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ZusammenfassungIn dieser Arbeit wird das Spektrum leihter Hadronen in der Quantenhromodynamik(QCD) mithilfe des MIT Bag Model untersuht, ein Modell das 1974 am MIT entwikeltwurde. Mit diesem Modell werden die Massen leihter Hadronen, deren radiale Anregungenund ein asymptotishes Massenspektrum bestimmt. Die Ergebnisse dieser Untersuhungwerden benutzt um ein Gas von Hadronen zu beshreiben. Dieses Gas wird mit zwei Mo-dellen beshrieben, als ein Quantengas von punktförmigen Teilhen und im CompressibleBag Model, welhes das Volumen der Hadronen berüksihtigt. Die Eigenshaften eines Ha-dronengases in diesen Modellen wird mit den Ergebnissen von Lattie QCD Berehnungenverglihen. Dabei ist der Phasenübergang in ein Quark-Gluonen-Plasma von besonderemInteresse.

AbstratIn this work the spetrum of light hadrons in quantum hromodynamis (QCD) is investi-gated by using the MIT Bag Model, a model that has been developed in 1974 at the MIT.This model is used to alulate the masses of light hadrons, their radial exitations and anasymptoti mass spetrum. The results of this investigation are used for the desription ofa gas of hadrons. This gas is desribed by using two models, as a quantum gas of point-likepartiles and in the ompressible bag model, whih inorporates the volume of the hadrons.The properties of a hadron gas in these models are ompared to the results of lattie QCDalulations. The phase transition to a quark-gluon plasma is of speial interest here.
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1 IntrodutionThe theory of quantum hromodynamis (QCD) desribes the interations of quarks andgluons. A bound state of quarks in the QCD is alled a hadron, whih an not be leftby its valene quarks. In 1974 Chodos, Ja�e, Johnson, Thorn and Weisskopf from theMassahusetts Institute of Tehnology introdued a new model of hadrons, see Ref. [2℄, inwhih hadrons are treated as so-alled 'bags'. This model has been used in 1975 by De-Grand, Ja�e, Johnson and Kiskis to alulate the spetrum of light, ground-state hadrons,see Ref. [3℄. To desribe the state of quarks inside a hadron the MIT Bag Model takes theQCD vauum to be a medium in whih the quarks an not exist. They are bound inside aregion of spae, a so-alled 'bag', in whih they are treated as free partiles. Their kinetienergy and some orretion terms are used to determine the hadron mass. This modelleads to a onsiderably good agreement with the experimental data, and is presented here.After some hadron masses are alulated, the thermodynami properties of a gas ofhadrons are investigated. The most interesting property of suh a gas is the phase transitionto a quark-gluon plasma. In a quark-gluon plasma the quarks and gluons, whih areon�ned in hadroni matter, are deon�ned. This state of matter is believed to be produedin ollider experiments of high energies, and is a subjet of thorough investigations. Todesribe a gas of hadrons, two models are used:
• An ideal quantum gas. The limits of this model will be reahed when the phasediagram of QCD is alulated.
• The ompressible bag model, an approah in whih the volume of the bags is takeninto aount. This will result in a more reasonably phase diagram.As no experimental data exist to date, the results from the bag model are ompared tolattie QCD alulations.1.1 UnitsNatural units are used here: h̄ = c = kB = 1. With h̄c = 197.3MeVfm and kB =

8, 617 · 10−11 MeV
K the onversions for length and temperature are 1fm = 5.068GeV−1 and

1K = 8, 617 · 10−11MeV.
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2 The MIT Bag ModelAs the properties of hadrons ould not yet be alulated with full QCD, several modelshave been developed to desribe a hadron. A relatively simple one is the bag model. Thehadron is desribed as a avity to whih the quarks are on�ned, and whih they an notleave. The MIT Bag Model explains the stability of this avity by introduing the universalbag onstant B as the inward vauum pressure. Now the radius of the bag is determinedby the equilibrium of B and the outward pressure reated by the valene quarks.To alulate the mass of a hadron the Dira equation for one quark is solved inside aspherial avity of radius r with wave funtion ψ as solution. Outside the bag, the wavefuntion is zero. (See Fig. 2.1 as an illustration.) The salar ψ̄ψ has to vanish on the surfaeof the bag, a onsequene of the bag Lagrangian. This boundary ondition determines thekineti energy of the quarks. Several orretion energy terms are introdued: Zero point�utuations and enter of mass movement are summarized in a parameter Z0 whih has tobe �tted to experimental values. The quark-gluon interations are alulated to the lowestorder in the oupling onstant αS. The sum over these energies and the energy ontributedby the bag onstant is identi�ed as the mass of the hadron, whih is a funtion of the bagradius: M(r). Now M(r) is minimized with respet to the radius. This determines thehadron radius R, and therefore the resulting mass M(R). The minimization onditionis equivalent to the equilibrium of outside and inside pressure on the bag surfae, andtherefore to the stability of the bag.

