmetry is restored.

3.4 Mass Function and Grand Potential

In this section we want to discuss the resulting mass function and grand potential. For that we firstly need to fix
the parameters, i.e. the coupling constant GS and the cutoff Λ. The parameters used are parameter set #1 listed in
table C.1 of appendix C.1. They were obtained in the chiral limit, so if a bare quark mass is introduced they will
not reproduce the exact same values of the observables. Nonetheless, in this chapter we will use a bare quark mass
of m= 5 MeV simply for comparison, as the basic differences between the chiral limit and a finite bare quark mass
will still be visible.

Figure 3.1 shows the mass function in dependence of the chemical potential at different temperatures with a finite
bare mass quark (left) and in the chiral limit (right). In both, the mass function is discontinuous for low temperat-
ures, which means that a first order phase transition occurs. At temperatures of around2 T = 75 MeV and higher
the mass function is continuous in the temperature and chemical potential. In the chiral limit, it exhibits a second
order phase transition into the chirally restored phase, while with a finite bare quark mass a second order phase

2 In the chiral limit, the critical point (CP), that is, the point at which the first order phase transition turns into a second order phase
transition, is at T ≈ 74.12 MeV and µ≈ 268.65 MeV.
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Figure 3.1.: Mass function M in dependence of the chemical potential µ at different temperatures T for a bare
quark mass of m= 5 MeV (left) and in the chiral limit (right) for a homogeneous mass modulation.
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Figure 3.2.: Grand potential in dependence of the constituent mass for several chemical potentials in the zero tem-
perature limit.

transition only occurs at the CP. For m 6= 0 we find a smooth crossover into a region where the chiral symmetry is
restored approximately, if we move away from the CP. This illustrates very well the explicitly broken chiral sym-
metry we mentioned regarding the NJL Lagrangian (cf. section 2.1). We also note that the transitions in the chiral
limit and with a finite bare quark mass occur at approximately the same chemical potential.

Figure 3.2 shows the grand potential in dependence of the constituent mass M for various chemical potentials
at a temperature of T = 0. With a finite bare quark mass, we can once again plainly see the explicitly broken
chiral symmetry, as we cannot exchange M and −M . Yet, it shows the same behavior as the right figure, where we
operate in the chiral limit: The closer to the first order phase transition, the lower the potential around/at M = 0
until (in the chiral limit at about µ≈ 311.63 MeV) both minima are at equal height, from which point onward the
minima at M = 0 are preferred and chiral symmetry is restored (approximately in case of a finite bare quark mass).
The figure on the right illustrates another behavior that occurs around first order phase transitions: the appearance
of a spinodal region. At a chemical potential of µ ≈ 300.41 MeV the maximum at M = 0 turns into a minimum
of the potential and therefore into a possible, yet energetically metastable, state. After the phase transition the
previously favoured state with a generated mass becomes metastable until a chemical potential of µ≈ 318.09 MeV,
where it disappears and only one possible state is left. This spinodal region is unique to first order phase transitions.

Next, we briefly want to discuss the behavior of the grand potential in the chiral limit around a second order
phase transition for completeness. This is presented in figure 3.3 at a temperature of T = 100 MeV. One can see
that the potential behaves differently in comparison with a first order transition: the maximum at M = 0 does not
turn into a minimum before the phase transition. Moreover, the favored constituent mass "moves" continuously
toward that maximum until they coincide. If we were to add a finite bare quark mass, the behavior of the minima
would not change. The maximum at around M = 0 would, on the other hand, move to the left until the merger
with the left, i.e. negative, minimum takes place. At that point (yellow line; 3rd from below) the curvature vanishes
and the phase transition occurs.
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Figure 3.3.: Grand potential in dependence of the constituent mass M for several chemical potentials at a temper-
ature of T = 100 MeV and in the chiral limit.

3.5 Phase Diagram

In this section we would like to calculate and discuss the phase diagram. Since only the phase boundaries enter
into the phase diagram, we do not have to calculate the self-consistent solution of eq. (3.7) for every point (T,µ).
Instead, using the chiral limit, we can calculate the lines at which the phase transition takes place by solving a
system of equations. Since we will use the chiral limit when we introduce an inhomogeneous mass modulation
in the next chapter, we will use it in this chapter as well. If one is not using the chiral limit, phase transition
boundaries can be obtained by calculating various susceptibilities, which would be beyond the scope of this work.
In the following, we will first derive equation(s) for the various lines that might be present in a phase diagram.
Afterward, we will calculate and discuss the phase diagram itself.

To that end we divide eq. (3.7) by M . This does not change the non-trivial solutions, i.e. M 6= 0, but we get
rid of the trivial one. The gap equation then reads

0= 1+
2NcN f GS

π2

∫ ∞

0

dE θ (E2 −M2)
E

p
E2 −M2

( fv ac(E) + fmed(E, T,µ)) . (3.8)

Now, we can take the limit M → 0 without automatically solving the equation. Yet, the resulting equation is the
same as taking the second derivative of the grand potential (eq. (3.4)) with respect to M at M = 0 and setting it
to zero

0= 1+
2NcN f GS

π2

∫ ∞

0

dE ( fv ac(E) + fmed(E, T,µ)) . (3.9)

By solving this equation for T (µ) we are able to calculate the temperature (chemical potential) at which, for
a given chemical potential (temperature), the maximum of the grand potential at M = 0 actually turns into a
minimum or in other words the point (T,µ) at which the grand potential has a saddle point at M = 0. Above the
CP this behavior corresponds to a second order phase transition (cf. section 3.4). For temperatures lower than
the temperature at the critical point the mass function exhibits a different behavior. The result we obtain for that
region corresponds to the left boundary of the spinodal region, that is, the region within which the grand potential
has two local minima.
The right boundary of said region can be calculated as well. For that we need a second equation, as the constituent
mass will not be zero. Since that boundary will also show us the last points (T,µ) at which a non-trivial solution to
the gap equation exists, we may use the derivative of eq. (3.8) with respect to M

0=
2NcN f GS

π2

∫ ∞

0

dE θ (E2 −M2)
EM

(E2 −M2)3/2
( fv ac(E) + fmed(E, T,µ)) . (3.10)
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This function will give us the mass M at which a saddle point occurs in the grand potential for a given T and µ or
if the mass M is known. Solving both equations (eq. (3.9) and eq. (3.10)) simultaneously for M and T (or µ),
while the chemical potential (temperature) is fixed, will give us the right boundary and the constituent mass M at
the boundary.
Using the same method, yet a different second equation, we are able to calculate the point (T,µ) at which both
minima of the grand potential within the spinodal region are at equal height, i.e. both solutions of the gap equation
yield the same result when plugged into the grand potential. We know that one solution is at M = 0 while for the
other M 6= 0 holds. Therefore we can use the free energy as second equation

0= Ωhom(T,µ; M)−Ωhom(T,µ; M = 0)

=
M2

4GS
−

NcN f

π2

∫ ∞

0

dE E
�

θ
�

E2 −M2
�
p

E2 −M2 − E
�

( fv ac(E) + fmed(E, T,µ)) .
(3.11)

The temperature (chemical potential) and mass M that solve both equations are the respective parameters at which
the mass function exhibits a first order phase transition (cf. section 3.4).

