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Abstract
In this thesis we will derive and calculate the moment of inertia and the Tidal Love Number of
neutron stars. The Tidal Love Number is a quantity that characterizes how easy, or difficult, a com-
panion star could deform the star away from sphericity. In order to do that we first introduce the
Tolman-Oppenheimer-Volkoff Equations that arise from the General Theory of Relativity. Then these
equations will be solved which will among other things yield mass-radius curves. The matter inside
a neutron star is characterized by an Equation of State. Different Equations of State will be discussed
and used for the computation of the quantities mentioned above. Finally we will discuss universal
relations between the moment of inertia and the Tidal Love Number.

Zusammenfassung
In dieser Arbeit werden wir das Tägheitsmoment und die Tidale Love’sche Zahl für Neutronensterne
herleiten und berechnen. Die Love’sche Zahl charakterisiert, wie schwer oder leicht ein zweiter Stern
den Stern aus seiner Kugelform deformieren kann. Für diese Berechnungen werden wir zunächst die
Tolman-Oppenheimer-Volkoff Gleichungen einführen, welche aus der Allgemeinen Relativitätstheo-
rie hervorgehen. Die Lösung dieser Gleichungen wird uns unter anderem zu Masse-Radius-Kurven
führen. Die Materie im Inneren des Sterns ist parametrisiert durch eine Zustandsgleichung. Wir
werden verschiedene Zustandsgleichungen diskutieren und diese zur Bestimmung der oben erwäh-
nten Größen nutzen. Schließlich werden wir Universalrelationen zwischen dem Trägheitsmoment
und der Tidalen Love’schen Zahl diskutieren.
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Chapter 1

Introduction and Motivation
A key challenge of current high energy physics research is to explore the properties of nuclear matter
at very high densities. On the experimental side, particle accelerators are designed to produce high
densities. Neutron stars (NS), with their high central density, are a perfect place to research nuclear
matter at very high densities in a natural environment.
Neutron stars are compact objects of very high density that have masses of around 1.5 M⊙

1 but radii
that are 105 times smaller than the suns radius. They therefore present a perfect environment to
study nuclear matter properties at very high densities. Densities inside the core can be as high as
several times the density that is reached inside heavy atomic nuclei [1].
The Equation of State (EoS) describes the matter inside the star. As there are many different ap-
proaches for describing the matter inside the star there are many different EoS. NS are a perfect test
field to probe these EoS in extreme conditions. In this work two types of EoS will be used: polytropic
EoS and tabulated, realistic EoS. The polytropic EoS are analytical approximations of realistic EoS.
We will observe, however that they behave differently when compared to the realistic EoS.
Recently, the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first ob-
servation of a binary NS inspiral [2]. The internal structure of a star influences the waveform, among
other quantities characterized by the Tidal Deformability which measures the star’s quadrupole de-
formation in response to a companion’s perturbing tidal field [3]. The Tidal Love Number char-
acterizes how easy or difficult it would be to deform a NS away from sphericity [4]. The LIGO
observations lead to experimental insight to the Tidal Love Number [2]. Further observations of
gravitational waves could be used to extract more information about the EoS [4].
The so called I-Love-Relations [4] are universal relations between the moment of inertia of a slowly
rotating star and the Tidal Love Number. These relations are essentially independent of the EoS
[4]. In experimental astrophysics these relations allow to measure only the moment of inertia and
automatically receive information about the Tidal Love Number and vice versa, even if the Love
Number was not easily accessible from an experimental point of view [4].
The study of NS can also be beneficial in fundamental physics. As NS produce very strong gravita-
tional fields, much stronger than observed in our solar system, they are a perfect test to the General
Theory of Relativity [4]. Such tests can be found in e.g. [5].
In this work we will discuss properties of the Tidal Love Numbers and the moments of inertia of NS.
We will use various EoS and compare the results. Furthermore we will discuss the I-Love-Relations.

The structure of this thesis will be as follows:
First we are going to introduce the theoretical framework of the thesis. We will talk about NS in
general and give a short introduction to the necessary concepts of the General Theory of Relativity.

1In the following we will refer to the mass of the sun with the symbol M⊙.
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The starting point for our NS calculations will be the Tolman-Oppenheimer-Volkoff Equations that
will be derived at the end of Chapter 2. These ordinary differential equations (ODE) specify the
internal structure of a static, spherically symmetric relativistic NS that consists of a perfect fluid.
In Chapter 3 we will move on to solving the Tolman-Oppenheimer-Volkoff Equations for different
EoS. We will present mass-radius-curves that will give an insight to the stability of certain star con-
figurations.
In Chapter 4 we will derive and compute the moment of inertia of a slowly rotating NS. The derivation
is done by introducing a perturbation to the metric and solving the interior and exterior gravitational
field of a NS in a slowly rotating perturbation [4].
In a similar way the Tidal Love Number can be derived. This will be done in Chapter 5. Furthermore
numerical results will be presented for various EoS.
In Chapter 6 we will be using the results obtained from Chapter 4 and 5 and discuss the I-Love-
Relations. We will then conclude the thesis with a short summary and give an outlook for further
investigation.



Chapter 2

Theoretical Framework
This chapter will introduce the theoretical background of the thesis. First the general properties of
neutron stars (NS) will be discussed, then there will be a brief overview of the concepts from General
Relativity (GR) which we will use for the calculations in this thesis. We will conclude this chapter
with a derivation of the Tolman-Oppenheimer-Volkoff Equations (TOV Equations).

2.1 Introduction to Neutron Stars
Neutron stars are compact stars that contain very high density matter. NS have typical masses of
1.4 M⊙ and radii of around 10km [1]. In comparison with our sun, NS have similar masses while
their radii are 105 times smaller than the suns radius. NS are therefore extremely dense objects. The
mean mass density can be approximated via

ρ̄ =
3M∗
4πR3

∗
≈ 7 · 1014 g

cm3
≈ (2-3)ρ0, (2.1)

where ρ0 = 2.8 ·1014 g
�

cm3 is the normal nuclear mass density [1]. Inside the core, the density can
even reach several ρ0.

2.1.1 Structure of Neutron Stars
A NS is normally divided into five layers. The atmosphere, the outer crust, the inner crust and the
outer and inner core (see. Fig. 2.1). The core of the star constitutes most of the star’s mass. The
following discussion is based on [1].

The thickness of the atmosphere can vary between around 10 centimeters and a couple millimeters.
It consists of hot plasma. In the atmosphere, the radiation that the star emits is formed. From
observing the radiation, one can get insight to the radius and the mass of the star. For very cold NS
a solid or liquid surface is possible.

The outer crust is a few 100 meters thick and reaches up to a density of around 4 · 1011 g
�

cm3 . It
mostly consists of iron ions and electrons. The electron Fermi energy grows with increased pressure.
Trough beta captures the nuclei are enriched with neutrons. For the most part the outer crust is
solid.