Figure 2.1: Illustration of the bag model: The quark wave funtion ψ is non-zero insidea spherial avity, surrounded by QCD vauum in whih the wave funtion is
ψ = 0.2.1 The bag LagrangianTo start with, the bag Lagrangian for a spherial and stati bag of radius R is writtendown as

L =
{

ψ̄ (iγµ∂
µ −m)ψ −B

}

Θ(R− r) − ψ̄ψδ(R − r). (2.1)6



Here Θ is the Heaviside step funtion and δ the Dira delta funtion. They are relatedthrough
∂µΘ(r) = nµδ(r),where (nµ) = (0, ~er) is the unit vetor perpendiular to the bag surfae. Inside the bag(r < R), the bag Lagrangian is just the Lagrangian for a free fermion of mass m. Also thebag onstant B is subtrated here as it ontributes to the energy density, but with no e�eton the equations of motion. On the bag surfae (r = R) the term ψ̄ψ in the Lagrangianwill give the boundary ondition.Now aording to Hamilton's priniple the ation of the system is minimized, whihleads to the Euler-Lagrange equations

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0. (2.2)Deriving these equations from Eq. (2.1) leads to the Dira equation
(iγµ∂

µ −m)ψ = 0 (2.3)inside the bag. This equation will be solved in the following setion. On the bag surfaethe Euler-Lagrange equations lead to
−i~γ~erψ = ψ,whih is the boundary ondition. It an also be written as iψ̄~γ~er = ψ̄. Now ψ̄ψ isonstruted from both forms, and one gets

ψ̄ψ = iψ̄~γ~erψ = −iψ̄~γ~erψ = 0. (2.4)This is the boundary ondition that will be used to determine the momentum of a quarkinside the bag.A word about hiral symmetry is in order here. The Lagrangian of a free massless quarkis hirally symmetri, but the symmetry is broken when a quark mass is introdued. Sothe symmetry breaking term is mψ̄ψ. In the bag Lagrangian the term δ(R − r)ψ̄ψ doesthe same, even for vanishing quark masses. In a hirally symmetri theory massless pionsare expeted if the symmetry is dynamially broken. If the symmetry is expliitely brokenon the level of the Langrangian, as it is here, the pions should be massive.2.2 Calulation of hadron massesIn this setion the masses of light hadrons will be alulated in the way desribed byDeGrand in Ref. [3℄. The mass of a hadron is omposited in the following way:
M = Ekin + E0 + Emag + Eel + Evol.The ontributions in this formula are

• the kineti energy of the quarks Ekin,
• the orretion energy E0 whih inludes e�ets not alulated here,
• the magneti and eletri interation energies Emag and Eel,
• and the volume energy Evol given by the bag onstant.These energies will now be disussed. 7



2.2.1 The kineti energy of a fermion in a spherial avityAs shown above, the Lagrangian of one quark leads to the Dira equation inside the bag,whih is a spherial avity here:
(iγµ∂

µ −m)ψ = 0. (2.5)Here, ψ is the four-omponent wave funtion, m the mass of the quark, γµ are the γ-matries and ∂µ =
(

∂
∂t ,−~∇

). Now the Dira representation of the γ-matries is hosen:
γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

,where σi are the Pauli matries. This allows for ψ to be written as two two-omponentspinors for partile and anti-partile. Together with the stationary ase as solution for thetime dependene, the wave funtion beomes:
ψ(~x, t) =

(

φ(~x)
χ(~x)

