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Zusammenfassung

In einem einfachen Nambu-Jona-Lasinio-Modell (NJL-Modell) wird das QCD Phasendia-
gramm untersucht. Zunächst wird eine übliche Mean-Field-Rechnung benutzt, anschlie-
ßend wird das großkanonische thermodynamische Potential in sechster Ordnung nach
µ/T ausgehend von µ/T = 0 entwickelt. Die berechneten Entwicklungskoeffizienten wer-
den mit dem Stefan-Boltzmann-Grenzfall für hohe Temperaturen und Daten von Gitter-
rechnungen aus [ADE+05] verglichen. Insbesondere wird der Verlauf der Crossover-Linie
über die reduzierte chirale Suszeptibilität berechnet und der kritische Endpunkt bestimmt.

Abstract

In a simple Nambu-Jona-Lasinio (NJL) model we investigate the QCD phase diagram, first
by applying conventional mean field calculation, then using a Taylor series expansion of
the grand thermodynamic potential to sixth order in powers of µ/T at µ/T = 0. Resulting
expansion coefficients are compared to the high temperature Stefan-Boltzmann limit and
to results from lattice calculations [ADE+05]. Special emphasis lies on the calculation of
the crossover line via the reduced chiral susceptibility and determination of the critical
endpoint.



Contents

Contents

1 Introduction 4

2 The Nambu-Jona-Lasinio model 5
2.1 The NJL Lagrangian and its symmetries . . . . . . . . . . . . . . . . . . . . 5
2.2 Effective quark mass at zero temperature and quark chemical potential . . . 6
2.3 Effective quark mass at finite temperature and quark chemical potential . . 7
2.4 Thermodynamic potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Thermodynamic observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 High temperature limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Phase diagram via exact calculation 14

4 Phase diagram via a Taylor series expansion 15
4.1 Taylor series expansion of the thermodynamic potential . . . . . . . . . . . 15
4.2 Thermodynamic observables . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Calculating the crossover line . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Radius of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion and outlook 24

A Appendix 25
A.1 Taylor coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.2 Derivatives of ΩNJL(T, µ;M) . . . . . . . . . . . . . . . . . . . . . . . . . . 25
A.3 Derivatives of M(T, µ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



1 Introduction

1 Introduction

The physics of quarks and gluons is described by quantum chromodynamics (QCD) which
is the theory of strong interaction. The strong interaction acts on a property called color
charge like the electromagnetic interaction acts on electric charge. The fact that gluons
which mediate the strong force also carry color charges makes the theory complicated.

Confinement as a central phenomenon of QCD causes, that physical particles have to be
color neutral. That means that quarks are forced to form hadrons - either quark-antiquark
pairs, mesons, or three quark states, baryons. At very large temperatures or densities
quarks and gluons are deconfined and form a plasma, the quark-gluon plasma (QGP). It
is believed that the QGP plays an important role in the development of the early universe.
Quark-gluon plasmas are experimentally investigated at heavy ion colliders.

The QCD phase diagram illustrates in which phase quarks exist at a particular temperature
and chemical potential. A simple phase diagram would show confined quarks in a region
of low temperature and chemical potential, surrounded by a phase boundary and QGP
outside. At the phase boundary confined and deconfined states are in equilibrium.

Calculations in lattice QCD, which is a non-pertubative approach to QCD, are frequently
performed to analyze the structure of the QCD phase diagram. It is not possible to use
standard techniques to calculate properties at finite quark chemical potential due to the
so-called fermion sign problem [Phi07]. Several methods (compare [Phi07]) have been
developed to circumvent that problem including a Taylor series expansion of the grand
canonical potential in µ/T at µ/T = 0. Groups like [ADE+05] have used that method to
estimate the location of a chiral critical point in the phase diagram.

Calculations at arbitrary temperature and quark chemical potential are readily possible in
the Nambu-Jona-Lasinio model, which is an effective model for QCD. Thus we will ap-
ply the method of a Taylor series expansion to the NJL model and check for consistency
against regular calculations for determining the crossover line and locating the chiral crit-
ical point.
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2 The Nambu-Jona-Lasinio model

2.1 The NJL Lagrangian and its symmetries

The Nambu-Jona-Lasinio (NJL) model was originally developed by Nambu and Jona-
Lasinio in 1961 to describe dynamical mass generation of hadrons in analogy to the BCS
theory of superconductivity ([NJL61a] and [NJL61b]). At that time quarks were not yet
discovered. Consequently, the NJL model does not include gluons and color charge. Nev-
ertheless, the model was later successfully used as an effective theory for quarks. This is
due to symmetries of the model which reflect symmetries of the strong interaction which
we will discuss shortly. A comprehensive treatment of properties and symmetries of the
NJL model can be found in [Rip97] or [Kle92].

The strong interaction is described by four-quark pointlike interactions instead of gluon
exchange. A simple form of the NJL Lagrangian density for two quark flavors can be
written as:

L = ψ̄(i/∂ −m)ψ +G
(
(ψ̄ψ)2 + (ψ̄iγ5τaψ)2

)
(2.1)

Here the first term is the free (Dirac) part for the quark fields ψ and ψ̄ = ψ†γ0 with the
bare mass matrix m = diag(mu,md). The latter terms denote scalar and pseudoscalar
interactions with the coupling constant G. τa are the Pauli matrices in isospin space.

The most general symmetry is the invariance under a global phase transformation U =
exp {iα} which leads to baryon number conservation.

The bare masses of up and down quarks are (relative to hadron masses) approximately
the same. Since in QCD (in contrast to QED) interactions are flavor-independent, this
leads to an Nf = 2-fold degeneracy in flavor space. For simplicity, we assume the masses
of up and down quark to be exactly the same: m ≡ mu = md. Then the Lagrangian of the
NJL model is invariant under isospin rotations U = exp

{
− i

2αaτa
}

, which form an SU(2)f
group. Furthermore all interactions are independent of the color of the quarks. Therefore
we have an Nc = 3-fold degeneracy in color space.