Figure 3.4 shows the phase diagram we obtain using the methods described above. Clearly visible is, that the
spinodal boundary lines only occur around a first order phase transition and they, as well as the first order trans-
ition boundary, end in the CP, from which point onward the phase transition is of second order. To the right of
the transition boundaries the chiral symmetry is restored while to the left we find a chirally broken phase with a
non-vanishing generated mass.

T
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Figure 3.4.: Phase diagram of the NJL model with a homogeneous effective mass modulation in the chiral limit. The
shaded area denotes the chirally broken phase. With a finite bare quark mass there would be no second
order phase transition, but a smooth crossover.
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4 Inhomogeneous Mass Modulation
After having examined the case of a homogeneous mass modulation in the last chapter, we will now turn our focus
to spatially dependent modulations. However, we will only consider periodic modulations, i.e. there exist linear
independent vectors ~a j with j ∈ {1,2, 3} so that M

�

~x + ~a j

�

= M(~x) holds. We will also stay in the chiral limit
throughout this chapter. We further simplify the problem by limiting the inhomogeneous mass modulation to one
dimension. Without loss of generality, we choose the z-direction, i.e. ~x = (0, 0, z)T .

4.1 Ansatz for a Mass Modulation

The simplest ansatz for an inhomogeneous mass modulation is a single plane wave, the so called chiral density
wave (CDW)

M(~x) =∆ ei~q·~x , (4.1)

where ∆ denotes the amplitude and ~q = (0, 0, q) the wave vector.
Writing out the exponential function and comparing it with eq. (2.17), we can see that this modulation corresponds
to a sinusoidal behaviour of the scalar and pseudoscalar condensates with

φS(~x) = −
∆

2GS
cos (~q · ~x) and φP(~x) = −

∆

2GS
sin (~q · ~x) . (4.2)

Alternatively we could use a real ansatz for our modulation that has a lower free energy like for example a one
dimensional solitonic modulation with [24]

M(z) =∆ν
sn(∆z|ν)cn(∆z|ν)

dn(∆z|ν)
,

where sn, cn and dn are Jacobi elliptic functions, while ∆ and ν denote the variational parameters or a sinusoidal
one with

M(~x) =∆ cos (~q · ~x) ,

where ∆ and ~q have the same meaning as for the CDW. In contrast to the CDW and the solitonic modulation, no
analytic expression for the dispersion relation of the real sinusoidal ansatz is known, which means that we would
have to implement some sort of numerical diagonalization procedure for the Hamiltonian. However, assuming we
would do that, neither the solitonic nor the sinusoidal nor the CDW modulation exhibit different phases, although
the order of the transitions and the size of those phases may differ, which means that we would not get a better
insight into the mechanisms of spontaneous chiral symmetry breaking, but solely a better insight into the ground
state. Therefore the simplest ansatz for a mass modulation suffices and we will use the CDW in this work.
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4.2 Thermodynamic Potential

In section 2.2 we calculated an expression for the grand potential (eq. (2.23)) within which the eigenvalues of the
Hamiltonian in the kinetic term still have to be found and the integration over position space in the condensate
term still has to be performed. In this chapter we will do both, where finding the eigenvalues Eν of the Hamiltonian
will be the major task. Hence, we will start by following [25] to compute those eigenvalues and afterwards we will
perform the integration over position space in the condensate part.
There are a few ways to calculate the eigenvalues of the Hamiltonian. For example, as outlined in [26] we could
diagonalise the Hamiltonian in momentum space and use a procedure given in [27] in the similar context of
crystalline color superconductivity. If no analytical expression for the energy eigenvalues can be found, this method
can be used. It is described in detail in, for example, [21] or [28]. However we will take a different approach.
Plugging our mass modulation into our Hamiltonian (eq. (2.15)) we find

H(~x) = −iγ0γ j∂ j + γ
0∆
�

cos (~q~x) + iγ5 sin (~q~x)
�

= −iγ0γ j∂ j + γ
0∆eiγ5~q·~x . (4.3)

Obtaining the eigenvalues means solving the eigenvalue problem Hψ = Eψ. To that end we now perform a local
rotation of the quark fields using

ψ= e−
i
2 γ

5~q·~xψ′ = U(~x)ψ′ ,

which transforms our eigenvalue equation into H ′ψ′ = Eψ′, with

H ′ = U†(~x)H U(~x)

= e
i
2 γ

5~q·~x
�

−iγ0γ j∂ j + γ
0∆eiγ5~q~x

�

e−
i
2 γ

5~q·~x

= −e
i
2 γ

5~q·~x iγ0γ j∂ je
− i

2 γ
5~q·~x + e

i
2 γ

5~q·~xγ0∆eiγ5~q~x e−
i
2 γ

5~q·~x

= −e
i
2 γ

5~q·~x iγ0γ j
�

∂ je
− i

2 γ
5~q·~x + e−

i
2 γ

5~q·~x∂ j

�

+ e
i
2 γ

5~q·~xγ0∆e
i
2 γ

5~q·~x

= −e
i
2 γ

5~q·~x iγ0γ j
�

−e−
i
2 γ

5~q·~x i
2
γ5q j + e−

i
2 γ

5~q·~x∂ j

�

+ e
i
2 γ

5~q·~xγ0∆e
i
2 γ

5~q·~x

= −e
i
2 γ

5~q·~x e−
i
2 γ

5~q·~x iγ0γ j
�

−
i
2
γ5q j + ∂ j

�

+ e
i
2 γ

5~q·~x e−
i
2 γ

5~q·~xγ0∆

= −iγ0γ j
�

−
i
2
γ5q j + ∂ j

�

+ γ0∆

= −iγ0γ j∂ j + γ
0γ jγ5Q j + γ

0∆ ,

(4.4)

where we used that
�

γ5,γ j
	

= 0=
�

γ5,γ0
	

, while we abbreviated Q j =
q j
2 .