The inner crust that is a couple km thick, reaches up to a density of 0.5ρ0. The inner crust consists
of free neutrons, electrons and neutron-rich-nuclei. In this layer the pressure is high enough for free
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Figure 2.1: Schematic depiction of the NS structure. The thicknesses depends on the model. Cre-
ated on basis of [1].

neutrons to be stable. The higher the pressure gets, the higher the electron Fermi energy grows. The
neutron-rich nuclei begin to release neutrons at a density of around 4.3 · 1011 g

�

cm3 [6].

In the outer core that reaches up to a density of around 2ρ0 and extends over several kilometers, the
matter mostly consists of free neutrons. Also some protons, electrons and muons are encountered.
The components of the pneµ-plasma are strongly degenerate [1]. The protons and neutrons form a
strongly interacting, suprafluid Fermi liquid.

The area with higher density than 2ρ0 is the inner core. Near the center of the star densities of
several ρ0 are possible. The inner core is several kilometers thick. Especially this layer is not very
well understood, as densities are so high that they have not been reproduced on earth. Multiple
different exotic matter states have been predicted for this layer. The matter is strongly interacting.

2.2 General Relativity

The so called General Theory of Relativity was outlined by A. Einstein and was published 1915 in sev-
eral papers [7, 8, 9]. GR is the generalization of the Special Theory of Relativity (SR) and describes
gravitation via geometric properties of a curved spacetime. GR is the basis for describing compact
objects, such as neutron stars and black holes (BH) and predicts the existence of gravitational waves.
(cf. [10])

Throughout this work we will use the metric convention (+,−,−,−), furthermore the Einstein sum-
mation convention (summation over contracted indices) is implied everywhere. To simplify equa-
tions, the gravitational constant G as well as the speed of light c is set to unity (gravitational units).
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2.2.1 Mathematical Formalism behind the General Theory of Relativity
The General Theory of Relativity is described on a four dimensional Riemannian manifold. The
underlying mathematics of GR is Differential Geometry.
Just like in SR, the points in this space are denoted by four-vectors

xµ = (x0, x1, x2, x3)≡ (t, x ). (2.2)

The displacement between two points is described by a displacement vector dxµ. From the chain rule
of partial differentiation follows that the displacement vector transforms to arbitrary coordinates x ′µ

as

dx ′µ =
∂ x ′µ

∂ xν
dxν . (2.3)

A vector that transforms in the same way as the displacement vector is called contravariant and is
denoted by an upper index. To lower the index one uses the metric tensor gµν

Aµ = gµν Aν. (2.4)

A vector with lowered index is called covariant. Raising indices works analogously using the metric
tensor Aµ = gµνAν. The transformation law for covariant vectors

A′
µ
=
∂ xν

∂ x ′µ
Aν (2.5)

under the change of coordinates is similar to the one for contravariant vectors. In a freely falling
reference frame the coordinates are denoted by ξµ. The invariant proper time interval dτ2 can be
expressed using the metric tensor.

dτ2 = gµν dxµ dxν = ηαβ dξα dξβ (2.6)

Applying (2.3) to the equation above yields a relation between the Minkowski metric ηµν, known
from SR, and the metric tensor.

gµν =
∂ ξα

∂ xµ
∂ ξβ

∂ xν
ηαβ . (2.7)

2.2.2 Geodesics and the Christoffel Symbol
One cornerstone of GR is the equivalence principle. The weak equivalence principle, that was
already hinted by experiments performed by G. Galilei, states that the gravitational mass and the
inertial mass are equal. Einstein extended this to the statement that in any arbitrary gravitational
field, a local inertial frame can be chosen, so that the laws of physics take on the form they have in SR
[11]. This extension is called strong equivalence principle. The power of the equivalence principle
is that a law that holds in SR, can be generalized to a law that holds within a gravitational field,
simply by applying a coordinate transformation.
The equation of motion of a body that is freely falling in an arbitrary gravitational field can be
expressed easily in the coordinates of the freely falling inertial frame ξα by

d2ξα

dτ2
= 0 (2.8)
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To obtain a connection between the freely falling frame and an arbitrary coordinate system one can
use the transformation law (2.3):

d2ξα

dτ2
=

d
dτ

�

∂ ξα

∂ xµ
dxµ

dτ

�

= 0 (2.9a)

⇔
∂ xλ

∂ ξα
∂ ξα

∂ xµ
d2 xµ

dτ2
+
∂ 2ξα

∂ xµ∂ xν
∂ xλ

∂ ξα
dxµ

dτ
dxν

dτ
= 0 (2.9b)

def.
⇔

d2 xλ

dτ2
+ Γ λ

µν

dxµ

dτ
dxν

dτ
= 0. (2.9c)

In the second line we carried out the chain rule and multiplied by ∂ xλ
�

∂ ξα . The last line in this
equation (2.9c) defines the Christoffel Symbol1 Γ λ

µν
. The path defined by this equation is called a

geodesic. Within the Lagrangian formalism it can be shown that this path extremizes the proper
time (e.g. see [11]).
The Christoffel Symbol can also be expressed in terms of the metric tensor:

Γ λ
µν
=

1
2

gλκ
�

∂ gκν
∂ xµ

+
∂ gκµ
∂ xν
−
∂ gµν
∂ xκ

�

. (2.10)

The Christoffel Symbol is symmetric in its lower two indices.

2.2.3 Riemann Curvature Tensor and the Einstein Field Equations
One important consequence of the equivalence principle, introduced in the last section, is the prin-
ciple of covariance. As physical laws must be independent of the chosen coordinates, there are
two important requirements to any law that holds in a gravitational field. Firstly any equation that
holds in a gravitational field, must be covariant under any coordinate transformation (i.e. maintain
its form under any coordinate transformation). Secondly all equations that hold in the presence
of a gravitational field must also hold in a local inertial frame (i.e. if the metric tensor is replaced
with the Minkowski metric the corresponding law from SR must result). The ordinary derivative
however does change its form under coordinate transformation. The ordinary derivative of a vector
is a non-tensor. A different type of derivative is required.
In order to keep the equations easy to read, its also useful to introduce a shorthand notation for the
ordinary derivative. The covariant derivative for a co- and contravariant vector is defined by:

Aµ||ν ≡ Aµ|ν − Γ λµν Aλ ≡
dAµ
dxν
− Γ λ

µν
Aλ,

Aµ||ν ≡ Aµ|ν + Γ
µ

λν
Aλ ≡

dAµ

dxν
+ Γ µ

λν
Aλ.