Chirality (“handedness”) is a conserved property of elementary particles with zero mass.
Chiral symmetry is explicitly broken by non-zero quark masses. This is also obvious in
the NJL Langrangian due to the occurrence of ψ̄mψ. In the “chiral limit” (m = 0) the
Lagrangian is invariant under a unitary transformation U = exp

{
− i

2γ5 αaτa
}

. We will
see in section 2.5 that the ground state can violate chiral symmetry, even in the chiral
limit. This behavior is known as spontaneous symmetry breaking and is one of the most
important features of the NJL model.

There will be divergent integrals in the course of our calculations. Since the NJL model
cannot be renormalized (e. g. [Kle92]), we will regularize it using a sharp 3-momentum
cut-off for divergent integrals, which is commonly done. By doing that, one violates
Lorentz covariance, but this is considered to be of minor importance [Bub05]. There are
other regularization methods which obey Lorentz covariance like regularization in proper
time and Pauli-Villars regularization, see e. g. [Kle92]. Further details of the regularization
method is given at a later time.
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2 The Nambu-Jona-Lasinio model

Figure 2.1: Diagrammatic self consistency equation involving dressed (bold line) and bare
(thin line) quark propagators and a self-energy loop.

2.2 Effective quark mass at zero temperature and quark chemical potential

First of all we derive the effective quark mass in mean field approximation. We assign
the single quark a current quark mass m. By coupling to itself via the scalar and pseudo-
scalar channel (as included in the Lagrangian density), it gains an effective massM , which
is also known as the constituent quark mass. The necessary self-consistency equation is
depicted in figure 2.1. For a quick guide to Feynman diagrams you might want to consider
[Sch95].

The “bare” quark propagator with current quark mass m is given by

iS0(p) = i
/p+m

p2 −m2 + iε
, (2.2)

and the propagator for a “dressed” quark with constituent (effective) quark mass M reads

iS(p) = i
/p+M

p2 −M2 + iε
. (2.3)

Having in mind figure 2.1 we can write down the self-consistency equation

iS(p) = iS0(p) + iS0(p) (−iΣ) iS(p), (2.4)

where we defined the self-energy part in such a way that Σ is real. The self-energy can
be expressed by 2iG times the sum of the outer products of each interaction channel. We
also have to integrate over the free momentum k in the dressed quark propagator of the
loop. The additional minus sign comes due to the fermion loop. Thus we have:

−iΣ = −i2G
{
1

∫
d4k

(2π)4
Tr [1 iS(k)] + iγ5τa

∫
d4k

(2π)4
Tr [iγ5τa iS(k)]

}
(2.5)

When evaluating the trace, all terms involving Pauli matrices or odd number of gamma
matrices drop out. A factor of 4NfNc occurs due to the unit matrix in Dirac space and full
degeneracy in flavor and color space. What remains for the self-energy is:

Σ = 2G 4NfNc M I(M) (2.6)

with the integral

I(M) = i

∫
d4k

(2π)4

1
k2 −M2 + iε

(2.7)
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2 The Nambu-Jona-Lasinio model

which can be evaluated using the residue theorem and further simplified using spherical
coordinates:

I(M) = i

∫
d3k

(2π)4

∞∫
−∞

dk0
1

k2
0 − E2

k + iε
=

1
2

∫
d3k

(2π)3

(
1
Ek

)
=

1
(2π)2

∞∫
0

dk
k2

Ek
. (2.8)

Here we already used k as the absolute value of the 3-momentum (k ≡ |~k|) and Ek as the
single-particle energy Ek ≡ Ek(k,M) =

√
k2 +M2.

Now we come back to equation (2.4). Multiplying it from the left with the inverse propa-
gator S−1

0 and from the right with S−1 brings us to a relation for the quark masses which
is commonly called the gap equation:

M = m+ Σ = m+ 8NfNcG M I(M) (2.9)

The integral in eq. (2.8) does not converge. When regularizing it using a 3-momentum
cut-off Λ, one can solve it analytically:

I(M) =
1

(2π)2

Λ∫
0

dk
k2

Ek
=

1
(2π)2

1
2

(
Λ
√

Λ2 +M2 −M2 arcsinh
[

Λ
M

])
(2.10)

For a given set of parameters m, G, Λ it is now possible to solve the gap equation and to
find an effective mass M .

2.3 Effective quark mass at finite temperature and quark chemical potential

When turning from quarks in vacuum to finite temperature T and chemical potential
µ we need to apply the Matsubara formalism which results in the following important
substitution on the integral occurring in the gap equation (2.9). A discussion on field
theory at finite temperature goes beyond the scope of this thesis but can be found in
[Kap89].

i

∫
d4k

(2π)4
f(k) −→ −T

∑
n

∫
d3k

(2π)3
f(iωn + µ,~k) (2.11)

with fermionic Matsubara frequencies ωn = (2n+ 1)πT

It can be solved by first using the residue theorem “backwards” to evaluate the Matsubara
sum (∗). Next, the contour is transformed (see figure 2.2), and finally the residue theorem
is used “forwards” using the new contour (∗∗), which now includes the two other poles.

I(T, µ;M) = −T
∑
n

∫
d3k

(2π)3

1
(iωn + µ)2 − E2

k

=
∫

d3k

(2π)3

1
2Ek

[
−T

∑
n

(
1

iωn + µ− Ek
− 1
iωn + µ+ Ek

)]
(∗)
=
∫

d3k

(2π)3

1
2Ek

1
2πi

∫
C

dz
1

exp (z/T ) + 1

(
1

z + µ− Ek
− 1
z + µ+ Ek

)
(∗∗)
=
∫

d3k

(2π)3

1
2Ek

−
∫

d3k

(2π)3

1
2Ek

[nk + n̄k] (2.12)
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Figure 2.2: Deformation of the integration contour. Poles are indicated by small circles.