As the Hamiltonian does not depend on ~x any longer, we are able to use a standard plane-wave ansatz and set
ψ′ = ei~p~xψ′′ to obtain

H ′ψ′ =
�

−iγ0γ j∂ j + γ
0γ jγ5Q j + γ

0∆
�

ei~p~xψ′′ = ei~p~x
�

γ0γ j p j + γ
0γ jγ5Q j + γ

0∆
�

ψ′′ = ei~p~x Eψ′′

⇐⇒
�

γ0γ j p j + γ
0γ jγ5Q j + γ

0∆
�

ψ′′ = Eψ′′ .
(4.5)

As with the homogeneous mass modulation (cf. ch. 3.1), the sum over all general eigenvalues Eν (cf. eq. (2.20))
splits into a sum over all momenta ~p, which we will again turn into an integral over all energies E by using the
spectral density function, and a sum over all positive eigenvalues Eλ of the Hamiltonian in Dirac space. For the
latter, we obtain

E2
± = ~p

2 + ~Q2 +∆2 ± 2
r

∆2 ~Q2 +
�

~p · ~Q
�2

. (4.6)

Our next step is using these eigenvalues to calculate the spectral density function ρC DW and plug it into our grand
potential. The spectral density function has been calculated by Nickel [24] and yields

ρC DW (E,Q;∆) =
E
2

�

θ (E −Q−∆)
q

(E −Q)2 −∆2 + θ (E −Q+∆)θ (E +Q−∆)
q

(E +Q)2 −∆2 +

+θ (Q− E −∆)
�q

(E +Q)2 −∆2 −
q

(E −Q)2 −∆2
��

,
(4.7)
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where we restricted ourselves to Q,∆, E > 0 for simplicity.
We are now left with calculating the condensate part of the potential. Plugging our CDW mass modulation into eq.
(2.22) yields

Ωcond =
1
V

∫

V

d3 x

�

�∆ei~q·~x
�

�

2

4 GS
=
∆2

4GSV

∫

V

d3 x =
∆2

4GS
. (4.8)

As a result our overall grand potential Ω is given by

Ω=
∆2

4GS
−

N f Nc

π2

∫ ∞

0

dEρC DW (E,Q;∆) ( fv ac(E) + fmed(E, T,µ)) . (4.9)

In case of Q = 0 we obtain, of course, the homogeneous grand potential.

4.3 Gap Equation

Having calculated the grand potential in the previous section, we are now ready to calculate the gap equations. In
contrast to the homogeneous case, where we only had to vary one parameter, in the inhomogeneous case we have
to vary two: ∆ and Q. This means that we have need of two gap equations, resulting from the stationary conditions

∂Ω

∂∆

!
= 0 and

∂Ω

∂Q
!
= 0 , (4.10)

which have to be fulfilled simultaneously in order to obtain the local minima of the grand potential. As with a
homogeneous mass modulation, the points (∆,Q) of the global minima of the grand potential are obtained by
comparing the values for the grand potential at all found solutions.
The calculation of the respective derivatives is straightforward and, after some rearrangements, yield1

G∆ = 2 GS
∂Ω

∂∆
=∆

�

1+
GSN f Nc

π2

∫ ∞

0

dE ρ∆ ( fv ac(E) + fmed(E, T,µ))

�

= 0 , (4.11)

GQ =
2π2

Nc N f

∂Ω

∂Q
=

∫ ∞

0

dE ρQ ( fv ac(E) + fmed(E, T,µ)) = 0 , (4.12)

where we abriged

ρ∆ = E

�

θ (E +Q−∆)θ (E −Q+∆) + θ (Q−∆− E)
Æ

(E +Q)2 −∆2
+
θ (E −Q−∆)− θ (Q−∆− E)

Æ

(E −Q)2 −∆2

�

, (4.13)

ρQ = E

�

(E +Q)
θ (E +Q−∆)θ (E −Q+∆) + θ (Q−∆− E)

Æ

(E +Q)2 −∆2
− |E −Q|

θ (E −Q−∆) + θ (Q−∆− E)
Æ

(E −Q)2 −∆2

�

. (4.14)

Note that we obtain the homogeneous gap equation (eq. (3.7)) for Q = 0.

1 The derivatives of the Heaviside functions either do not contribute or cancel each other out.
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4.4 Calculating the Phase Boundaries

In order to find equations that will give us the phase transition boundaries of a CDW mass modulation, we can
transfer the methods developed in section 3.5 to our current needs, since the general mechanisms at the phase
boundaries should not change. Yet, there are several differences we have to account for, the major one being that
we are now dealing with a second parameter which results in at least one additional equation needed to calculate
the respective boundaries.
Once again, we start with getting rid of the trivial solution of G∆ (eq. (4.11)) by dividing it by ∆

1+
GSN f Nc

π2

∫ ∞

0

dE ρ∆ ( fv ac(E) + fmed(E, T,µ)) = 0 . (4.15)

The limit ∆→ 0 does exist and yields

1+
GSN f Nc

π2

∫ ∞

0

dE E
�

1
E +Q

+
1

E −Q

�

( fv ac(E) + fmed(E, T,µ)) = 0 . (4.16)

This means that we can once again use it as our first equation to obtain the second order phase transition boundary.
It is intuitive to consider the gap equation of Q as second equation. However, at∆= 0 the gap equation of Q equals
zero for all Q, which makes it useless in its current form. As a workaround we can expand GQ around ∆= 0:

GQ(∆) =
1
2

∂ 2GQ

∂∆2

�

�

�

�

∆=0
∆2 +

1
24

∂ 4GQ

∂∆4

�

�

�

�

∆=0
∆4 +O (∆6) = 0 . (4.17)

Dividing this equation by ∆2 will rid us of the trivial solution ∆= 0 without changing the non-trivial solutions and
we can once again take the limit ∆→ 0. Omitting irrelevant constant factors, we obtain 2

∫ ∞

0

dE E

�

1

(E −Q)2
−

1

(E +Q)2

�

( fv ac(E) + fmed(E, T,µ)) = 0 . (4.18)

However, if implemented in full, this equation turns out to be too challenging numerically. Yet, comparing it with eq.
(4.16), we see that eq. (4.18) is the derivative of eq. (4.16) with respect to Q. Therefore, we are able to numerically
calculate the derivative of eq. (4.16) with respect to Q using the difference quotient, which is less demanding
numerically, and use it as our second equation. As a result, we can simultaneously solve equations (4.16) and
(4.18) at a given temperature (chemical potential) in order to obtain the chemical potential (temperature) at
which a second order phase transition takes place while also getting the value of Q at those boundaries.
Since Q might be zero, we will, of course, find all "homogeneous" boundary lines corresponding to eq. (4.15) at Q =
0 (cf. section 3.5) as well. Thus, for temperatures below the critical point we will again obtain solutions with Q = 0
that give us the left boundary of the homogeneous spinodal region. As we are dealing with an inhomogeneous
mass modulation there might also exist an inhomogeneous spinodal region with at least one solution where Q 6= 0.
Unfortunately we are currently unable to calculate the boundaries of said region. However, in analogy to the
homogeneous spinodal region, the inhomogeneous spinodal region should encapsulate a first order phase transition
from or to the inhomogeneous phase.
In section 3.3 we only needed two equations to calculate the first order transition boundary. Now we will need four,
as it might not be a first order transition to the restored phase with ∆ = 0 and Q = 0, but it may be a first order
phase transition from the homogeneously broken phase with ∆ 6= 0 and Q = 0 to the inhomogeneously broken
phase with∆ 6= 0 and Q 6= 0, or vice versa. Therefore, we cannot set the "second"∆ to zero and use the free energy.
Yet, at both minima the grand potential will still yield the same value at the first order phase transition, i.e.