(2.11)

In an inertial frame the Christoffel Symbol vanishes and the covariant derivative equals the ordinary
derivative. By applying the chain-rule several times it can be shown that the covariant derivative of
a vector Aµ||ν in fact does transform as a tensor.
These definitions are sufficient to introduce the Riemann Curvature Tensor

Rρ
σµν
≡ Γ ρ

σν|µ − Γ
ρ

σµ|ν + Γ
α
σν
Γ ρ
αµ
− Γ α

σµ
Γ ρ
αν

(2.12)

1Some literature, including [11], calls Γ λµν the affine connection.
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If the Riemann Tensor vanishes the space is flat and vice versa. The Riemann Tensor Rρ
σµν

is antisym-
metric in its last two indices. The symmetric Ricci Tensor is defined as the following contraction of
indices:

Rµν ≡ Rα
µνα

. (2.13)

Furthermore one can define the Scalar Curvature R ≡ gµνRµν. Finally the Einstein Tensor can be
defined:

Gµν ≡ Rµν −
1
2

gµνR. (2.14)

The Einstein Tensor is divergenceless, i.e. Gµν||ν = 0, and symmetric. The Einstein Field Equations
now state that the Einstein Tensor is equal to the symmetric and divergenceless tensor Tµν:

Gµν = κTµν, (2.15)

where Tµν is the Energy-Momentum-Tensor. In GR any type of mass or energy contributes equally
as a source of curved spacetime. These sources are incorporated into a symmetric, divergenceless
second-rank Tensor, the Energy-Momentum-Tensor. Frequently matter can be treated as a perfect
fluid. For a perfect fluid the Energy-Momentum-Tensor reads:

Tµν = −pgµν + uµuν(p+ ε), (2.16)

where uµ is the local fluid four-velocity uµ = dxµ/dτ , p is the pressure and ε is the energy density.
From the Newtonian limit the constant κ= −8π can be determined.

2.2.4 The Schwarzschild Solution
The easiest region to solve the Einstein Field Equations in is static isotropic space. The most general
form of the line element for static isotropic spacetime is

dτ2 = B(r)dt2 −A(r)dr2 − r2
�

dθ 2 + sin2 θ dφ2
�

. (2.17)

At infinite distance to any source of gravity (i.e. at r → ∞) the functions A(r) and B(r) must
converge to unity, in order to fulfill the flat space limit. A substantial ansatz is

A(r) = exp[2λ(r)] and B(r) = exp[2ν(r)], (2.18)

where λ and ν go to zero for large r. Using (2.12) the non-zero components of the Ricci Tensor can
be computed:

R00 =
�

−ν′′ +λ′ν′ − ν′2 −
2ν′

r

�

e2(ν−λ),

R11 = ν
′′ −λ′ν′ + ν′2 −

2λ′

r
,

R22 =
�

1+ rν′ − rλ′
�

e−2λ − 1,

R33 = R22 sin2 θ .

(2.19)

In empty space the Einstein Field Equations (2.15) reduce to Gµν = 0. Shifting one index in this
relation yields

Rα
ν
=

1
2
δα
ν

R, (2.20)
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which implies that R = 2R⇔ R = 0, after contraction of indices, hence the right side of (2.20) is
zero, i.e. Rµν = 0. This implies that the bracket in the first line of (2.19) is zero, as well as the second
line and therefore R00 + R11 = 0 holds. From that it follows that λ′ + ν′ = 0 holds. Due to the flat
space limit λ+ ν= 0 also must be true. Inserting those results into R22 yields

(1+ 2rν′)e2ν = 1. (2.21)

This ODE implies exp(2ν) = 1− 2M/r , where M is the mass of the gravitational source. As λ= −ν
the metric for static, isotropic space outside a star can be written as

dτ2 =
�

1−
2M

r

�

dt2 −
�

1−
2M

r

�−1

dr2 − r2
�

dθ 2 + sin2 θ dφ2
�

. (2.22)

This is the Schwarzschild Solution [12].

2.3 Tolman-Oppenheimer-Volkoff Equations
At the end of the last section a solution to the Einstein Field Equations for static isotropic space
outside a compact object, the Schwarzschild Solution, was derived. The goal of this section is to
derive equations for the structure of a static, spherically symmetric, relativistic star that consists of
a perfect fluid.
The vanishing of the Scalar Curvature that was established for empty space does not hold inside a
star. Using (2.17) with the ansatz from (2.18) the Scalar Curvature can be derived:

R= gµνRµν = e−2νR00 − e−2λR11 −
2
r2

R22. (2.23)

Expressions for Rµµ are written out in (2.19). In static stars, the three-velocity vanishes (i.e. uµ∈{1,2,3} =
0). The time component of the four-velocity can be derived from the normalization condition
(gµνu

µuν = 1), resulting in u0 = 1
�p

g00 . Inserting this into (2.16) yields

Tµν = diag
�

e−2ν
�

p
�

1− e4ν
�

+ ε
�

,−e2λp,−r2p,−r2 sin2 θ p
�

. (2.24)

Now the Einstein Field Equations can be written out. For convenience, one index is lowered.

G0
0 = e−2λ
�

1
r2
−

2λ′

r

�

−
1
r2
= −8πε (2.25a)

G1
1 = e−2λ
�

1
r2
−

2ν′

r

�

−
1
r2
= 8πp (2.25b)

G2
2 = e−2λ
�

ν′′ + ν′2 −λ′ν′ +
ν′ −λ′

r

�

= 8πp (2.25c)

G3
3 = G2

2 = 8πp (2.25d)

The equation corresponding to the 00-component of the Einstein Tensor can be rewritten:

d
dr

�

r
�

1− e−2λ(r)
��

= 8πr2ε(r) (2.26)
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Integrating both sides of this equation and rearranging the terms yields

e−2λ(r) = 1−
8π
r

∫ r

0

dr ′ r ′2ε(r ′)≡ 1−
2M(r)

r
, (2.27)

where M(r) is the incorporated mass at radius r. At the edge of the star, M(r = R∗)≡ M∗ equals the
total mass of the star.
From (2.25a), (2.25b) and (2.27) one can obtain expressions for λ′,ν′,ν′′ and ν′2 in terms of p, p′,ε
and M(r). Inserting these into (2.25c) and using (2.27) results in the Tolman-Oppenheimer-Volkoff
Equations:

dp
dr
= −

�

p(r) + ε(r)
��

M(r) + 4πr3p(r)
�

r[r − 2M(r)]
(2.28)

Together with the equation for the mass that follows from (2.27)

M ′(r) = 4πr2ε(r) (2.29)

and an Equation of State (EoS) that relates the pressure with the energy density they form a coupled
ODE system which specifies the structure of the star with a given central pressure pc ≡ p(r = 0) fully.