The result is expressed in terms of the quark and antiquark occupation numbers

nk ≡ n(k, T, µ;M) =
1

1 + exp
(
Ek−µ
T

) and n̄k ≡ n̄(k, T, µ;M) =
1

1 + exp
(
Ek+µ
T

) .

(2.13)
The effective mass M is an auxiliary variable and thus will be separated from regular
variables by a semicolon. Here we can recognize charge symmetry:

n(k, T,−µ;M) = n̄(k, T, µ;M). (2.14)

Plugging equation (2.12) into the gap equation (eq. (2.9)), we now can numerically
search for a solution for the effective mass M ≡M(T, µ), which of course depends on the
temperature and quark chemical potential.

2.4 Thermodynamic potential

As there might be more than one solution to the gap equation, we need a criterion to
decide which solution is the correct one. The common task in statistical physics is to mini-
mize a thermodynamic potential. Since temperature and chemical potential are fixed, and
the number of particles can vary, it is appropriate to use the grand canonical potential.

In a first step, we will linearize the Lagrangian density. For that purpose we need the
expectation values of the interaction terms. The scalar interaction term gives rise to the
so-called quark condensate or chiral condensate1:

〈
ψ̄ψ
〉
NJL

= −i
∫

d4k

(2π)4
TrS(k) (2.15)

which in our case happens to be closely related to the constituent quark mass (compare
eqs. (2.5) and (2.9)): 〈

ψ̄ψ
〉
NJL

= −M −m
2G

(2.16)

1The definition of
˙
ψ̄ψ

¸
is valid universally. The index NJL only emphasizes the sign convention.
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2 The Nambu-Jona-Lasinio model

The expectation value of the pseudo-scalar channel is zero since the trace over iγ5τaS(k)
vanishes.

Expanding ψ̄ψ =
〈
ψ̄ψ
〉
NJL

+ δ(ψ̄ψ) using its expectation value
〈
ψ̄ψ
〉
NJL

and dropping
the quadratic term of the fluctuation, yields

(ψ̄ψ)2 ≈
〈
ψ̄ψ
〉2

NJL
+ 2

〈
ψ̄ψ
〉
NJL

δ(ψ̄ψ) = 2
〈
ψ̄ψ
〉
NJL

ψ̄ψ −
〈
ψ̄ψ
〉2

NJL
.

For the Lagrangian we obtain

L ≈ ψ̄(i/∂ −m)ψ +G
(

2
〈
ψ̄ψ
〉
NJL

ψ̄ψ −
〈
ψ̄ψ
〉2

NJL

)
(2.17)

= ψ̄
(
i/∂ −m+ 2G

〈
ψ̄ψ
〉
NJL

)
ψ −G

〈
ψ̄ψ
〉2

NJL
(2.18)

We can express the Lagrangian in terms of an effective mass M = m− 2G
〈
ψ̄ψ
〉
NJL

:

L = ψ̄ (i/∂ −M)ψ − (M −m)2

4G
(2.19)

This Lagrangian describes a free quark with mass M in an effective, constant potential.
But we cannot drop the second term since we will have to vary M in order to find the
stable mass.

The grand potential emerging from the Lagrangian consists of a free quark gas contribu-
tion which can be found in [Kap89] and the constant term from the Lagrangian:

ΩNJL(T, µ;M) =
(M −m)2

4G
− 2NCNF

4π
(2π)3


Λ∫

0

dk k2Ek (2.20)

+

∞∫
0

dk k2

[
T log

(
1 + exp

[
−Ek − µ

T

])
+ T log

(
1 + exp

[
−Ek + µ

T

])]
An arbitrary constant can be added to the grand potential without changing the physics.

Here we applied the 3-momentum cut-off only to the first integral which would be di-
vergent otherwise. The second integral does not diverge and contains the temperature
dependence of the potential and may not be regularized for our purpose. It will become
obvious in section 4.1 why this special regularization scheme is necessary.

One can easily confirm that the condition ∂ΩNJL
∂M = 0 leads to the gap equation. The

desired criterion for the correct mass is now obtained: a mass which satisfies the gap
equation is an extreme value of the grand potential. But only the mass corresponding to
the global minimum of the grand potential is the stable mass.

2.5 Numerical results

We are now ready to numerically calculate possible masses via the gap equation and de-
termine the stable mass via the thermodynamic potential.

Parameters of the NJL model are the coupling constant G and the bare quark mass m. The
regularization adds a third parameter, the 3-momentum cut-off Λ. Throughout this work
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Figure 2.3: Effective mass for various µ/T as a function of T/T0 at m = 5.6 MeV (left) and
in the chiral limit (right).

the following parameter set will be used: G = 2.44 Λ2, Λ = 587.9 MeV and m = 5.6 MeV.
These values are taken from [Bub05] where the parameters were determined in such a
way that the model gives correct results for the pion mass mπ, the pion decay constant fπ
and the quark condensate

〈
ψ̄ψ
〉

in the vacuum (T = µ = 0).

In figure 2.3 we see the effective mass for finite temperature and quark chemical potential.
The temperature axis is given relative to a temperature T0 which will be determined in
section 3. In the present case we have T0 = 191.63 MeV. In the left graph we have quarks
with a small but finite bare mass. For small temperatures, the effective mass takes a value
of about 400 MeV. With increasing temperature we see the effective mass drop to near
zero MeV. The transition to small masses occurs earlier and more rapidly for higher values
of µ/T . In the case of µ/T = 4.0 and 5.0 there is a discontinuity at the transition. Between
µ/T = 3.0 and µ/T = 4.0 there must exist a point where the gradient of M becomes
infinite.

In the right graph the bare quark mass is set to zero (chiral limit). Even then the effec-
tive quark mass for small temperatures is about 400 MeV like in the massive case and
drops to zero for higher temperatures. In comparison with the massive case the transition
takes place earlier (at smaller temperatures). At the transition M(T ) is not continuously
differentiable.