Ω(T,µ,Q,∆1)−Ω(T,µ, 0,∆2) = 0 . (4.19)

As second equation we can simply use eq. (4.12), while eq. (4.11) or eq. (4.15) gives us the third equation. As
fourth equation we can use the homogeneous gap equation which corresponds to eq. (4.11) at Q = 0. Solving
those four equations simultaneously for Q,∆1,∆2 and µ or T will give us the first order transition boundary from
the homogeneous to the inhomogeneous phase, or vice versa if that should exist.

2 Once again, the derivatives of the Heaviside functions either do not contribute or cancel each other out.
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4.5 Numerical Results

In this chapter we present the numerical results obtained using the methods developed above. We will push the
validity of the NJL model to its limit and investigate the phases at high chemical potential and high temperature.

Figure 4.1 shows the phase diagram for a vacuum constituent quark mass of M = 300 MeV that we obtained
using the methods described in the previous section. We can see that for temperatures below the Lifshitz point 3

(LP) and low chemical potential a first order phase transition from the homogeneously to the inhomogeneously
broken phase occurs, while above the LP the transition is to the restored phase and of second order, complying
with the results of section 3.4. The inhomogeneous first order phase transition takes place only slightly before
what would be a homogeneous first order transition to the restored phase. The result is an inhomogeneous "island"
that, compared with the homogeneous case, extends the overall broken phase toward higher chemical potentials.
Eventually this island gives way to the restored phase by a second order phase transition. At even higher chemical
potential a second inhomogeneous phase ("continent") arises for which the transition is of second order. This phase
extends to high chemical potential (cf. figure 4.2) as well as high temperature (cf. figure 4.3) and encloses the
restored phase entirely, making it some sort of "lake".

3 Commonly used to describe the point at which three phase transition boundaries meet. In our case it coincides with the critical point
of chapter 3.

T
in

M
eV

µ in MeV

0

100

200

300

400

500

600

0 200 400 600 800

∆ 6= 0, Q = 0

∆ = 0, Q = 0

∆ 6= 0, Q 6= 0

0

20

40

60

80

280 300 320 340

∆ 6= 0, Q = 0

∆ = 0, Q = 0

∆ 6= 0, Q 6= 0

Figure 4.1.: Phase diagram for a vacuum constituent quark mass of M = 300 MeV. The grey shaded area denotes the
homogeneously broken phase, while the orange area denotes the inhomogeneously broken phase. A
white background illustrates the restored phase. The black dot symbolises the LP. Dashed lines represent
second order phase transitions, solid lines correspond to first order transitions. Blue lines correspond
to the homogeneous, black lines to inhomogeneous phase transitions. The red dotted lines show two
(homogeneous) spinodal boundaries. The dashed dotted green line denotes the continent boundary in
the no-sea approximation.
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Figure 4.2.: Parameter ∆ and Q in dependence of the chemical potential µ at a temperature of T = 0 (left) and
T = 25 MeV (right). It is clearly visible that both parameters strictly increase in value for arbitrarily high
chemical potential.
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Figure 4.3.: Parameter∆ and Q in dependence of the temperature T at a chemical potential of µ= 790 (upper left),
µ= 800 MeV (upper right) and µ= 850 (below). Obviously, at a fixed but high chemical potential, the
amplitude ∆ does not steadily decrease immediately at low, yet growing temperatures, but increases
initially, forming a local maximum. At higher or lower chemical potential this is not case.
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In figure 4.2 we present the favoured values of the amplitude∆ and wave number Q in dependence of the chemical
potential µ at temperatures of T = 0 and T = 25 MeV. One can see that the island is characterised by the appearance
of a non-zero wave number and by a discontinuity in the amplitude ∆. The latter drops to zero at the transition
to the restored phase, while the wave number strictly increases. At the continent boundary the amplitude is con-
tinuous and strictly increases henceforth. The wave number on the other hand has a discontinuity once again. In
fact it seems as if an inhomogeneous solution "hides" itself at ∆ = 0, where the grand potential is degenerate, and
steadily "moves" to higher values of the wave number, reappearing at a certain temperature and chemical potential.

Figure 4.3 shows the amplitude ∆ and wave number Q in dependence of the temperature T at certain chem-
ical potentials µ. Basically we see that the same characteristics apply as for the case of a fixed temperature and
varied chemical potential. The difference being that we now only capture the continent and, hence, no first order
phase transition or homogeneously broken phase occurs. Curiously enough, the amplitude first increases before
decreasing and, at a chemical potential of µ = 790 MeV, inducing a second order phase transition to the restored
phase. At higher temperatures another second order phase transition takes place. The amplitude now shows ex-
actly the same characteristics as for a fixed temperature and high chemical potential. At higher chemical potential
no phase transition and therefore, no restored phase occurs. Nonetheless, the behaviour of the amplitude at lower
temperatures does not change immediately as can be seen for the chemical potentials of µ= 800 MeV and µ= 850
MeV. However, this changes at higher chemical potentials, where the amplitude strictly increases and therefore
behaves similar to the case of a fixed temperature and varied chemical potential.