)

e−iEt.With φ(~x) and χ(~x) for partile and antipartile, respetively. The energy isE =
√

m2 + p2.The Dira equation is now written as two oupled equations of φ and χ by using the Dirarepresentation of the gamma matries. With these Eq. (2.5) beomes:
(~σ~p)χ+mφ = Eφ, (2.6)
(~σ~p)φ−mχ = Eχ. (2.7)These oupled equations an easily be deoupled by solving e.g. Eq. (2.6) for φ andinserting it into Eq. (2.7). Now the momentum is written in its operator representation

~p = −i~∇, and the identity (~σ~a)2 = ~a2 is used to get the deoupled equations
−∆φ =

(

E2 −m2
)

φ, (2.8)
−∆χ =

(

E2 −m2
)

χ, (2.9)where ∆ = ~∇2. The solutions for these equations are well known, as they appear forexample in a similar form in the Shrödinger desription of the hydrogen atom. And justas in that ase, the angular part of the Laplae operator an be separated here. It is solvedby spherial harmoni funtions but with the di�erene that here, unlike the ase of theShrödinger equation, the spin has to be taken are of. The solution looks like
φ(~r) = g(r)Yj3

j,l(θ, ϕ), (2.10)
χ(~r) = f(r)Yj3

j,l′(θ, ϕ), (2.11)where Yj3
j,l is a spinor in spae representation for the total angular momentum ~J = ~L+ 1

2~σwith quantum number j. The spinor is written as
Yj3

j,l =

(

(

l 1
2 j3 − 1

2
1
2

∣

∣ j j3
)

Y
j3−

1

2

l
(

l 1
2 j3 + 1

2 − 1
2

∣

∣ j j3
)

Y
j3+ 1

2

l

)

,8



where ( l l3 sms| j j3) are the Clebsh-Gordan oe�ients, whih transform the basis of ~Lwith quantum numbers l and l3 and 1
2~σ with quantum numbers s = 1

2 and ms to the basisof the total spin ~J with quantum numbers j and j3. The quantum numbers of partile andantipartile, l and l′, are related through the quantum number κ, de�ned as the eigenvaluesof
K = β

(

~Σ ·~l + 1
)

.This leads to
l =

{

κ, for κ > 0
−(κ+ 1), for κ < 0

(2.12)
l′ =

{

κ− 1, for κ > 0
−κ, for κ < 0

(2.13)After the separation of the angular dependenies, the radial omponents of Eqs. (2.8) and(2.9) are
0 = r2

d2f

dr2
+ 2r

df

dr
+
[

r2p2 − l(l + 1)
]

f, (2.14)
0 = r2

d2g

dr2
+ 2r

dg

dr
+
[

r2p2 − l′(l′ + 1)
]

g. (2.15)This form of di�erential equation is again well known, the solutions are spherial Besselfuntions. With them, the Dira equation is solved and the radial omponents of Eqs. (2.10)and (2.11) are:
f(r) = N

√

E +m

E
jl(pr),

g(r) = N

√

E −m

E
jl′(pr).Where N is the normalization onstant. It is now easy to show that the density ψ†ψ isonly radial symmetri if l = 0 and l′ = 1 (whih means κ = −1). This has to be ful�lled,as the basi assumption was that the pressure is in equilibrium on the whole surfae of thebag. If the density was not radial symmetri, the bag would not be spherial anymore.

ψ†ψ =

(

f2
(

Yj3
j,l′

)†
Yj3

j,l′ + g2
(

Yj3
j,l

)†
Yj3

j,l

) (2.16)Now using that unity an be written as 1 = (~σ~er) (~σ~er) and that (see for example Ref. [4℄)
(~σ~er)Yj3

j,l′ = −Yj3
j,l Eq. (2.16) beomes

ψ†ψ =
(

f2 + g2
)

(

Yj3
j,l

)†
Yj3

j,l.As the only spherial harmoni funtion that is independent of the angle is Y 0
0 , the laimis proven. Realling Eq. (2.4), ψ̄ψ∣∣

r=R
= 0, the boundary ondition is

ψ̄ψ
∣

∣

R
= ψ†γ0ψ

∣

∣

∣

R
= (g f)

(

g
−f

)
∣

∣

∣

∣

R

=
(

g2 − f2
)∣

∣

R

!
= 0.It follows the �nal equation to alulate the momentum as a funtion of radius: 9