Here dynamic mass generation becomes visible. The major part of the effective mass arises
due to the self-interaction, especially in the chiral limit. Since mass breaks chiral symme-
try, chiral symmetry is broken by two effects: explicitly by the bare mass in the Lagrangian
density, and spontaneously by the dynamically generated mass. For high temperatures
and/or chemical potential the effective mass drops to a small value again, the symmetry is
restored approximately. In the chiral limit, M goes to zero for high temperatures and/or
chemical potential, and the chiral symmetry is fully restored.

Next we will investigate the behavior of the thermodynamic potential ΩNJL as a function
of the effective mass M . Figure 2.4 shows on the left side the thermodynamic potential
for zero temperature and various values of the chemical potential. At µ = 0 we have
two minima at about ±400 MeV and one maximum at about 0 MeV. The minimum for the
positive mass is the global minimum of the potential and therefore the stable one. With
rising chemical potential the central maximum lowers and a third minimum is formed. At
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Figure 2.4: Thermodynamic potential as a function of the auxiliary variable M (con-
stituent mass) at T = 0 (left) for µ = 0 MeV, µ = 350 MeV, µ = µ0 =
382.5 MeV, µ = 400 MeV (from top to bottom) and at several values on
the phase boundary (right): T = 0.0 MeV, µ = 382.5 MeV; T = 40.0 MeV,
µ = 364.5 MeV; T = Tc = 82.2 MeV, µ = µc = 322.0 MeV; T = 100.0 MeV,
µ = 300.0 MeV; T = 139.8 MeV, µ = 237.7 MeV (from top to bottom). The
potential has been shifted by an arbitrary constant.

a certain value µ = µ0 the central minimum is at the same height as the right minimum.
At that point, we have a first order phase transition, since the central minimum becomes
the global minimum and the stable mass changes discontinuously.

On the right side of figure 2.4 we have the thermodynamic potential at several values along
the phase boundary2. Starting at the top with T = 0 we have a first order phase transition
as described before. With increasing temperature and at the same time decreasing chemi-
cal potential the central and right minimum approach each other. At a critical point with
temperature Tc and chemical potential µc the two minima reach the same height in the
diagram just when merging. This results in a vanishing curvature of ΩNJL at that point.
This is now a phase transition of second order since the stable mass changes continuously.
For higher temperatures the mass varies smoothly from high to low values, and no actual
phase transition takes place. This behavior is called a crossover transition.

2.6 Thermodynamic observables

After having studied the dependence of the thermodynamic potential ΩNJL on the effec-
tive quark mass M , we will introduce thermodynamic observables which can immediately
be calculated using derivatives of the grand potential.

Following the convention of [ADE+05], all observables can be given in a reduced way.
The reduced thermodynamic potential is then given by

Ω(T, µ;M) = − 1
T 4

ΩNJL(T, µ;M). (2.21)

2will be calculated in the next section
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Figure 2.5: Reduced pressure (left) and reduced quark number density (right) as functions
of T/T0 for various µ/T .

We further define the reduced pressure such that it vanishes for zero temperature:

∆p(T, µ)
T 4

=
p(T, µ)− p(T, µ = 0)

T 4
(2.22)

where p(T, µ) = T 4 Ω(T, µ) = −ΩNJL(T, µ). The reduced quark number density reads

n(T, µ)
T 3

= T
∂Ω
∂µ

(2.23)

In figure 2.5 we show the reduced pressure (left) and the reduced quark number density
(right). The thermodynamic potential is continuous for all arguments. The quark number
density becomes discontinuous at a first order phase transition and has infinite gradient
at a second order phase transition.

The reduced chiral condensate appears as the first derivative of the thermodynamic po-
tential with respect to the bare quark mass m.〈

ψ̄ψ
〉

(T, µ)
T 3

= T
∂Ω
∂m

= − T

T 4

〈
ψ̄ψ
〉
NJL

=
M −m
2G T 3

(2.24)

Several reduced susceptibilities can be defined via:

χab(T, µ)
T 2

= T 2 ∂2Ω
∂a ∂b

with a, b ∈ T, µ,m (2.25)

So we obtain the reduced quark number susceptibility and the reduced chiral susceptibil-
ity:

χµµ
T 2

= T 2 ∂
2Ω
∂µ2

(2.26)

χmm(T, µ)
T 2

=
∂2Ω
∂(mT )2

= −T−2χmm,NJL =
1

2GT 2

(
∂M

∂m
− 1
)

. (2.27)

In figure 2.6 we show the reduced chiral susceptibility χmm/T 2 in the massive case (left)
and in the chiral limit (right) for various values of µ/T . In the chiral limit we have a
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Figure 2.6: Reduced chiral susceptibility at m = 5.6 MeV and in the chiral limit (m = 0).

second order phase transition for µ/T = 2.0, so the chiral susceptibility diverges3. In
the massive case we only have a crossover transition. For the chiral susceptibility that
means that it forms a finite maximum but does not diverge. For higher µ/T the peaks
respectively maxima move to lower temperatures. At a first order phase transition the
chiral susceptibility is discontinuous which occurs in the left figure for µ/T = 5.0 and in
the chiral limit (right) for µ/T = 3.0, 4.0 and 5.0. For m = 5.6 MeV (left) µ/T = 4.0 is
close to the critical endpoint, where the transition is of second order. Therefore the peak
takes a very high value.

2.7 High temperature limit

It is often appropriate to investigate certain limits of a model in order to check for consis-
tency. In this section we will consider the high temperature limit.

We have seen that the effective mass M drops to about zero for high temperature and/or
chemical potential. This corresponds to the case of a massless fermion gas with a degen-
eracy of ν = 2NCNF = 12 (plus antiparticles) and is often called the Stefan-Boltzmann
(SB) limit, since the calculation results in the typical T 4-behavior for the pressure. Please
note that T 4 cancels out in the reduced pressure.