All these characteristics also appear when fixing the parameters to obtain a higher or lower constituent mass
in the vacuum (cf. figure 4.4), which is basically obtained by a higher or lower coupling constant, respectively.
Additionally, a higher coupling constant moves the continent towards lower chemical potential and temperature
until it merges with the island. A lower coupling constant on the other hand, moves the continent towards higher
chemical potential and temperature. However, a lower coupling constant also moves the homogeneously broken
phase, this time towards lower chemical potential and temperature, while a higher coupling constant moves that
phase towards higher chemical potential and temperature. A higher coupling constant also widens the island, while
a lower one narrows it.
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Figure 4.4.: Phasediagram for a constituent quark mass of M = 250 MeV (left) and M = 330 MeV (right) for
comparison. The illustrations are the same as in figure 4.1. The parameter sets (cf. tab. C.1) are #2 (left,
M = 250 MeV) and #3 (right, M = 330 MeV).
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4.6 Examining the Continent

Before further investigating the appearance of the continent we first would like to briefly recap the mechanisms
leading to the formation of the continent at low temperatures as reported in [15]. To that end, we subtract the free
energy of the restored phase from the general grand potential

Ω−Ωrest =
∆2

4GS
−

N f Nc

π2

∫ ∞

0

dE [ρC DW (E,Q;∆)−ρC DW (E, 0, 0)] [ fv ac(E) + fmed(E, T,µ)] . (4.20)

If the difference is smaller than 0, then the chiral symmetry is broken, otherwise it is restored. Since the condensate
term is positive at all times, i.e. it disfavours chiral symmetry breaking, the integral must be positive in order to
allow for preferred inhomogeneous phases. Figure 4.5 shows the functions that enter the integral. The regularised
vacuum contribution fv ac is negative for all energies (red solid line in fig. 4.5a) and its minimum is at E = 0.
The medium contribution fmed , on the other hand, is positive for all energies, its maximum being at E = 0. As a
result, the sum f = fv ac + fmed becomes less negative with increasing T and µ at small energies until changing its
sign. In other words, with increasing T and µ, the vacuum contribution will eventually lose out to the medium
contribution at small energies, while always winning at higher energies. This is also illustrated in figure 4.5a for
the values (T,µ) = (0,600) MeV (green dashed line) and (T,µ) = (600,0) MeV (blue dotted line).
Thus, the spectral density function of the self-consistent solutions ρC DW (E,Q;∆) minus its restored counterpart
ρC DW (E, 0; 0) should, in principle, exhibit similar characteristics regarding the sign change. As figure 4.5b shows,
similar mechanisms do indeed apply. For Q = 0 the difference δρ of both densities of states is negative for all
energies (red solid line in fig. 4.5b) and its absolute value increases with increasing ∆. Therefore, in the va-
cuum, the integrand of equation (4.20) is positive for all ∆ 6= 0 and the free energy gain is stabilised by the
condensate term at some optimum value of ∆. For increasing temperature and chemical potential, however, a
non-trivial solution will become more and more disfavoured, as the integrand becomes less and less positive un-
til eventually changing sign. This explains the non-existence of the continent in case of a homogeneous mass
modulation. Keeping ∆ 6= 0 fixed and increasing Q, δρ becomes less and less negative at small energies until
changing its sign in that region for Q ? ∆, while it remains negative for E ? Q − ∆

2

4Q at all times (cf. green dot-
ted and blue dashed line in fig. 4.5b). Hence, an inhomogeneous phase can only exist if Q > ∆ holds. Note
that, at a given T and µ, we can always find a tuple (∆,Q) for which the integrand is positive for all energies.
Yet said tuple does not need to correspond to a minimum of the potential. In fact, this is approximately true
only for the case of low temperatures and high (but not arbitrarily high) chemical potentials. Considering this
case, we can estimate the value of Q within the continent for small T (cf. fig. 4.1). In this region the sum f
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Figure 4.5.: Both factors of the integrand of the free energy Ω−Ωrest in dependence of the energy E. All graphs
were calculated using the stable values for ∆ and Q at the specified temperatures T and chemical
potentials µ. For T = 0 and µ = 0 those are ∆ = 300 MeV and Q = 0. At T = 0 and µ = 600 MeV we
find ∆ ≈ 90.61 MeV and Q ≈ 518.30 MeV, while at T = 600 MeV and µ = 0 the stable solutions are
∆≈ 526.02 MeV and Q ≈ 2246.58 MeV.
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changes sign at E ≈ µ, allowing us to roughly estimate the wave number with Q ≈ µ. For high temperatures
we are unable to find such an approximation. While δρ does not depend on the temperature or the chemical
potential, and, hence, keeps its overall shape, the sum f becomes larger than zero for almost all energies and
the negative part of f can be neglected (cf. dashed blue line in fig. 4.5a). A favoured inhomogeneous solution
now exists, if the positive part of δρ is amplified in a way that it becomes larger than the negative part of δρ,
while the latter has to be "cut" by the sum f . This is basically achieved by an optimum value for Q, while ∆
mainly widens the peaks. Nonetheless, the optimum value of Q also depends on ∆. As in the homogeneous case,
the value of ∆ is stabilised by the condensate term. As an overall result we can conclude that the appearance of
inhomogeneous phases is induced by the medium contribution fmed , which complies with the results of [29, 30, 31].

In order to further investigate the appearance of the continent, we now apply the "no-sea" approximation, i.e.
we set our cutoff to Λ = 0. This basically amounts to equating the vacuum contribution fv ac to zero in the grand
potential (eq. (4.9)) and the gap equations (eq. (4.11) and eq. (4.12)). As we do not fit the values of the coupling
constants Gs to this "regularisation", but keep using the coupling constants given in table C.1, the results we obtain
will not reflect real existing phases. Nonetheless, as we have seen above, inhomogeneous phases are induced by the
medium and at high temperatures and high chemical potentials the medium contribution overcomes the vacuum
contribution. From those arguments it follows that the continent should also exist with this "regularisation". And
indeed, using the "no-sea" approximation we find that only the continent exists (the beginning is given by the green
dashed dotted line in fig. 4.1 and 4.4), the onset being a second order phase transition. As one can see, for low
temperatures the vacuum contribution with the PV regularisation "pulls" the continent towards the vacuum, while
it "pushes" the continent away from the vacuum at higher temperatures. This can be attributed to the favoured
value of the wave number Q: At low temperatures the preferred wave number is relatively small, keeping the
positive part of δρ at small energies E (cf. fig. 4.5b), i.e. a region, where the vacuum contribution fv ac has the
most impact on the sum f .