(E +m) · j20(pR) = (E −m) · j21(pR), (2.17)where the �rst and seond spherial Bessel funtions are
j0(x) =

sin(x)

x
, (2.18)

j1(x) =
sin(x)

x2
− cos(x)

x
. (2.19)This equation has to be solved numerially. The solution is p(R), and the kineti energyof quark i inside the bag is written as

Ekin,i(R) =
√

p2
i (R) +m2. (2.20)With the sum of the kineti energies of the quarks in a hadron and the volume term, themass of a hadron ould now be alulated to a �rst approximation. But some orretionand interation terms will also be added.2.2.2 The orretion term E0The orretion energy

E0 = Z0/r (2.21)ontains ontributions that are di�ult or impossible to alulate. In Ref. [3℄, an estimatefor zero-point energies is given, resulting in a Z0 ≈ −2. The orretion term also inludesenter of mass orretions, whih are approximated in some works, for example in Ref. [5℄.Here Z0 is treated as an open parameter of the bag model and will be �tted together withthe bag onstant and the oupling onstant to hadron masses later.2.2.3 Quark interation energy
Figure 2.2: Lowest order interation Feynman diagrams. The straight lines are quark prop-agators and the jagged lines are gluon propagators.The gluon exhange and the quark self energy terms, as shown in Fig. 2.2, are alulatedhere. To the lowest order in αS = g2

4π , where g is the olor harge in QCD, the problemredues to solving the eletromagneti ase with the boundary onditions
~er × ~Ba

∣

∣

∣

r=R
= 0, (2.22)

~er · ~Ea
∣

∣

∣

r=R
= 0, (2.23)where a ∈ {1, 8} denotes the olor index. The eletri and magneti interation energiesare then10



Emag = −1

2
g2
∑

a

∫

bag
d3x

(

~Ba(~x)
)2
, (2.24)

Eel =
1

2
g2
∑

a

∫

bag
d3x

(

~Ea(~x)
)2
. (2.25)See Ref. [3℄ for more information. A short presentation of the alulation follows now.Magneti interationTo alulate Eq. (2.24) Maxwell's equations are used to determine the magneti �eld ofthe i-th quark:

~∇× ~Ba
i = ~jai , (2.26)

~∇ ~Ba
i = 0, (2.27)inside the bag. The vetor urrent is ~jai = ψ̄i~γλ

aψi, where the Gell-Mann matries λa aregenerators for the SU(3) symmetry group. From these equations, the magneti interationenergy for a hadron in the ground state beomes
Emag = 2αSλ

∑

i>j

〈~σi~σj〉
µ(mi, R) · µ(mj , R)

R3
I(mi,mj , R), (2.28)with λ = 2 for mesons and λ = 1 for baryons. The magneti moment of one quark is

µ(mi, R) =

∫

d3x
1

2
~r ×

(

ψ†
i (~x)~αψi(~x)

)

=
R

6

4REkin,i + 2miR− 3

2REkin,i(REkin,i − 1) +miR
.Where Ekin,i is the kineti energy of quark i. The funtion I in Eq. (2.28) is

I(mi,mj , R) = 1 + 2

∫ R

0

dr

r4
µ(mi, r)µ(mj , r).The mean produt of the spins 〈~σi~σj〉 is alulated in Appendix B.Eletri interationThe e�et of the eletri interation energy is omparably small. For example for themesons whose masses will be alulated, it does not vanish only for the K and K∗, where

Eel ≈ 4MeV . Nevertheless, it is inluded in the total hadron mass. Eq. (2.25) integratesas:
Eel = −2αS

3
·
∫ R

0
dr
∑

i>j

(

ρi(r) − ρj(r)

r

)2

. (2.29)Here ρi(r) is the integral over the harge density of the i-th quark to a radius r: ρi(r) =
∫ r
0 dr

′4πr′2ψ†
i (r

′)ψi(r
′). 11



2.2.4 Calulating the resulting massNow all the above alulations, Eqs. (2.20), (2.21), (2.28) and (2.29) are summarizedtogether with the volume term Evol = V ·B as the mass of the hadron:
M(r) =