2.4 Interior Schwarzschild Solution
Besides the solution in empty space, K. Schwarzschild also published an analytic solution to the
interior of an incompressible fluid sphere, the Interior Schwarzschild Solution (ISS) [13].
The assumption here is that the energy density is constant. The mass of the fluid sphere therefore is
given by

M∗ =
4π
3

R3
∗εc ⇔ εc =

3M∗
4πR3

∗
(2.30)

with the constant energy density εc. The equation for the mass (2.29) can now be integrated ana-
lytically:

M(r) =
4π
3

r3εc =
M∗r

3

R3
∗

. (2.31)

The equations (2.30) and (2.31) can be inserted into the TOV Equation (2.28):

p′(r) = −
r
�

M∗ + 4πR3
∗p(r)
��

3M∗ + 4πR3
∗p(r)
�

4πR3
∗

�

R3
∗ − 2M∗r2
� . (2.32)

When the edge of the star is reached the pressure should naturally be zero which leads to the initial
condition p(R∗) = 0. The solution to (2.32) is given by

p(r) = −
3M∗
�p

r2(R∗ − 2M∗)−
Æ

R3
∗ − 2M∗r2
�

4πR3
∗

�

3
Æ

R2
∗(R∗ − 2M∗)−
Æ

R3
∗ − 2M∗r2
� . (2.33)

In Fig. 2.2, the pressure and mass are plotted over the radius for a star with mass M∗ ≈ 2.193 M⊙
and radius R∗ ≈ 16.787km. The resulting central pressure is p(r = 0) = pc = 19.7588 MeV

�

fm3 .
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Figure 2.2: ISS for a star with mass M∗ ≈ 2.193 M⊙ and radius R∗ ≈ 16.787km. The central pressure

of the star is pc = 19.7588 MeV
�

fm3 . The pressure is shown in a and the mass in b.

From (2.30) the constant energy density εc for this star is easily calculated to be 123.447 MeV
�

fm3 .
Although the ISS is not very realistic, the general structure of the solution can be observed. The
pressure gradually decreases until the surface of the star is reached while the included mass gradually
increases. At the surface, the pressure has decreased to zero, while the mass amounted to the total
mass of the star.



Chapter 3

Solving the Tolman-Oppenheimer-Volkoff
Equations

In the last section the TOV Equations were derived. The focus of this section is to solve the TOV
Equations using various EoS. Besides taking a look at the solutions for the pressure and the mass
gradients, the mass-radius-curves are will be calculated.
The solution to the TOV Equations are functions of the pressure p and the mass M in terms of
the radius. In general the TOV Equations can not be solved analytically but have to be integrated
numerically. We will start the integration in the center of the star and integrate outwards until the
pressure is zero. Then the surface of the star is reached. The radius at this point equals the total
radius R∗ of the star. The total mass of the star is M∗ ≡ M(R∗). The central pressure pc acts as the
initial condition. For practical reasons we do not start the integration at r = 0 but at an arbitrary
small r0. The central pressure therefore is the value of p at r0. The mass at r0 is obtained by fixing
the energy density to the central energy density εc and integrating (2.29).
All calculations in this thesis were done with Wolfram Mathematica 11. For the numerical solution
of the ODE, the built in routine NDSolve was used.

3.1 Gravitational Units

We mentioned at the beginning of Sec. 2.2 that gravitational units will be used in this work. In
these units all relevant constants, such as the gravitational constant G and the speed of light c are
set to unity. This is useful when dealing with analytic expressions, as equations get easier to read
and to handle without having to deal with a lot of constants. Normally the units are changed back
to canonical units before calculating anything particular. The conversion factors to canonical units
can be obtained by multiplying by matching constants. In the following calculations the units of the
constants are put in square brackets.

1 s= 1 s · c
hm

s

i

= 2.9979 · 108 m

1kg= 1kg ·
G
�

m3

kg s2

�

c2
�

m2

s2

� = 7.4237 · 10−31 m

1J= 1
kg m2

s2
·

G
�

m3

kg s2

�

c4
�

m4

s4

� = 8.2622 · 10−45 m

(3.1)
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Mass limit

C∗

CS

U

log(εc)

M∗

Figure 3.1: Schematic plot of possible solutions to the TOV-Equations around the mass limit point
(equilibrium solutions lie on the red line). This illustrates the necessary condition for
stability.

A common choice in TOV calculations is to use MeV
�

fm3 for p and ε and km for M and r. Using the
results from above, one finds the relation between MeV

�

fm3 and km:

1
MeV

fm3 = 1.3234 · 10−6 1

km2 . (3.2)

It will also be practical to specify masses as multiples of the solar mass M⊙. The value of the solar
mass in km is M⊙ = 1.4766km. (cf. [11])

3.2 Mass-Radius-Curves
Before moving on to more realistic EoS we will talk about Mass-Radius-Curves. As mentioned at the
beginning of this chapter, the numerical calculations of the TOV Equations with initial pressure pc,
result in values for the total mass and the total radius of the star. When solving the TOV Equations for
multiple different values of pc we obtain multiple different tuples for R∗ and M∗. Plotting the masses
over the radii results in a mass-radius-curve. Analyzing the mass-radius-curve can give insight to the
stability of a star with a certain mass-radius tuple.

3.2.1 Necessary Condition for Stability
In this section we will introduce a necessary but not sufficient condition for the stability of a star
[11].
Consider a sequence of equilibrium star configurations around the mass limit as shown in Fig. 3.1.
A stable star is in an equilibrium between the gravitational force that acts inwards at the surface
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and the force induced by the pressure that is dependent on the EoS. Now consider an arbitrary star
S in this sequence. If the energy density of this star is increased due to a perturbation, the star
is compressed and displaced to C . At C it is not in an equilibrium configuration anymore. The
equilibrium star with the same energy density as C lies at C∗. The star at C hence has a deficit in
mass. Gravity therefore under balances the central pressure gradient that increased with the central
energy density and pushes the star back to S. A similar argument holds if the star is decompressed.
For a star at U that lies on the decreasing part of the curve the situation is different. If this star is
perturbed and shifted towards higher energy density, the star with the same energy density, that is in
an equilibrium configuration, has a lower total mass. The gravitation is stronger than it would be in
equilibrium and over compensates the inner pressure which makes the compression even stronger.
The star is unstable. From this argumentation the necessary condition for stability

∂M∗
∂ εc

> 0 (3.3)

arises. A star that lies on the increasing part of the mass-radius-curve fulfills this condition and is
stable, while a star that lies on the decreasing part does not fulfill this condition and therefore is
unstable.