Taking a closer look at the spectral density function reveals, that

lim
∆→∞

ρC DW (E,Q;∆) = 0 and lim
Q→∞

ρC DW (E,Q;∆) = E2 (4.21)

for all finite Q, T,µ and ∆, T,µ, respectively. Since the condensate part of the potential Ω is positive for all ∆ and
there are no singularities within ρ, it follows that the potential is bounded from below for all ∆ and fixed Q, T,µ.
This does not necessarily have to hold for all Q and fixed ∆, T,µ. However, ρC DW (E, 0, 0) = E2 and, therefore,

lim
Q→∞

(Ω−Ωrest) =
∆2

4GS
≥ 0 (4.22)

holds for all finite ∆, T,µ. As we expect that the value of Q becomes very large for extremely high temperatures
and chemical potentials (cf. fig. 4.2 and 4.3) this result seems to indicate that the continent does not extend to
arbitrarily high temperatures and chemical potentials. On the other hand, from the figures 4.2 and 4.3 we may
also conclude that, if the continent does extend to arbitrarily high temperatures and chemical potentials, the self-
consistent solutions for ∆ and Q would be approximately equal, i.e. ∆Q ≈ 1. Using this approximation, the spectral

density function becomes negative for all E ? 3Q
4 . If we now take the limit Q→∞, the integrand will be positive

for all E. Thus, the continent may very well extend to arbitrarily high temperatures and chemical potentials.
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5 Conclusion
In this work we have studied chiral symmetry breaking at high chemical potential and temperature for a spatially
dependent, periodic mass modulation in the two-flavour Nambu–Jona-Lasinio model.
We started with the introduction of the NJL-Lagrangian and the derivation of the general thermodynamic potential
in chapter 2. At the end of that chapter we briefly discussed two often used regularisation schemes and chose
the Pauli-Villars regularisation. We proceeded with introducing the easier case of homogeneous condensates and
discussed the numerical results, including the phase diagram, in chapter 3. Furthermore, we developed methods
to calculate the phase boundaries and other lines that might appear in a phase diagram in section 3.3. Afterwards
we turned our focus towards spatially dependent mass modulations in chapter 4. After having chosen our mass
modulation to be the chiral density wave (sec. 4.1), we calculated the corresponding thermodynamic potential
(sec. 4.2). In section 4.3 we computed the equations needed to examine the inhomogeneous mass function and
transferred the methods to calculate the phase transition boundaries to the case of inhomogeneous condensates.
The latter were then used to calculate the phase diagram. We found that the second inhomogeneous phase does not
only seem to extend toward (probably arbitrarily) high chemical potential, but toward high temperatures as well.
We further examined the mass function in dependence of the chemical potential and temperature, respectively, and
found both to behave more or less the same. At a fixed but high chemical potential, i.e. at the beginning of the
continent at low temperatures, the amplitude of the mass modulation ∆ and the wave number Q in dependence
of the temperature first increase, before decreasing and allowing a second order phase transition to the restored
phase. At higher temperatures another second order phase transition to the chirally broken phase takes place once
again. This behaviour still occurs in a region where the continent is not "interrupted" by a restored phase, yet, it
disappears completely for even higher chemical potentials. We went on to discuss the mechanism leading to the
appearance of the continent and, using the no-sea approximation, we saw that the continent still shows. However,
the actual shape of the continent boundary in the T − µ plane does depend on the vacuum contribution and,
consequently, on the regularisation.
Afterward we discussed the spectral density function explicitly. We found that the potential is bounded from below
for all amplitudes ∆ and fixed wave numbers Q and vice versa. However, we cannot rigorously prove that this
holds if we vary both variables at the same time, although we do believe this to be the case. Lastly, we found that
the continent may very well extend to arbitrarily high temperatures and chemical potentials.
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A Conventions
In this work we will use natural units (unless explicitly stated otherwise), i.e.

ħh= c = kB = 1 .

We will use greek letters to indicate Lorentz indices running from 0 to 3, while Latin letters as indices run from 1
to 3. Furthermore, we use the Einstein convention at all times, i.e.

a j b
j =

∑

j

a j b
j .

When calculating in Minkowski space we use the metric gµν = diag {1,−1,−1,−1}.
In the chiral representation the γ-matrices read:

γ0 =
�

0 1
1 0

�

, γ j =
�

0 σ j

−σ j 0

�

, γ5 =
�

−1 0
0 1

�

,

where 1 denotes the 2× 2 identity matrix and σ j the Pauli matrices:

σ1 =
�

0 1
1 0

�

, σ2 =
�

0 −i
i 0

�

, σ3 =
�

1 0
0 −1

�

.

A.1 Fourier Decomposition

In this work we will transform spinors according to

ψ(~x) =
1
p

V

∑

~p,n

e−i(ωnτ−~p~x)ψn(~p) ,

ψ(~x) =
1
p

V

∑

~p,n

ei(ωnτ−~p~x)ψn(~p) ,
(A.1)

where ωn =
(2n+1)π
β denote the fermionic Matsubara frequencies, with the inverse temperature β = 1

T .
In the course of this work, we will only consider inhomogeneous mass modulations that are periodic and time
independent. That is, there exist linear independent vectors ~a j , j ∈ {1, 2,3}, so that M

�

~x + ~a j

�

= M (~x) and wave
vectors ~qk which obey ~qk · ~a j = 2π · n jk , n jk ∈ Z ∀ j, k. Therefore, we will Fourier transform the mass according to

M(~x) =
∑

{~q}

ei~q~x M~q . (A.2)

.
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B Calculations for the General Grand Potential

B.1 Calculating the Functional Integral

In section 2.2 we have to calculate the functional integral in order to obtain an expression for the partition function.
To solve it we start with eq. (2.12) and first concentrate on the exponent, the Euclidean action SE , while neglecting
the condensate contribution as it does not affect the outcome. Using a discrete Fourier transformation on the
spinors (cf. eq. (A.1)) and the mass function (cf. eq. (A.2)), we obtain

SE =

∫

[0,β]×V

d4 xE

 

1
p

V

∑

~p′,m

ei(ωmτ−~p′ ~x)ψm(~p
′)

!

S−1

 

1
p

V

∑

~p,n

e−i(ωnτ−~p~x)ψn(~p)

!

=

∫

[0,β]×V

d4 xE

 

1
p

V

∑

~p′,m

ei(ωmτ−~p′ ~x)ψm(~p
′)

!  

−γ0∂τ + γ
0µ+ iγ j∂ j −

∑

~q

ei~q~x M~q

!  

1
p

V

∑

~p,n

e−i(ωnτ−~p~x)ψn(~p)

!

=
1
V

∫

[0,β]×V

d4 xE

∑

~p,~p′,m,n

ei((ωm−ωn)τ+(~p−~p′)~x)ψm(~p
′)

 

i γ0ωn + γ
0µ− γ j p j −

∑

~q

ei~q~x M~q

!

ψn(~p) ,

(B.1)

Now, we are able to perform the integration over the imaginary time trivially as we identify the integral represent-
ation of the Kronecker-Delta with respect to the Matsubara frequencies. Yet, we have to be careful regarding the
integration over position space. To address that, we separate the mass function from the other three summands
and integrate them separately

SE,1 =

∫

V

d3 x ei(~p−~p′)~xψn(~p
′)
�

iγ0ωn − γ j p j + γ
0µ
�

ψn(~p) = Vψn(~p
′)
�

iγ0ωn − γ j p j + γ
0µ
�

δ~p,~p′ψn(~p) (B.2)

SE,2 = −
∫

V

d3 xψn(~p
′)

 

∑

~q

ei(~p+~q−~p′)~x M~q

!