In the limit M → 0 the first two terms of eq. (2.20) are independent of T and µ and
therefore can be omitted. The remaining, explicitly temperature dependent part of the
grand canonical potential can then be solved analytically:

ΩSB = lim
M→0

−ν 4πT
(2π)3

∞∫
0

dk k2

[
log
(

1 + exp
[
−Ek − µ

T

])
+ log

(
1 + exp

[
−Ek + µ

T

])]

= −T 4 · 2NCNF

[
7π2

360
+

1
12

(µ
T

)2
+

1
24π2

(µ
T

)4
]

(2.28)

At a later point we will compare the Taylor series coefficients at high temperature with the
coefficients found here in front of powers of µ/T .

3The value stays finite because of numerical issues (differential quotient). In comparison with the massive
case (left), the peak height is two orders of magnitude higher which can be considered as “diverging”.
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Figure 3.1: The phase diagram of the NJL model for parameters G = 2.44 Λ2, Λ =
587.9 MeV and m = 5.6 MeV. Lines of constant µ/T are indicated with dotted
lines.

3 Phase diagram via exact calculation

Having motivated and introduced the Nambu-Jona-Lasinio model, we will now turn to the
calculation and discussion of the phase diagram in the NJL model using exact4 calcula-
tion.

We showed before, that the chiral susceptibility diverges at a second order phase transition
and has a discontinuity at a first order phase transition. The quark number susceptibility
shows the same behavior. For µ/T smaller than a certain value we have seen that there is
no phase transition of first or second order. Instead, the effective quark mass drops rapidly
and also other observables like the quark number density vary strongly in this region. This
behavior was called a crossover transition. There is no unique definition of the crossover
position in terms of physical observables. Possible choices are the position of maxima in
the chiral susceptibility χmm or in the quark number susceptibility χµµ. The location of a
maximum in the quark number susceptibility corresponds to the steepest rise of the quark
number density which is an intuitive criterion.

To visualize the phase diagram we used the maximum of the reduced chiral susceptibility
χmm/T

2 along lines of constant µ/T as the crossover criterion and the discontinuity of
the mass as the criterion for a first order phase transition. We chose the reduced form
particularly with regard to the convention introduced before.

The resulting phase diagram is shown in figure 3.1. For high chemical potential and low
temperature (and therefore high µ/T ), we find a first order phase transition. The phase

4To make the terminology clear: With “exact” we mean calculations using the full thermodynamic potential
and derivated observables of the NJL model. Thereby we do not claim, that the NJL model, which is
an effective quark model in mean-field approximation, is an exact description of QCD. Not an “exact”
calculation in this sense is the Taylor series expansion introduced in the next section.
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4 Phase diagram via a Taylor series expansion

boundary ends in the so-called critical endpoint (CEP). For the studied parameter set the
CEP is located at Tc ≈ 82.2 MeV and µc ≈ 322.0 MeV which results in a critical ratio
(µ/T )c = µc/Tc ≈ 3.92. At smaller µ/T we find a crossover transition.

The vacuum transition temperature T0 = 193.6 MeV is determined by the temperature
where the reduced chiral susceptibility χmm/T 2 for µ = 0 has its maximal value. T0 is
used as a reference scale for all occurring temperatures.

4 Phase diagram via a Taylor series expansion

4.1 Taylor series expansion of the thermodynamic potential

As a second step, we will expand the thermodynamic potential to sixth order in µ/T and
use the resulting Taylor series coefficients to determine features of the phase diagram.

The thermodynamic potential at arbitrary chemical potential can be expressed by the val-
ues of the derivatives of the thermodynamic potential with respect to the chemical poten-
tial evaluated at µ = 0. This is known as a Taylor series expansion of the thermodynamic
potential at zero chemical potential

ΩNJL(T, µ) =
∑
n

dn(T ) µn (4.1)

with coefficients

dn(T ) =
1
n!

dnΩNJL

dµn

∣∣∣∣
µ=0

. (4.2)

As the potential is symmetric in µ due to charge symmetry (compare eq. (2.14)) only even
coefficients are nonzero:

d2m(T ) =
1
m!

dmΩNJL

d(µ2)m

∣∣∣∣
µ=0

. (4.3)

The reduced potential can be expanded in the dimensionless ratio µ/T at vanishing chem-
ical potential:

Ω(T, µ) =
∑
n

cn(T )
(µ
T

)n
(4.4)

which is connected to ΩNJL by

Ω = −ΩNJL · T−4 resp. ΩNJL = −Ω · T 4. (4.5)

Ω is known as the reduced pressure p/T 4 in the NJL model. This immediately gives the
conversion between the coefficients cn(T ) and dn(T )

cn(T ) = −dn(T ) · Tn−4 resp. dn(T ) = −cn(T ) · T 4−n. (4.6)

We calculated the expansion coefficients for n = 2, 4 and 6 for the given parameter set
as functions of T . Derivatives of the thermodynamic potential give integrals which need
to be evaluated numerically. The derivation of the necessary integrals and the integrals
themselves are listed in the appendix.
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Figure 4.1: Taylor expansion coefficients cn for n = 2, 4, 6 as functions of T/T0 (lines).
Also shown are results from [ADE+05] (points) and the Stefan-Boltzmann lim-
its for high temperatures.

In figure 4.1 we show the Taylor expansion coefficients cn for n = 2, 4, 6 as functions of
T/T0. Additionally we included results from [ADE+05] to compare both results.

All three coefficients vary smoothly and begin at zero for zero temperature. From c2 to
c4 and from c4 to c6 the scale drops by about one order of magnitude. c2 approaches the
high temperature limit (SB) at T > T0 from below. c4 has a positive peak at a temperature
slightly smaller than T0 and then approaches the SB limit at T > 1.1 T0 from above. The
coefficient c6 also starts at zero, has a positive peak at about 0.9 T0, and a negative peak at
T0. In between there is a zero-crossing. c6 approaches zero from below for T > 1.1 T0.