3.3 Polytropic Equations of State
An important class of analytic EoS are the polytropes. A polytropic EoS is of the form p = Knγ, with
the nucleon number density n, a polytropic index γ and a constant K . As it is easier to solve the TOV
equation in p, the EoS will be inverted. The polytrope that will be used in this work reads [14]

ε(p) = mBnB,0

�

p
κmBnB,0

�1/γ

+
p
γ− 1

, (3.4)

where mB = 931.192MeV [15] is the baryon mass minus the binding energy in a heavy core (Fe),
nB,0 = 0.153 fm−3 [11] is the equilibrium of the nucleon number density and κ is a dimensionless
coefficient. For a causal (cs ≤ c) polytrope, γ ∈ (1,2] holds [14]. Throughout this work we will
fix the coefficient κ to 0.05 and consider different values for γ. In Fig. 3.2 different polytropes are
shown. An EoS can be characterized by its stiffness into stiffer or softer EoS with respect to the
compressibility of the matter [1]. The polytrope with γ = 2 is especially stiff, while the polytrope
with γ = 3/2 is softer. As we will see later, the stiffness of a EoS can change the results of mass-
radius-curve calculations drastically.

Solution of the Tolman-Oppenheimer-Volkoff Equations

In Sec. 2.4 the Interior Schwarzschild Solution was introduced as an analytical solution to the TOV
Equations. For polytropes the TOV Equations must be integrated numerically, as described in the
beginning of the chapter. This gives insight to the internal structure of NS. In Fig. 3.3, the pressure
and the mass of the star are shown for different central pressures. For the polytrope with γ= 2, the
stable star with maximum mass has a mass of 1.81 M⊙ at a central pressure of 316.23 MeV

�

fm3 . The
crosses at p = 0 in Fig. 3.3 (a) mark the radii of the stars. From this we see that the radius of the
star increases with decreasing central pressure. As for the ISS the pressure decreases monotonically
from its maximum in the center of the star with increasing radius, while the mass increases with the
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Figure 3.2: Comparison of different polytropes. Higher polytropic indices correspond to stiffer EoS.
The polytrope with γ= 2 is especially stiff.
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Figure 3.3: In a, the pressure over the radius and in b, the mass over the radius is plotted for

three different central pressures and a polytrope with γ = 2. The star with pc =
316.23 MeV
�

fm3 is the one with maximum mass for this EoS. The crosses in a mark
the radii R∗ of the stars.
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Figure 3.4: Mass-Radius-Curves for different polytropic EoS. The crosses mark the maximum
masses. Stars on the dashed part of the curve are unstable.

radius. Near the star’s surface, i.e. inside the crust, the pressure decrease is not as steep as inside
the core.

Mass-Radius-Curves

The mass-radius-curves for different polytropic EoS are shown in Fig. 3.4. The star with maximum
mass for each EoS is marked by a cross. The stars right of the maximum mass star are stable, the
ones on the left are unstable. The maximum mass for an EoS decreases with the polytropic index,
i.e. stiffer EoS have higher maximum masses, than softer EoS. The difference in maximum mass
can reach up to 1 M⊙ between very stiff and very soft EoS [1]. Up to the point were the spiraling
starts, the stars in the dashed regions do not fulfill the necessary condition for stability, worked out
in the previous section but the stars that lie on the increasing slope of the spiral have ∂M∗/∂ εc > 0
and are stable, as far as the TOV Equations are concerned. It turns out, however that these stars
are also unstable due to unstable vibration modes [16]. Further discussion of the spiraling of the
mass-radius-curves of polytropic EoS can be found in [14].

3.4 Realistic Equations of State
The Xtreme Astrophysics Group at the University of Arizona, operates a webpage with realistic,
tabulated, up-to-date EoS [17]. Further information can be obtained from their paper [18]. In this
work we will consider a couple of the EoS published on [17]: SLY [19], bbb2 [20], WFF2 [21] and
AP4 [22]. In Fig. 3.5 these EoS are shown. The bbb2 EoS is especially soft, while the WFF2 is the
stiffest of the four. Solving the TOV Equations with the EoS mentioned above for a central pressure
of 1000 MeV
�

fm3 yields the curves in Fig. 3.6 (a). The dashed curve is a polytrope with γ = 2.
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Figure 3.5: Comparison of the different realistic, tabulated EoS. The bbb2 and SLY EoS are softer
than the WFF2 and the AP4 EoS.
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Figure 3.6: In a, the pressure solution of the TOV Equations is shown. The gray line marks the

polytrope with γ = 2. Note that the star with the polytropic EoS is unstable for this
central pressure. In b, the Mass-radius-curves for the realistic EoS are shown. The
crosses mark the maximum masses.
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Compared to the polytrope the realistic EoS have smaller crusts.
The mass-radius-curves are shown in Fig. 3.6 (b). Again we observe that softer EoS have lower
maximum masses. The calculated maximum masses match the ones calculated in [17] to about 2%.
This deviation is caused most likely by the interpolation method (Hermite interpolation of order 1)
of the EoS tables.





Chapter 4

Derivation and Calculation of the Moment
of Inertia
In this chapter we consider a slowly rotating, isolated NS up to linear order in its spin. First we are
going to derive an expression for the moment of inertia, then numerical results will be presented.

4.1 Derivation of the Moment of Inertia
In order to calculate the moment of inertia I we will introduce a perturbation to the metric. Following
[4, 23], the perturbed line element reads:

dτ2 = e2ν(r) dt2 − e2λ(r) dr2 − r2
�

dθ 2 + sin2 θ[dφ −α(Ω∗ −ω(r))dt]2
	

, (4.1)

with the perturbation function ω(r) and the NS angular velocity Ω∗. The parameter α functions as
a book-keeping parameter [4]. The order O

�

α0
�

is solved by the TOV Equations. The effects that
we are looking at in this chapter occur at O

�

α1
�

.
Now that the NS is rotating, the three-velocity is no longer zero in all components. Theφ-component
that we chose as the axis of rotation depends on the angular velocity. Following [4], the four-velocity
for a slowly rotating star is given by:

uµ =
�

u0, 0, 0,αΩ∗u
0
�

. (4.2)

From this we can derive the Energy-Momentum-Tensor for a slowly rotating NS by inserting the
four-velocity into (2.16). In O

�

α1
�

the non-zero components read:

T 0
3 = −r2α sin2 θ (u0)2[p(r) + ε(r)]ω(r)

T 3
0 = e2ν(r)αΩ∗(u

0)2[p(r) + ε(r)].
(4.3)

Now we can calculate the perturbed Einstein Field Equations. The (0, 3)-component of these equa-
tions is a second order ODE for the perturbation function ω(r):

ω′′ +ω′
�

4
1−πr2[p+ ε]e2λ

r

�

−ω
�

16π[p+ ε]e2λ
�

= 0. (4.4)

In the literature this equation is frequently referred to as the frame-dragging-equation. In the exterior
region of the star the pressure and energy density are zero. This reduces the equation to:

ω′′ + 4
ω′

r
= 0. (4.5)
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This equation can be integrated analytically and the integration constants can be identified as the
angular velocity and the spin angular momentum J [4, 23]. The exterior solution reads:

ω(r) = Ω∗ −
2J
r3
= Ω∗

�

1−
2I
r3

�

, (4.6)

with the definition I ≡ J/Ω∗ of the moment of inertia.
The interior solution can be obtained numerically with the TOV Equations. Before doing that we
need to find initial conditions for ω. This is done by inserting the ansatz ω(r) = ωc(1 + ω2r2)
into (4.4) and expanding about the center of the star. From this we eliminate ω2, so the ansatz only
depends on one constantωc. This results in an expression for the asymptotic behavior of the interior
solution close to the star’s center:

ω(r) =ωc +
8π
5
(pc + εc)ωc r

2 +O
�

r3
�

for r → 0. (4.7)

As (4.4) is arbitrarily scalable, we can choose ωc arbitrarily to integrate the ODE. Every factor mul-
tiplied by this solution will also solve the ODE. We can fixωc (and I) by requiring continuity ofω(r)
and its derivative at the star’s surface, i.e.