ψn(~p) = −V ψn(~p
′)

 

∑

~q

M~qδ~p,~p′−~q

!

ψn(~p) . (B.3)

This leads to

SE =
β

V

∑

~p,~p′,n

�

SE,1 + SE,2

�

= β
∑

~p,~p′,n

ψn(~p
′)

 

�

iγ0ωn − γ j p j + γ
0µ
�

δ~p,~p′ −

 

∑

~q

M~qδ~p,~p′−~q

!!

ψn(~p) (B.4)

= β
∑

~p,~p′,n

ψn(~p
′)S−1

p,p′,nψn(~p) , (B.5)

where S−1
p,p′,n denotes the inverse quark propagator in frequency-momentum space. Plugging this result into our

partition function (eq. (2.12)) and performing the functional integral yields

Z =
∫

Dψn(~p
′)Dψn(~p) exp

 

β
∑

~p,~p′,n

ψn(~p
′)S−1

p,p′,nψn(~p)

!

= detβS−1
p,p′,n . (B.6)
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B.2 Calculating the Sum Over the Matsubara Frequencies

After having calculated the trace over frequency-momentum and Dirac space in the previous section, our final step
is to calculate the sum over the fermionic Matsubara frequencies

∑

n

log
�

β4 (ωn − iµ+ i Eν)
�

. (B.7)

To calculate it, we start with differentiating the sum with respect to Eλ

∂

∂ Eλ

∑

n

log
�

β4 (ωn − iµ+ i Eν)
�

=
∑

n

i
ωn − iµ+ i Eν

=
∑

n

1
Eν − (iωn +µ)

. (B.8)

Now we will use the residue theorem "backwards", i.e. find a function f (z) to which eq. (B.8) are the residues.
One possibility is [32]

f (z) =
β

2
tanh

�

β
z −µ

2

�

·
1

Eν − z
, (B.9)

if the contour C1 is chosen in a such way that it contains the poles zn = iωn + µ, but not the pole zλ = Eν. From
the residue theorem it follows that

1
2πi

∮

C1

dz f (z) =
∑

a

resa f =
∑

n

resiωn+µ f =
∑

n

1
Eν − (iωn +µ)

holds. We are now able to transform the contour C1 into a new contour C2 which does not contain the points
zn = iωn +µ, but which does encircle the pole zλ clockwise. The resulting residue yields

resEν f = lim
z→Eν

(z − Eν) f (z) =
β

2
tanh

�

β
Eν −µ

2

�

. (B.10)

Therefore we can rewrite our sum over the Matsubara frequencies as

1
2πi

∮

C1

dz f (z) =
∑

n

1
Eν − (iωn +µ)

=
1

2πi

∮

C2

dz f (z) =
β

2
tanh

�

β
Eν −µ

2

�

. (B.11)

Our final task is to integrate the newly found residues with respect to Eν in order to reobtain our original expression,
which is readily done

∑

n

log
�

β4 (ωn − iµ+ i Eν)
�

= log
�

2 cosh
�

β
Eν −µ

2

��

. (B.12)

Hence, we have finally calculated a general expression for the kinetic part of the grand potential (eq. (2.14)):

Ωkin = −
NcN f

βV

∑

Eν

log
�

2 cosh
�

β
Eν −µ

2

��

. (B.13)
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C Parameters

C.1 Parameter Sets

In the course of this work we use parameters that are fitted for the chiral limit to reproduce a constituent quark
mass of 300 MeV at a temperature and chemical potential of 0. However, we also briefly use parameter sets for
an enforced constituent quark mass of 330 and 250 MeV, respectively, for comparison. Moreover all parameter sets
were fitted to enforce a pion decay constant in the vacuum and the chiral limit of fπ = 88 MeV.

# Mv ac /MeV Λ /MeV GS Λ
2

1 300 757.048 6.002
2 250 856.706 5.09871
3 330 728.4 6.6

Table C.1.: Parameter sets used in this work.

C.2 Pauli-Villars-Coefficients

Throughout this work we make use of the Pauli-Villars (PV) regularization scheme.
In general, the PV-coefficients are calculated by expanding the replacement term for large energies E, i.e. around
x = Λ2

E2 = 0, where Λ denotes the Pauli-Villars cutoff parameter, up to the order (n− 1) in x

fPV (E) =
n
∑

j=0

c j

Æ

E2 + jΛ2 = E
n
∑

j=0

c j

p

1+ j x = E
n
∑

j=0

c j

�

1+ a1 j x + a2 j2 x2 + ...+ an−1 jn−1 xn−1 +O (xn)
�

, (C.1)

where n denotes the number of PV-coefficients and ai , i ∈ {1,2, ..., n− 1} are constant factors resulting from the
expansion. Fixing the zeroth coefficient c0 to an arbitrary, finite value, we are able to determine the PV-coefficients
by equating the resulting n expansion coefficients to zero. Since constant factors do not affect the roots of an
equation, we can omit the factors ai . Therefore, in general, one has to solve the equations

n
∑

j=0

c j =
n
∑

j=0

c j j =
n
∑

j=0

c j j2 =
n
∑

j=0

c j j3 = ...=
n
∑

j=0

c j jn−1 = 0

self-consistently in order to obtain the n PV-coefficients. It is noteworthy that those equations only determine the
PV-coefficients up to a constant factor which equals the zeroth coefficient c0.
In this work we use three PV-coefficients and thus have to solve

3
∑

j=0

c j =
3
∑

j=0

c j j =
3
∑

j=0

c j j2 = 0 ,

self-consistently. Fixing the zeroth coefficient to be c0 = 1, which reflects our original term, we obtain c1 = −3 , c2 =
3 and c3 = −1.

27



Bibliography
[1] J. Thomson, Phil.Mag. 44, 293–316 (1897).

[2] E. Rutherford, Phil.Mag. 21, 669–688 (1911).

[3] E. Rutherford, Philosophical Magazine Series 6 37, 581–587 (1919).

[4] J. Chadwick, Nature 129, 312 (1932).

[5] W. Heisenberg, Zeitschrift für Physik 77, 1–11 (1932).

[6] M. Gell-Mann, Phys.Lett. 8, 214–215 (1964).

[7] G. Zweig, CERN-TH-401 (1964).

[8] G. Zweig, Developments in the Quark Theory of Hadrons 1, 22–101 (1964).

[9] M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, L. W. Mo
and R. E. Taylor, Phys. Rev. Lett. 23, 935–939 (1969).