2,3
∑

i=1

Ekin,i(r) + E0(r) + Emag(r) + Eel(r) +
4π

3
r3B.Fig. 2.3 shows the M(r) dependeny for the Σ+ baryon. As the plot shows, the mass hasone well-behaved minimum. This minimum is M(R) with

∂M

∂r

∣

∣

∣

∣

r=R

!
= 0.This minimum is generally found numerially, and used as the resulting mass. Only in thease where all onstituent quarks are massless an analyti expression is possible.
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Figure 2.3: Mass over radius for the Σ+. The minimum is at R ≈ 4.9 GeV−1 and the massbeomes M(R) ≈ 1140 MeV.Massless quarksThe ase beomes espeially easy for massless quarks. Here, the boundary ondition inEq. (2.17) beomes independent of the quark energy. The �rst root now simply is pR =
2.04, and the kineti energy beomes Ekin = 2.04

R . The magneti interation energy isalulated as Emag =
λ〈~σi~σj〉αS ·0.053

R and the eletri interation vanishes. In this ase theminimization is easily done, and the mass beomes
M =

A

R
+

4π

3
R3B =

4

3
A3/4 (4πB)1/4 , (2.30)where A = n ·2.04+λ

∑n
i>j 〈~σi~σj〉αS ·0.053+Z0 , with number of quarks n. A is a onstantfor eah hadron.2.3 Fitting the parametersTo �t B, Z0 and αS the N , ∆ and ω hadrons are used. The quark masses are set tozero (mu = md = 0). This yields B1/4 = 146.2 MeV, Z0 = −1.86 and αS = 2.19. These12



results are the same as in Ref. [3℄. Then, the strange quark mass is �tted against the Ω−,whih yields ms = 277.7 MeV. Similarly one would �nd the mass of the harm quark as
mc = 1546.6 MeV if �tted against the J/ψ. But beause of their high masses, whih areunimportant in the following thermodynamis, harmed hadrons won't be disussed here.One omment is in order here: The oupling onstant αS is to large to justify a per-turbative approah as it was done to alulate the interation energies. Nevertheless, theresults are quite good, and this problem is not investigated further.2.4 The hadroni mass spetrum2.4.1 Results for light hadronsThe resulting masses for hadrons onsisting of u,d and s quarks are shown in Table 2.1,using the parameters of setion 2.3. While most of the results are pretty good for suh anaive model as the bag model, it is notieable that the pion mass is two times to large.Partile Mexp Mbag Ekin Emag Eel E0 Evol R

N 938 938(∗) 1234 -156 0 -374 235 4.968
Λ 1116 1100 1405 -158 1.35 -377 228 4.924

Σ+ 1189 1140 1405 -118 1.35 -377 229 4.926
Ξ0 1321 1291 1598 -138 9.22 -382 221 4.867
∆ 1236 1236(∗) 1125 143 0 -341 309 5.446
Σ∗ 1385 1381 1297 124 1.35 -344 302 5.406
Ξ∗ 1533 1534 1470 108 9.82 -347 294 5.354
Ω− 1672 1672(∗) 1640 93 0 -350 288 5.318
π 139 273 1241 -472 0 -564 68 3.293
ω/ρ 783 783(∗) 873 111 0 -397 196 4.677
K 495 488 1425 -424 3.37 -579 63 3.209
K∗ 892 927 1043 92.1 4.45 -402 189 4.623
φ 1019 1065 1211 77.3 0 -406 183 4.575Table 2.1: Spetrum of hadrons ompared to experimental values taken from Ref. [7℄.Masses/Energies are given in MeV, the radius in 1/GeV. The masses markedwith a (∗) are used for the �t.2.4.2 Higher radial exitationsUntil now only the smallest root of Eq. (2.17) has been used to determine the momentum ofa quark. But the equation has in�nite roots (beoming π/2-periodi for large arguments),what happens if those are used? These radial exited baryons share the same quantumnumbers as the ground state. For example the nuleon N(1440) shares its quantum num-bers with the ground state N(939). This hadron may be identi�ed with a bag ontaininga radial exited quark. The �rst nuleon exitations are listed in Table 2.2. The knownexperimental values would be 1440 MeV, 1710 MeV and 2100 MeV, see Ref. [7℄. As thisexample shows, the results from the bag model are to narrow in omparison to the exper-imental values. In Fig. 2.4 the mass density resulting of radial exitations is shown andompared to the mass density resulting from experimental data. In the �gure all hadrons(inluding their degeneray fators) in a given range are summarized. The omparison tothe experimental values shows the same e�et as in Table 2.2, the bag model leads to a13