ω(int)(R∗) =ω
(ext)(R∗) and ω′

(int)(R∗) =ω
′(ext)(R∗). (4.8)

The matching condition (4.8) yields the expression

ωc

Ω∗
=

3
3ω(R∗) + R∗ω′(R∗)

(4.9)

for the factor ωc. With this, we can rescale the numerical solution found by integrating (4.4). The
angular velocity has to be specified just like the central pressure, however, for the calculations done
here, its value is insignificant. Furthermore the matching condition (4.8) can be solved to give us
the expression for the moment of inertia I that we seeked for:

I =
R4
∗ω
′(R∗)

2(R∗ω′(R∗) + 3ω(R∗))
. (4.10)

4.2 Numerical Results
In the last section we derived an expression for the moment of inertia. In this section we will compute
moments of inertia and discuss the results.

In Fig. 4.1 we show the moment of inertia over the compactness C , that is defined as the quotient
M∗/R∗ , for various EoS. Only stable star configurations are plotted. For the polytrope with polytropic
index γ= 2, the moment of inertia reaches a maximum at a compactness of around 0.15. Up to this
value it grows much faster with the compactness than for the realistic EoS. At larger compactness
the moment of intertia decreases. As stiffer EoS (AP4, WFF2) have higher maximum masses, they
also reach higher values of I .
The moment of inertia divided by the mass times the squared radius of the star over the compactness
for various polytropic EoS is shown in Fig. 4.2 (a). Again we see that stiffer EoS have higher values
of I than softer EoS. Furthermore the same quantities for the realistic EoS are shown in Fig. 4.2 (b).
The polytropes are shown in gray.
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Figure 4.1: Moment of inertia over the compactness for various EoS. Only stable star configurations
are plotted.
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Figure 4.2: The moment of inertia divided by the mass times the squared radius of the star over

the compactness for polytropic EoS in a and for realistic EoS in b. In b, the polytropic
curves are shown in gray. Only stable star configurations are plotted.





Chapter 5

Derivation and Calculation of the Tidal
Love Number
Up to this point, we only looked at an isolated star (NS1). Now we introduce a second companion star
(NS2) and investigate the deformation that this star induces. The aim of this chapter is the derivation
of the so called Tidal Love Number. First we are going to work out the necessary definitions, then
an expression for the Tidal Love Number is going to be derived. Finally we will present numerical
results for the Love Number.

5.1 Definition of the Tidal Love Number
The Tidal Love Number characterizes the deformability of a NS away from sphericity [4]. NS2

induces a tidal quadrupolar tidal field Ei j. The static and spherically symmetric NS1 of mass M∗ is
placed in this external field and will respond to it by developing a quadrupole moment Qi j. In order
for the following calculations to be valid, we need the stars to be far away from each other (i.e.
dist[NS1,NS2]≫ R∗). In this case the quadrupole moment (ℓ = 2) dominates over other multipole
moments. We introduce the linear response λ(tid) by:

−λ(tid)Ei j ≡Qi j, (5.1)

where Ei j and Qi j will be defined as expansion coefficients later. Some literature, including [4],
already calls this constant Tidal Love Number. Here we will follow the definitions from [24] and call

k2 ≡
3
2
λ(tid)R

−5
∗ (5.2)

the Tidal Love Number and λ(tid) the Tidal Deformability. As we will see later, the constant λ(tid) is
proportional to R5

∗. The Tidal Love Number on the other hand is constructed to be dimensionless.
The quadrupole fields Qi j and Ei j can be expanded in tensor spherical harmonics Yℓmi j :

Ei j =
2
∑

m=−2

EmY2m
i j = E0 Y20

i j ≡ E Y20
i j ,

Qi j =
2
∑

m=−2

QmY2m
i j =Q0 Y20

i j ≡QY20
i j .

(5.3)

In the second equality we used that we can orient the coordinate system so that the problem gets
symmetric in φ. The only component that is non vanishing is the m = 0 component. With that we
can rewrite (5.1) as follows:

λ(tid) = −
Q
E

. (5.4)
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5.2 Derivation of the Tidal Love Number
The derivation of the Tidal Love Number is similar to the derivation of the moment of inertia. Again
we introduce a metric perturbation. The perturbed metric we will call g̃µν. Following [24, 25, 26]
we write:

g̃µν ≡ gµν + hµν ≡ gµν + diag
�

eν(r) h0(r),−eλ(r) h2(r),−r2 k(r),−r2 sin2 θ k(r)
�

· P2(cosθ ), (5.5)

with perturbation functions h0(r), h2(r) and k(r). Furthermore the Energy-Momentum-Tensor is
perturbed by a perturbation tensor δTµν. The perturbed tensor is defined by

T̃µ
ν
≡ Tµ

ν
+δTµ

ν
≡ Tµ

ν
+ diag [δε(r,θ ),−δp(r,θ ),−δp(r,θ ),−δp(r,θ )]. (5.6)

The perturbation of the energy density can be expressed as δε = (dε/dp )δp [24]. With these
perturbed quantities we can write down the perturbed Einstein Field Equations

G̃µ
ν
= −8πT̃µ

ν
, (5.7)

where the Einstein Tensor G̃µ
ν

is calculated using the metric g̃µν. Furthermore we introduce a pa-
rameter α into the metric that functions as a book-keeping parameter [4]. At order O

�

α2
�

, the
leading-order effects of tidal perturbations occur. The order O

�

α0
�

is solved by the TOV Equation.
To simplify the following equations we will not write down the parameter α, as it only functions as
a formal trick.