The high temperature behavior of the coefficients c2 and c4 complies perfectly with the
Stefan-Boltzmann limits calculated in section 2.7: c2(T > T0) → 2NCNF

12 = 1 and c4(T >

T0) → 2NCNF
24π2 ≈ 0.05. This only happens due to the special regularization, which was

used. If one would cut off the integral of the temperature influence, the coefficients c2

and c4 would overall be smaller and would drop to zero for high temperatures.

A rigorous comparison with the results from [ADE+05] is not reasonable. The underlying
models are entirely different and also the used parameters are not comparable. For ex-
ample in lattice calculations the mass depends linearly on the temperature. Still we will
compare the features of the expansion coefficients, more qualitatively than quantitatively.
We can recognize that the general behavior is similar. The lattice results for c2 are overall
smaller and do not reach the SB limit. Also the ascent occurs at a higher temperature. For
c4 the peak is located at a slightly higher temperature, and the SB limit is approached quite
well this time. We should note that the statistical errors of the lattice results in the case
of c6 are 20% to 80% of the absolute values. The zero crossing is approximately located
at T0.

4.2 Thermodynamic observables

We will now revisit the reduced pressure and the reduced quark number density which
have been introduced in section 2.6. We can easily express those observables in terms of

16



4 Phase diagram via a Taylor series expansion

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.6  0.8  1  1.2  1.4

∆p
/T

4

T/T0

µ/T = 1.0

µ/T = 0.8

µ/T = 0.6

µ/T = 0.4

µ/T = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.6  0.8  1  1.2  1.4

∆p
/T

4

T/T0

6th order

4th order

2nd order

exact

Figure 4.2: Reduced pressure at various µ/T to 6th order (left) and at µ/T = 1.0 to 2nd,
4th and 6th order in comparison with exact calculations (right).
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Figure 4.3: Reduced quark number density at various µ/T to 6th order (left) and at µ/T =
1.0 to 2nd, 4th and 6th order in comparison with exact calculations (right).

the expansion coefficients:

∆p(T, µ)
T 4

= c2(T )
(µ
T

)2
+ c4(T )

(µ
T

)4
+ c6(T )

(µ
T

)6
(4.7)

n(T, µ)
T 3

= 2 c2(T )
(µ
T

)
+ 4 c4(T )

(µ
T

)3
+ 6 c6(T )

(µ
T

)5
(4.8)

The reduced pressure ∆p/T 4 is shown in figure 4.2. On the left side we show the reduced
pressure for various µ/T to sixth order. We observe that the amplitude of the reduced
pressure rises with increasing µ/T . At a temperature shortly above T0 the reduced pressure
saturates, which means, that the pressure p changes proportional to T 4. For µ/T = 1 we
recognize a dip at T = T0. This can be seen more clearly on the right side where we
compare the expansion to second, fourth and sixth order to the exact values exemplarily
for µ/T = 1.0. The dip at T = T0 arises not until the inclusion of the sixth order term. To
fourth order we have an overshoot. It would be interesting to see whether higher orders
would compensate the dip. Apart from that region, higher order terms make the curve
approach the exact line.

Very similar behavior can be found in the investigation of the reduced number quark
density n/T 3. In figure 4.3 we can see that the dip at T = T0 already forms at µ/T = 0.8.
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Figure 4.4: Taylor expansion coefficients cψ̄ψn for n = 0, 2, 4, 6 as functions of T/T0 (lines).
Also shown are results from [ADE+05] (points).

The next derivative with respect to the quark chemical potential yields the quark number
susceptibility:

χµµ(T, µ)
T 2

= 2 c2(T ) + 12 c4(T )
(µ
T

)2
+ 30 c6(T )

(µ
T

)4
(4.9)

Turning to derivatives of the grand potential with respect to the bare quark mass m, the
first result is the chiral condensate

〈
ψ̄ψ
〉
.〈

ψ̄ψ
〉

T 3
= cψ̄ψ0 (T ) + cψ̄ψ2 (T )

(µ
T

)2
+ cψ̄ψ4 (T )

(µ
T

)4
+ cψ̄ψ6 (T )

(µ
T

)6
(4.10)

where the coefficients cψ̄ψn for n = 2, 4 and 6 can be calculated using a central difference
quotient:

cψ̄ψn (T ) =
∂cn(T )
∂m

≈ T cn(T ;m+ ∆)− cn(T ;m−∆)
∆

(4.11)

The zeroth order coefficient can be computed using the effective mass at zero chemical
potential.

cψ̄ψ0 (T ) =

〈
ψ̄ψ
〉

T 3

∣∣∣∣∣
µ=0

=
M(T, µ = 0)−m

2G T 3
(4.12)

The expansion coefficients cψ̄ψn of the reduced chiral condensate are plotted in figure 4.4.
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4 Phase diagram via a Taylor series expansion

We added the coefficients cψ̄ψ0 , cψ̄ψ2 and cψ̄ψ4 presented in [ADE+05] for comparison. The
leading order coefficient diverges for T → 0 which is obvious from eq. (4.12) since the
constituent mass is finite for T → 0. It drops rapidly to a small negative value. Since the
integrals in the gap equation have different upper limits the stable mass solution M does
not approach m in the limit of high temperatures. The chiral condensate is proportional
to M −m and thus becomes negative for high temperatures. This is a disadvantage of the
regularization and becomes visible at this point. The lattice data points lie much higher
and are hardly comparable.

In the further coefficients we find n/2 peaks of alternating sign close to T0. It is remarkable
that the peaks become more narrow with increasing n. The location of the peak in the
lattice data for cψ̄ψ2 is about the same as for our data. However the lattice data do not
approach zero as fast as our results do. The lattice data for cψ̄ψ4 fit surprisingly well to our
results.

4.3 Calculating the crossover line

Our next goal is to calculate the crossover line using the Taylor expansion coefficients.
We have seen in section 2.6 that the chiral susceptibility diverges at a second order phase
transition. So one possible definition of the crossover line is to take the point where
the chiral susceptibility reaches its maximum, which was already used in the previous
section.