number of hadrons that is too large. The ubi �t shown in Fig. 2.4 is explained in thefollowing setion.
n1 n2 n3 Mbag2 1 1 13512 2 1 16013 1 1 17052 2 2 18903 2 1 1918Table 2.2: Radial exitations of the nuleon. ni denotes the number of root in the boundaryondition.
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Figure 2.4: Histogram showing the mass density with a bin size of 100 MeV. The ubi�t shows a good agreement. As a omparison, the mass density taken fromRef. [7℄ with baryons up to 2000 MeV and mesons up to 1800 MeV is shown.2.4.3 Asymptoti mass spetrum and Hagedorn temperatureIn Ref. [6℄ R. Hagedorn introdued a maximum temperature above whih the partitionfuntion of a hadroni gas would diverge. This happens if the density of hadrons growsexponentially. Taking the partition funtion for a high number of partiles as
Z =

∑

k

∫

dmρ(m) exp

[

−Hk

T

]

,the divergene happens if the asymptoti density of partiles ρ(m) inreases faster than
exp (m/TH). Then, the integrand for the ground state (H = m) beomes proportional to
exp

[

m
(

1
TH

− 1
T

)]

. For T ≥ TH , the integral over m diverges. Therefore, the Hagedorntemperature TH is the upper boundary for the temperature of a hadroni system. Thismeans that all thermodynamial properties, whih are derivatives of the partition funtion,also diverge.14



The asymptoti mass spetrum for radial exited bagsWith radial exitations as in setion 2.4.2 the number of hadrons does not grow exponen-tially, whih is now proven. In the following, hadrons onsisting of massless quarks areinvestigated for simpliity. As stated above, for high arguments the boundary onditionbeomes π/2-periodi. So the kineti energy beomes Ekin ≈ πn
2r , where n is the num-ber of the root. The fator A in Eq. (2.30) now beomes approximately proportional to

N = n1 + n2 + n3 for baryons and N = n1 + n2 for mesons:
m ∝ N3/4.The number of masses in an interval [m,m+∆m] is therefore proportional to (m+∆m)4/3−

m4/3. This number is degenerated: N an be omposed in (Nk ) ways, where k is the numberof quarks in the bag. For mesons the degeneray is N and for baryons it is N(N−1) ≈ N2.With these the density funtion beomes
ρ(m) ∝ (m+ ∆m)4/3 −m4/3

∆m

(

N

k

)

.Now the limes ∆m→ 0 is built and N is expressed through m. The asymptotial densityfuntion for the MIT Bag Model beomes
ρ(m) ∝

{

m5/3, for mesons
m3, for baryons .In Fig. 2.4 an m3 �t shows a good agreement with the numerial results. The ase isnot di�erent if one takes into aount higher angular momenta (ignoring that the bagswould not be spherial anymore), beause the roots to the boundary ondition wouldapproximately grow linearly, giving a similar situation as with radial exitations. Therefore,the MIT Bag Model does not lead to a Hagedorn temperature.Bags with growing numbers of quark-antiquark pairsA way to get to a Hagedorn temperature is desribed for example in Ref. [1℄. A highnumber of quark-antiquark pairs is introdued inside the bag. These pairs are treated asa non-interating ideal gas. On one hand, in an ideal gas the pressure is related to thetemperature through a Stefan-Boltzmann like law (see setion 3.1):
p =

gπ2

90
T 4,where g is the degeneray fator, 8 · 2 + 7

83 · 2 · 2 · 2 = 37 for a (massless) quark-antiquark-gluon gas. On the other hand, the pressure of the bag is identi�ed with the bag onstant.Therefore, the temperature has to be a onstant, too:
TH =