Deriving a Differential Equation for h0

The perturbation functions introduced in (5.5) can all be expressed in terms of h0, resulting in a
differential equation for h0.
We begin by subtracting G̃4

4 from G̃3
3:

G̃3
3 − G̃4

4 = −8π
�

T̃ 3
3 − T̃ 4

4

�

= 0. (5.8)

This yields the equation
�

h0 + h2

��

cotθ P ′2(cosθ )− P ′′2 (cosθ )
�

= 0 ∀r,θ . (5.9)

From this follows the relation between h2 and h0

h2 = −h0. (5.10)

Next, we look at G̃2
3 . As the Energy-Momentum-Tensor T̃µ

ν
is diagonal, the right side of the Einstein

Field Equation is zero. This equation can be solved to yield

k′ = −h′0 − 2h0ν. (5.11)

Lastly, we add the components that we subtracted in the first step

G̃3
3 + G̃4

4 = −8π
�

T̃ 3
3 + T̃ 4

4

�

(5.12)
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and subtract the part of O
�

α0
�

that is solved by the TOV Equations. This yields an expression for the
pressure perturbation

δp(r,θ ) = −
e−2λh0P2(cosθ )[λ′ + ν′]

8πr
. (5.13)

Using these relations, we can subtract

G̃1
1 − G̃2

2 = −8π
�

T̃ 1
1 − T̃ 2

2

�

(5.14)

and again, eliminate the terms of order O
�

α0
�

. This yields the differential equation for h0, we were
looking for:

h′′0 + h′0

�

2
r
+ ν′ −λ′
�

+ h0

�

3λ′

r
+

7ν′

r
+ 2ν′′ +

ε′[p(r)]
r

(λ′ + ν′)−
6e2λ

r2
− 2ν′2 − 2ν′λ′
�

= 0 (5.15)

Together with the TOV Equations this ODE can be integrated numerically. Later we will get back to
that result.

Exterior Equation for h0

Outside the star, the pressure and energy density are zero, also λ is equal to ν but with an opposite
sign (see Sec. 2.2.4). This reduces (5.15) to

h′′0 + h′0

�

2
r
− 2λ′
�

− h0

�

6e2λ

r2
+ 4λ′2
�

= 0. (5.16)

Applying the substitution x = (r/M∗−1) brings above equation in the form of an Associated Legendre
Equation with ℓ = m = 2 [27]. The general solution to this equation is a superposition of the
Associated Legendre Functions P2

2 (x) and Q2
2(x) [27]:

h0(r) = c1Q
2
2

�

r
M∗
− 1
�

+ c2P2
2

�

r
M∗
− 1
�

= c1

�

r
M∗

�2�

1−
2M∗

r

��

−
M∗(M∗ − r)(2M2

∗ + 6M∗r − 3r2)

r2(2M∗ − r)2

+
3
2

log
�

r
r − 2M∗

��

+ 3c2

�

r
M∗

�2�

1−
2M∗

r

�

,

(5.17)

where we changed the variables back to r and substituted the expressions for the Legendre Functions.

Determining the Constants

The time component of the metric outside the star can be expanded in the so called buffer zone
[4, 24]:

−
1− g̃00

2
= −

M∗
r
−

3Qi j

2r3

�

x i

r
x j

r
−

1
3
δi j

�

+O
�

1
r3

�

+
1
2
Ei j x

i x j +O
�

r3
�

= −
M∗
r
−

Q
r3

P2(cosθ ) +
E
3

r2P2(cosθ ) +O
�

r−4, r3
�

.

(5.18)
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Figure 5.1: Depiction of the zones around the NS. Created on basis of [28].

The buffer zone is the region, where the inner zone and the near zone overlap (see Fig. 5.1), i.e.
far away from the star (i.e. r ≫ R∗) but still not near the companion star (i.e. r ≪ dist[NS1, NS2])
[4]. In this region both the inner zone and the near zone solution are valid. Further information
on the various zones around NS binaries can be obtained from [28, 29]. After inserting the ansatz
of the exterior solution (5.17) and the exterior expressions for λ and ν into the time component of
the metric and expanding at large radii, we can compare this expansion with (5.18). This yields
equations for c1/2:

8c1M3
∗ P2(cosθ )

5r3
= −

Q
r3

P2(cosθ ) ⇒ c1 =
5Eλ(tid)

8M3
∗

(5.19a)

3c2

M2
∗

P2(cosθ ) =
1
3
EP2(cosθ ) ⇒ c2 =

M2
∗ E
9

. (5.19b)

Now that the exterior solution of h0 is fully determined, we are ready to write out an expression for
the Tidal Love Number k2.

Expression for the Tidal Love Number

We require continuity of h0 and its derivative at the star’s surface:

h(int)
0 (R∗) = h(ext)

0 (R∗) and h′0
(int)(R∗) = h′0

(ext)(R∗). (5.20)

After substitution of y = R∗h
′
0(R∗)
�

h0(R∗) and the compactness C = M∗/R∗ we obtain an expression
for k2:

k2 = 8 (1− 2C)2 C5 [2− 2C + (2C y − y)]

×
�

10C
�

4C4 + 6C3 − 22C2 + 15C − 3
�

y + 4C4 y − 4C3 y + 26C2 y − 24C y + 6y

+ 3 (1− 2C)2 [2− 2C + (2C y − y)] log(1− 2C)
	−1

(5.21)
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Figure 5.2: Tidal Love Number k2 plotted over the compactness C = M∗/R∗ for polytropes with
γ ∈ {2, 5/3,3/2}. Only stars that are stable are plotted.

This result agrees with [24, 3, 4]. The coefficient y is determined by the interior solution at r = R∗.
The solution to (5.15) can be obtained by integrating numerically using the TOV Equations. First
however, we need to find boundary conditions for h0.
The perturbation function h0, as a component of the metric, should be finite in the center of the star.
In order to cancel r in the denominator of the coefficient of h0 in (5.15), we make the ansatz h0 = cr2.
As (5.15) is arbitrarily scalable and we are only interested in the ratio of h0 and its derivative, we
can set c to one. The boundary conditions therefore are h0(r0) = r2

0 and h′0(r0) = 2r0. In [24], the
expansion up to O

�

r4
�

is done. The numerical results however are almost identical.

5.3 Numerical Results
In this section we will present numerical results for the Tidal Love Number k2, derived in the last
section, for the polytropic and realistic EoS introduced in Ch. 3.

5.3.1 Polytropic Equations of State
The Tidal Love Number over the compactness C for various polytropic EoS is shown in Fig. 5.2.
Only stars that are stable (see Sec. 3.3) are shown. The Love Number measures how easily the
star can be deformed. If most of the star’s mass is concentrated in the center of the star, the tidal
deformation will be smaller. For polytropic EoS the polytropic index determines the stiffness of the
EoS. Polytropes with a higher polytropic index are stiffer. For a soft polytrope (i.e. low polytropic
index) the matter is mostly in the stars center. Therefore the Tidal Love Number increases with the
polytropic index. Stiffer EoS produce stars that are easier to deform [3]. Also the Tidal Love Number
decreases with increasing compactness. Compact stars are bound stronger.
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Figure 5.3: Tidal Love Number k2 plotted over the compactness C = M∗/R∗ for realistic EoS. Poly-
tropes with γ ∈ {2,5/3, 3/2} are shown in gray. Only stars that are stable are plotted.