The chiral susceptibility can be expressed using second derivatives of the Taylor coeffi-
cients with respect to the bare quark mass.

χmm(T, µ)
T 2

= T 2 ∂2Ω
∂m2

=
∑
n

T 2∂
2cn(T )
∂m2

(µ
T

)n
=
∑
n

cχn(T )
(µ
T

)n
(4.13)

= cχ0 (T ) + cχ2 (T )
(µ
T

)2
+ cχ4 (T )

(µ
T

)4
+ cχ6 (T )

(µ
T

)6
(4.14)

The coefficients cχn(T ) are calculated using a central second order difference quotient us-
ing the basic expansion coefficients cn(T ), which need to be calculated at three slightly
different bare quark masses:

cχn(T ) = T 2 ∂
2cn(T )
∂m2

≈ T 2 cn(T ;m+ ∆)− 2cn(T ;m) + cn(T ;m−∆)
∆2

, n = 2, 4, 6
(4.15)

The zeroth order coefficient cχ0 needs to be calculated separately:

cχ0 (T ) = T
∂cψ̄ψ0 (T )
∂m

≈ T cψ̄ψ0 (T ;m+ ∆)− cψ̄ψ0 (T ;m−∆)
∆

(4.16)

with cψ̄ψ0 given in equation (4.12).

Resulting coefficients cχn(T ) are shown in figure 4.5. Again we can see that peaks occur in
the vicinity of T0, this time we have n/2 + 1 peaks with alternating sign. The amplitude of
the peaks is growing with n and the peaks become more narrow. A surprising fact is that
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Figure 4.5: Taylor expansion coefficients cχn for n = 0, 2, 4, 6 as functions of T/T0.
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the leading order coefficient cχ0 becomes negative for high temperature. This is probably
also an effect of the regularization.

Having obtained the coefficients cχn(T ) for the relevant temperature interval, one can cal-
culate the reduced chiral susceptibility using equation (4.14). The behavior of χmm/T 2 as
a function of temperature for various µ/T is shown in figure 4.6. Here we can clearly see
that the maximum moves to the left, when µ/T rises. This is the expected effect since the
phase boundary has to move to lower temperatures with growing chemical potential.

However it was not expected that the maximum splits up for high µ/T . This behavior will
be discussed in more detail in the next figures 4.7 and 4.8, where we compare the values
of χmm/T 2 for expansions to second, fourth and sixth order. In these figures one rec-
ognizes several problems concerning the reconstructed chiral susceptibility. Firstly, since
the leading order coefficient cχ0 is negative for high temperatures we have an unphysical
zero-crossing and negative susceptibility for high T . Secondly, in the case of µ/T = 0.8 we
see that the single local maximum splits up into two local maxima with a (global) mini-
mum in between. Inclusion of higher order terms leads to higher minimum to maximum-
amplitude. On the other hand one can clearly recognize that higher order terms shift the
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maximum to lower temperatures.

As we did before in the exact NJL mean-field case, we will now determine the temperature
for which the reduced chiral susceptibility takes its (local) maximum for each µ/T . We
have shown that the local maximum splits up starting at a certain value of µ/T . First the
left of the two maxima is the higher one (see figure 4.6). In order to have a continuous
crossover line we will restrict the search on the leftmost local maximum.

To show the influence of each order, we applied the depicted method on the reduced
chiral susceptibility given by eq. (4.14) to 2nd, 4th and 6th order. The crossover lines
determined using the reduced chiral susceptibility to different orders are shown in the
phase diagram in figure 4.9. We included the result from section 3 for comparison.

The agreement of the crossover line to the exact calculation grows from order to order
which is expected from the Taylor series method. As has been visible in figures 4.7 and 4.8,
higher order terms push the maximum to lower temperatures, which indeed moves the
crossover line closer to the exact one. Using the sixth order result, a good agreement
with exact calculation exists for µ/T . 0.55. This is one seventh of the critical value
(µ/T )c = 3.92.

4.4 Radius of convergence

Coping with a power series we need to have in mind, that the series only converges in a
specific range of the argument (here µ/T ) which is known as the radius of convergence.
For a Taylor series with coefficients c2n the radius of convergence can be obtained using

22



4 Phase diagram via a Taylor series expansion

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0  0.5  1  1.5  2
T/T0

r4
r2

 0

 1

 2

 3

 4

 5

 6

 0  0.5  1  1.5  2
T/T0

rχ4
rχ2
rχ0

Figure 4.10: Values r2 and r4 (left) and rχ0 , rχ2 and rχ4 (right) as defined in eq. (4.17) as
functions of T/T0.

the ratio test:

r = lim
n→∞

r2n = lim
n→∞

√∣∣∣∣ c2n

c2n+2

∣∣∣∣ (4.17)

Since we calculated a finite number of coefficients only, we cannot evaluate the limit of
n to infinity, but we can examine the evolution of r2n (rχ2n) for successive coefficients c2n

(cχ2n). The Taylor series expansion was done for a whole range of temperatures, thus the
radius of convergence depends on the temperature.

In figure 4.10 we show the values r2 and r4 for the coefficients c2n of the reduced ther-
modynamic potential and the values rχ0 , rχ2 and rχ4 for the expansion coefficients cχ2n of
the reduced chiral susceptibility as functions of temperature. There is no general behavior
visible except that most fluctuations appear in the vicinity of T0. At temperatures where
the coefficient in the denominator has a zero-crossing an infinite value occurs. From these
graphs one cannot yet extrapolate to n → ∞ so the determination of a radius of conver-
gence for the Taylor series expansions of Ω and χmm/T 2 is not possible.

23



5 Conclusion and outlook

5 Conclusion and outlook

We started by introducing a simple NJL Lagrangian for two flavors. With the grand ther-
modynamic potential and the gap equation we were able to calculate the stable constituent
mass and further thermodynamic observables. Chiral symmetry and its restoration could
be explained based on dynamic mass generation.