[10] E. D. Bloom, D. H. Coward, H. DeStaebler, J. Drees, G. Miller, L. W. Mo, R. E. Taylor, M. Breidenbach, J. I.
Friedman, G. C. Hartmann and H. W. Kendall, Phys. Rev. Lett. 23, 930–934 (1969).

[11] H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys.Lett. B47, 365–368 (1973).

[12] P. Braun-Munzinger and J. Wambach, Rev.Mod.Phys. 81, 1031–1050 (2009), arXiv:0801.4256.

[13] F. Karsch, Lect.Notes Phys. 583, 209–249 (2002), arXiv:hep-lat/0106019.

[14] U. Vogl and W. Weise, Prog.Part.Nucl.Phys. 27, 195–272 (1991).

[15] S. Carignano and M. Buballa, Acta Phys. Pol. B Proc. Suppl. 5, 641 (2011), arXiv:1111.4400.

[16] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345–358 (1961).

[17] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 124, 246–254 (1961).

[18] S. Klimt, M. Lutz, U. Vogl and W. Weise, Nuclear Physics A 516, 429–468 (1990).

[19] U. Vogl, M. Lutz, S. Klimt and W. Weise, Nuclear Physics A 516, 469–495 (1990).

[20] J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965–970 (1962).

[21] M. Buballa and S. Carignano, Prog.Part.Nucl.Phys. 81, 39–96 (2015), arXiv:1406.1367.

[22] J. I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge Monographs
on Mathematical Physics), Cambridge University Press (2006).

[23] S. Klevansky, Rev. Mod. Phys. 64, 649–708 (1992).

[24] D. Nickel, Phys.Rev.D 80 (2009), arXiv:0906.5295.

[25] M. Kutschera, W. Broniowski and A. Kotlorz, Nuclear Physics A 516, 566 – 588 (1990).

[26] S. Carignano, Inhomogeneous Chiral Symmetry Breaking Phases, PhD thesis, TU Darmstadt (2012).

[27] D. Nickel and M. Buballa, Phys.Rev.D 79 (2008), arXiv:0811.2400.

[28] S. Carignano and M. Buballa, Phys.Rev. D86, 074018 (2012), arXiv:1203.5343.

28

http://dx.doi.org/10.1080/14786449708621070
http://dx.doi.org/10.1080/14786449708621070
http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1080/14786440508637080
http://dx.doi.org/10.1080/14786440608635919
http://dx.doi.org/10.1080/14786440608635919
http://dx.doi.org/10.1038/129312a0
http://dx.doi.org/10.1038/129312a0
http://dx.doi.org/10.1007/bf01342433
http://dx.doi.org/10.1007/bf01342433
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.1016/S0031-9163(64)92001-3
http://dx.doi.org/10.1103/PhysRevLett.23.935
http://dx.doi.org/10.1103/PhysRevLett.23.935
http://dx.doi.org/10.1103/PhysRevLett.23.930
http://dx.doi.org/10.1103/PhysRevLett.23.930
http://dx.doi.org/10.1016/0370-2693(73)90625-4
http://dx.doi.org/10.1016/0370-2693(73)90625-4
http://dx.doi.org/10.1103/RevModPhys.81.1031
http://dx.doi.org/10.1103/RevModPhys.81.1031
http://arxiv.org/abs/0801.4256
http://dx.doi.org/10.1007/3-540-45792-5_6
http://dx.doi.org/10.1007/3-540-45792-5_6
http://arxiv.org/abs/hep-lat/0106019
http://dx.doi.org/10.1016/0146-6410(91)90005-9
http://dx.doi.org/10.1016/0146-6410(91)90005-9
http://arxiv.org/abs/1111.4400
http://dx.doi.org/10.1103/physrev.122.345
http://dx.doi.org/10.1103/physrev.122.345
http://dx.doi.org/10.1103/physrev.124.246
http://dx.doi.org/10.1103/physrev.124.246
http://dx.doi.org/10.1016/0375-9474(90)90123-4
http://dx.doi.org/10.1016/0375-9474(90)90123-4
http://dx.doi.org/10.1016/0375-9474(90)90124-5
http://dx.doi.org/10.1016/0375-9474(90)90124-5
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1103/PhysRev.127.965
http://dx.doi.org/10.1016/j.ppnp.2014.11.001
http://dx.doi.org/10.1016/j.ppnp.2014.11.001
http://arxiv.org/abs/1406.1367
http://dx.doi.org/10.1103/revmodphys.64.649
http://dx.doi.org/10.1103/revmodphys.64.649
http://arxiv.org/abs/0906.5295
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9474(90)90128-9
http://dx.doi.org/http://dx.doi.org/10.1016/0375-9474(90)90128-9
http://tuprints.ulb.tu-darmstadt.de/3149/
http://arxiv.org/abs/0811.2400
http://dx.doi.org/10.1103/PhysRevD.86.074018
http://dx.doi.org/10.1103/PhysRevD.86.074018
http://arxiv.org/abs/1203.5343


[29] E. Nakano and T. Tatsumi, Phys.Rev.D 71 (Phys.Rev.D71:114006,2005), arXiv:hep-ph/0411350.

[30] T. Kojo, Y. Hidaka, L. McLerran and R. D. Pisarski, Nucl.Phys. A843, 37–58 (2010), arXiv:0912.3800.

[31] M. Sadzikowski and W. Broniowski, Phys.Lett. B488, 63–67 (2000), arXiv:hep-ph/0003282.

[32] A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press (2010).

29

http://arxiv.org/abs/hep-ph/0411350
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.053
http://dx.doi.org/10.1016/j.nuclphysa.2010.05.053
http://arxiv.org/abs/0912.3800
http://dx.doi.org/10.1016/S0370-2693(00)00830-3
http://dx.doi.org/10.1016/S0370-2693(00)00830-3
http://arxiv.org/abs/hep-ph/0003282

	Introduction
	Nambu–Jona-Lasinio Model
	The NJL Lagrangian
	Thermodynamic Potential
	Regularisation
	Sharp 3-Momentum Cutoff
	Pauli-Villars Regularisation


	Homogeneous Mass Modulation
	Thermodynamic Potential
	Spectral Density Function
	Gap Equation
	Mass Function and Grand Potential
	Phase Diagram

	Inhomogeneous Mass Modulation
	Ansatz for a Mass Modulation
	Thermodynamic Potential
	Gap Equation
	Calculating the Phase Boundaries
	Numerical Results
	Examining the Continent

	Conclusion
	Conventions
	Fourier Decomposition

	Calculations for the General Grand Potential
	Calculating the Functional Integral
	Calculating the Sum Over the Matsubara Frequencies

	Parameters
	Parameter Sets
	Pauli-Villars-Coefficients