(

90

π2g
B

)1/4

. (2.31)With a bag onstant of B1/4 = 146 MeV, one gets TH ≈ 103 MeV. This value is of ourseto low for a Hagedorn temperature, as for example the ritial temperature for the phasetransition to a quark-gluon plasma is expeted to be around 180 MeV.
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3 ThermodynamisIn this hapter the harateristis of a hadroni system as a thermodynami gas are inves-tigated. The goal is to desribe the phase transition from a hadroni gas to a quark-gluonplasma (QGP). The QGP is desribed here as an ideal gas, while two models are used forthe hadroni phase:
• An ideal gas of point-like partiles in setion 3.1.
• The ompressible bag model in setion 3.2.3.1 Hadroni phase and quark-gluon plasma as an idealquantum gasA �rst approximations to a system of hadrons and the QGP is an ideal (Bose/Fermi)quantum gas. The grand anonial potential for this system is (see for example Ref. [8℄):

lnZ = ηgV

∫

d3k

(2π)3
ln {1 + η exp (−β(E − µ))} .Here, η = +1/ − 1 for bosons/fermions, E =

√
k2 +m2 and g is the degeneray fator.From this, all other thermodynamial properties an be derived.3.1.1 Pressure and energy densityThe pressure p and the energy density ǫ of an ideal gas are alulated as follows:

p =
1

β

∂

∂V
lnZ

=
ηg

β

∫

d3k

(2π)3
ln {1 + η exp (−β(E − µ))} , (3.1)

ǫ =
〈E〉
V

= − 1

V

∂

∂β
lnZ

= g

∫

d3k

(2π)3
E − µ

eβ(E−µ) + η
. (3.2)In the ase of massless onstituents the integrals an be evaluated. For a vanishing hemialpotential pressure and energy density beome a form like the Stefan-Boltzmann law. Forbosons:

pB =
gπ2T 4

90
, ǫB = 3pB , (3.3)
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and for fermions:
pF =

7

8

gπ2T 4

90
, ǫF = 3pF . (3.4)To ompare the ase of an hadroni gas with the massless ase, p/T 4, ǫ/T 4 and (ǫ− 3p) /T 4are plotted, see Figs. 3.5, 3.6 and 3.7. In Fig. 3.1 (ǫ− 3p) /T 4 is ompared to lattie QCDdata, whih were extrated from Ref. [9℄ by F. Karsh. Just as in Ref. [9℄, the idealquantum gas is in good agreement with the lattie data for the hadroni phase whih endsat TC ≈ 170 MeV in the Karsh data. But the gradient of the ideal gas is to low omparedto the lattie data. The situation is even worse when the experimental partile masses areused. Therefore, the problem is the used model not the used hadron data. The partilesused to reate the �gures in this hapter are:

• Gluons, up-, down- and strange- quarks for the QGP. The quark masses are the sameas they were used to alulate the hadroni mass spetrum, see setion 2.3.
• The hadroni phase onsists of all the partiles in setion 2.4.1 and all their radialexitations up to 2000 MeV for baryons and 1800 MeV for mesons. These upperlimits were used in the Karsh data, too.
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Figure 3.1: Comparison of (ǫ − 3p)/T 4 for an ideal gas and lattie QCD data extratedfrom Ref. [9℄.3.1.2 Critial temperature and phase diagramThe phase transition from a hadron gas to a quark-gluon plasma is haraterized by thepoint where the pressure of the two phases beome idential: phadron = pqgp. Here, pqgp =
∑

quarks pi +pgluon−B is taken as an ideal gas. For the partile setup as above, the ritialtemperature beomes TC ≈ 102 MeV for µ = 0, where B is the value from setion 2.3. Theritial baryo-hemial potential is about µC ≈ 775 MeV for T = 0. Fig. 3.3 shows theresulting phase diagram. The ritial temperature an also be approximated by using thatthe pressure of the hadroni gas is muh less than the bag onstant at TC and by treatingthe strange quark as massless. This gives
TC ≈

(

90

π2g
B

)1/4

, (3.5)17
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Figure 3.2: Comparison of the energy density for an ideal gas and lattie QCD data ex-trated from Ref. [9℄.whih is oinidental the same formula as Eq. (2.31). With a degeneray fator of 8 · 2 +
7
83 · 3 · 2 · 2 = 47.5, inluding strange quarks, the ritial temperature is approximated as
97 MeV. This is only 5 MeV below the value where the hadroni phase was inluded. Fortemperatures muh larger than the partile masses, the pressure of the hadron gas beomesStefan-Boltzmann-like, as in Eqs. (3.3) and (3.4). With a large number of hadrons thedegeneray fator also beomes large and exeeds the degeneray fator of the quark-gluonplasma. So, the pressures for large temperatures are ompared as phadron/T