Using the parameter set G = 2.44 Λ2, m = 5.6 MeV and Λ = 587.9 MeV we were able to
determine the structure of the phase diagram and found a critical endpoint at µ/T = 3.92
using conventional calculation.

Next, we applied the Taylor series expansion technique to the NJL model. The grand po-
tential was expanded in powers of µ/T at µ = 0. The expansion coefficients as functions of
the temperature and their derivatives with respect to the bare quark mass were calculated
up to sixth order and compared to results from [ADE+05]. The expansion coefficients per-
fectly comply with the high temperature (SB) limit when using the special regularization
method.

Using the Taylor series expansion we obtained the crossover line via the reduced chi-
ral susceptibility. The crossover line was in good agreement with exact calculation up
to µ/T = 0.55, which is only a seventh of the way to the critical endpoint. We were
therefore not able to estimate the location of the critical endpoint from the Taylor series
expansion.

Besides calculating higher order expansion coefficients which should improve the crossover
line beyond µ/T = 0.55, obvious enhancements to the simple NJL model would be to in-
clude vector interactions or to break the degeneracy of up and down quarks by assigning
them different bare masses and chemical potentials. Furthermore the strange quark could
be included as a third quark flavor with a higher bare mass.

The approaches of lattice QCD and the NJL model are very different. Still one could try
to match the expansion coefficients obtained by the NJL model with lattice results by
changing the NJL parameters. In that way one could estimate the location of the critical
endpoint from lattice calculations by determining it in the NJL model using conventional
calculation.
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A Appendix

A Appendix

A.1 Taylor coefficients

All the following terms have to be evaluated at µ = 0, we will omit any “
∣∣
µ=0

” for better
reading. Please note, that all stated total derivatives shall act on the arguments M(T, µ)
and µ only.

∂ΩNJL

∂M
= 0 (gap equation) (A.1)

d2(T ) =
dΩNJL

d(µ2)
=
∂ΩNJL

∂(µ2)
+
∂ΩNJL

∂M

∂M

∂(µ2)

=
∂ΩNJL

∂(µ2)
(A.2)

2 · d4(T ) =
d2ΩNJL

d(µ2)2
=
∂2ΩNJL

∂(µ2)2
+ 2

∂2ΩNJL

∂M∂(µ2)
∂M

∂(µ2)
+
∂2ΩNJL

∂M2

(
∂M

∂(µ2)

)2

(A.3)

6 · d6(T ) =
d3ΩNJL

d(µ2)3
=
∂3ΩNJL

∂(µ2)3
+ 3

(
∂2ΩNJL

∂M2

∂2M

∂(µ2)2
+

∂3ΩNJL

∂M∂(µ2)2

)
∂M

∂(µ2)
(A.4)

+ 3
∂3ΩNJL

∂M2∂(µ2)

(
∂M

∂(µ2)

)2

+ 3
∂2ΩNJL

∂M∂(µ2)
∂2M

∂(µ2)2
+
∂3ΩNJL

∂M3

(
∂M

∂(µ2)

)3

A.2 Derivatives of ΩNJL(T, µ;M)

C := 2NcNf
4π

(2π)3

derivatives with respect to µ2 only

∂ΩNJL

∂(µ2)

∣∣∣∣
µ=0

= −C
∞∫

0

dk k2 1

2 T
[
1 + cosh

(
Ek
T

)] (A.5)

∂2ΩNJL

∂(µ2)2

∣∣∣∣
µ=0

= −C
∞∫

0

dk k2
−2 + cosh

(
Ek
T

)
48 T 3

[
cosh

(
Ek
2T

)]4 (A.6)

∂3ΩNJL

∂(µ2)3

∣∣∣∣
µ=0

= −C
∞∫

0

dk k2
33− 26 cosh

(
Ek
T

)
+ cosh

(
2Ek
T

)
1920 T 5

[
cosh

(
Ek
2T

)]6 (A.7)
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derivatives with respect to M only

∂ΩNJL

∂M
= 0 (gap equation) (A.8)

∂2ΩNJL

∂M2

∣∣∣∣
µ=0

=
1

2G
−C


Λ∫

0

dk
k4

E3
k

−
∞∫

0

dk k2

 k2

E3
k

2

e
Ek
T + 1

− M2

TE2
k

2e
Ek
T(

e
Ek
T + 1

)2


 (A.9)

∂3ΩNJL

∂M3

∣∣∣∣
µ=0

= lim
∆→0

∂2ΩNJL
∂M2 (M + ∆)− ∂2ΩNJL

∂M2 (M −∆)
∆

(A.10)

mixed derivatives

∂2ΩNJL

∂M∂(µ2)

∣∣∣∣
µ=0

= C
M

4T 2

∞∫
0

dk
k2

Ek

tanh
(
Ek
2T

)
cosh

(
Ek
2T

)2 (A.11)

∂3ΩNJL

∂M2∂(µ2)

∣∣∣∣
µ=0

= − C

8T 3

∞∫
0

dk
k2

E3
k

M2Ek

[
cosh

(
Ek
T

)
− 2
]
− k2T sinh

(
Ek
T

)
cosh

(
Ek
2T

)4 (A.12)

∂3ΩNJL

∂M∂(µ2)2

∣∣∣∣
µ=0

= −C M

48T 4

∞∫
0

dk
k2

Ek

cosh
(
Ek
2T

)
sinh

(
Ek
T

)
− 2 sinh

(
Ek
2T

) [
cosh

(
Ek
T

)
− 2
]

cosh
(
Ek
2T

)5

(A.13)

A.3 Derivatives of M(T, µ)

∂M

∂(µ2)

∣∣∣∣
µ=0

= lim
∆→0

M(T,∆)−M(T, 0)
∆

(A.14)

∂2M

∂(µ2)2

∣∣∣∣
µ=0

= lim
∆→0

M(T, 2∆)− 2M(T,∆) +M(T, 0)
∆2

(A.15)
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