Table 5.1: The central pressure, mass, radius, compactness and the Tidal Love Number of maximum
star configurations for various EoS.

EoS p(max)
c [MeV/fm3] M (max)

∗ [M⊙] R(max)
∗ [km] C k2

Poly(γ= 2) 316.228 1.805 12.269 0.217 0.028
Poly(γ= 5/3) 100.000 1.378 15.435 0.132 0.034
Poly(γ= 3/2) 17.783 1.271 25.984 0.072 0.029
bbb2 1000.000 1.923 9.444 0.301 0.016
WFF2 1333.520 2.199 9.710 0.334 0.012
SLY 749.890 2.049 10.149 0.298 0.018
AP4 1000.000 2.212 10.078 0.324 0.014

5.3.2 Realistic Equations of State
In Fig. 5.3 the Tidal Love Number over the compactness for the realistic EoS from Ch. 3 is shown.
Furthermore the curves that resulted for polytropes are shown in gray. For large compactness the
realistic EoS behave similar to polytropes. For smaller compactness the star’s crust gets bigger. This
results in smaller values for k2 [3]. Just as for the polytropes, the realistic EoS Love Number tends to
zero as the compactness grows. From (5.21) we see that for the compactness of a BH (C = 0.5), the
Love Number vanishes, regardless of the EoS that is incorporated in the parameter y [3]. However,
there is no physical central density that would lead to a BH formation, so the sequence of stars
considered will converge towards zero [4]. For all the EoS, considered in this work, important
quantities of the maximum mass stars are listed in Tab. 5.1. These maximum mass stars have a
high compactness and therefore a relatively small Love Number, they deliver a perfect compromise
between radius and density, while being stable. Stars with maximum k2 have M ≈ 0.8 M⊙.



Chapter 6

I-Love-Relations
In the last two chapters we dealt with the moment of inertia for a slowly rotating star and the Tidal
Love Number, i.e. the deformation of a star by a companion star. With the numerical solutions in
hand, we can now focus our attention to the relation between those quantities.
It turns out that the moment of inertia over the Tidal Love Number behaves in a very similar way for
any EoS. The relations are EoS independent to within O(1%) [4]. This means that the relationship
between those quantities does not depend on the NS internal structure. This strongly hints a univer-
sal relation between these quantities. Before taking a look at the plot, we define two dimensionless
quantities:

λ̄(tid) ≡
λ(tid)

M5
∗
=

2
3

k2C−5, (6.1)

Ī ≡
I

M3
∗

. (6.2)

In Fig. 6.1, Ī is plotted over the dimensionless λ̄(tid) for all EoS considered in this work. The central
pressure or equivalently the compactness varies along the curve. As the NS compactness increases,
i.e. the Tidal Love Number decreases, the I-Love-Relations for the different EoS converge to a limiting
value. This happens, as the compactness gets closer to the compactness of a BH (C = 0.5). In the
last chapter, we already worked out that the Tidal Love Number approaches zero, as C goes to 0.5,
while the moment of inertia Ī tends towards 4 [30]. The BH limit can not be reached, as it is not
possible to construct a BH solution by increasing the central pressure of a NS solution by a finite
amount [4].
In [4] two possible explanations for such universal relations are discussed: all realistic EoS approach
each other far away from the core. The relations may most sensitively depend on the internal struc-
ture far away from the core. Furthermore the I-Love-Relations approach the values for a BH that
does not have any internal structure dependence.
Further discussion of the I-Love-Relations can be found in e.g. [4, 31].

In [2], experimental upper boundaries for λ̄(tid) are presented. For slowly rotating stars of mass
1.4 M⊙, the quantity λ̄(tid) is ≤ 800 according to [2]. For the polytrope with γ= 2, the value for this
quantity is more than three times higher than experimentally predicted. This underlines that the
polytropes are not very realistic EoS. For the other polytropes considered, the stars with 1.4 M⊙ are
unstable. The realistic EoS all agree with the experimental boundary. For all realistic EoS considered
in this work, λ̄(tid)(1.4 M⊙) lies between 200 and 320.
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Figure 6.1: Dimensionless moment of inertia Ī over the dimensionless quantity λ̄(tid)∝ k2. For all
EoS considered in this work. As the compactness increases, λ̄(tid) decreases.



Chapter 7

Conclusion and Outlook
In this thesis the Tidal Love Number as well as the I-Love-Relations for NS were calculated. First
we introduced the theoretical framework of GR and derived the TOV Equations. Furthermore the
ISS was discussed as an analytical solution to the TOV Equations. In the next chapter we solved
the TOV Equations for polytropic EoS as well as realistic, tabled EoS. The results for the pressure-
radius-curves and the internal mass-radius-curves were presented and discussed. Then the mass-
radius-curves for different EoS were calculated and discussed and a stability condition for a NS of a
certain mass-radius-configuration was discussed. In the next chapter we focused our attention on the
moment of inertia which was derived and computed for the EoS mentioned above. The derivation
was done by introducing a perturbation to the metric proportional to a perturbation function ω(r).
Through continuity conditions the exterior and interior solutions for the perturbation function were
matched which resulted in an expression for the moment of inertia. We found that the moment of
inertia grows with the compactness and that stiffer EoS produce higher values for I . In the following
chapter the Tidal Love Number was derived. The derivation was done similarly to the derivation of
the moment of inertia. We found that the Tidal Love Number decreases with the compactness, but
increases with C for small values and realistic EoS. Lastly we found with the I-Love-Relations that
the moment of inertia plotted over the Tidal Love Number is almost independent of the EoS which
hinted a universal relation between these quantities.

There is a variety of further research possibilities. As a first step, it could be interesting to calculate
the Tidal Love Number for a larger variety of EoS. Calculations for more realistic, tabulated EoS,
including some of the EoS discussed in this work, can be found in e.g. [3]. For further investiga-
tion it would also be interesting to calculate the star’s spin-induced quadrupole moment and the
Rotational Love Number. As discovered in [4] these quantities also fulfill universal relations, the I-
Love-Q-Relations, i.e. the quadrupole moment over the Tidal Love Number, as well as the quadruple
moment over the moment of inertia and the rotational over the tidal Love Number are independent
of the EoS. Also it would be interesting to further investigate the reasons for the appearance of such
universal relations. The I-Love-Q-Relations open the door to even further use of gravitational wave
observation. Measuring only one of I-Love-Q quantities automatically results in knowledge of the
others. Additionally the investigation of possible further universal relations could be interesting.
Another interesting extension to this thesis could be to repeat the calculations for rapidly spinning
NS as done in e.g. [32]. This however, is more of an academic interest, as for almost all NS that have
been astrophysically observed, the spin period is sufficiently long that the slow-rotation expansion
is an excellent approximation [4].
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