4 ∝ ghadron >
pqgp/T

4 ∝ gqgp. This means that the pressure of the hadron gas will ross the pressure ofthe QGP again. This leads to a seond phase transition to a seond hadroni phase, whihis shown in Fig. 3.3.
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Figure 3.3: Phase diagram for an ideal quantum gas with an extra hadroni phase.As shown above, two problems arise in the model of an ideal gas:1. Depending on the number of hadrons in the gas the hadroni pressure may exeed theQGP pressure again. This unphysial behavior is orreted in the ompressible bagmodel desribed in setion 3.2. Fig. 3.5, showing the pressure at µ = 0, illustrateswhat happens.18



2. The ritial temperature is expeted to be around 170−190 MeV, so the result aboveis muh to low. This an be orreted by using a larger bag onstant.To solve the seond problem, the bag onstant has to be altered. To be onsistent withhapter 2, the mass spetrum is altered, too: Using the N and ∆ to �t Z0 and αS andthe Ω− to �t the strange mass, but keeping B as a free variable, gives rise to some slightlybetter results. While the ritial temperature rises with the bag onstant, the pion massdereases. At B1/4 = 181 MeV mπ hits zero and TC beomes 131 MeV. With a larger bagonstant the pion mass beomes negative, so 131 MeV is the largest ritial temperaturethat is possible within this model, as long as the masses of the N , ∆ and Ω− are taken as�xed values.3.2 Compressible bag modelA modi�ed model for the thermodynamial properties of a hadroni gas has been intro-dued in Ref. [10℄. In the ompressible bag model a Van-der-Waals like way of desribingthe gas is hosen, where the volume of the bags is subtrated from the volume of the sys-tem. Note that this an be onsidered a more realisti approah to a gas of MIT bags asthey have a well-de�ned volume. The volume beomes
V ′ = V − b

n
∑

i=1

Nivi, (3.6)where b is the exlusion e�ieny parameter, Ni the number of partiles of type i and vithe volume of one suh partile. The exlusion e�ieny parameter will be hosen to salethe nuleon's bag radius to the proton harge radius. Now the free energy of the totalsystem is written as:
F̂ (N,V ′, T ) =

n
∑

i=1

Ff (Ni, V
′, T,Mi(vi)).Where Ff (N,V, T,M) = −pf (µ, T,M) ·V +µ ·N is the free energy as in the free quantumgas disussed above. With the new volume in Eq. (3.6), the hemial potential µ has tobe hanged, and the free energy is Ff (N,V ′, T,M) = −pf (µ′, T,M) · V ′ + µ′ · N . Nowthe requirement of the bag model, that the mass has to be minimized with respet to thevolume, is replaed by the minimization of F̂ with respet to vi:

∂F̂

∂vi
= Ni

(

bp+N−1
i

∂Ff

∂Mi

∂Mi

∂vi

)

!
= 0. (3.7)The term N−1

i
∂Ff

∂Mi
is equal to the mean inverse Lorentz fator 〈γ−1

〉:
N−1

i

∂Ff

∂Mi
=

− ∂pf

∂Mi

∂pf

∂µ′

=

∫

d3k
(2π)3

Mi

E
1

exp((E−µ′)/T )+ηi
∫

d3k
(2π)3

1
exp((E−µ′)/T )+ηi

=

〈

Mi

E

〉

=
〈

γ−1
〉

. (3.8)The nonrelativisti ase 〈γ−1
〉

≈ 1 signi�antly dereases omputation time, it will laterbe disussed where it applies. With Eq. (3.8) Eq. (3.7) beomes:
∂Mi

∂vi
= − bp

〈γ−1〉 . (3.9)19
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Figure 3.4: The funtion A(r) for the Ξ0 together with a linear �t.This equation is equivalent to the bag model in vauum for either p = 0 or b = 0, as oneshould expet. The extra pressure from the gas leads to a ompression of the bags, whihagain leads to an inreased mass of the bags. Reall the bag equation:
Mi(vi) =

Ai(vi)

v
1/3
i

+Bvi, (3.10)written here as a funtion of the volume vi = 4π
3 R

3
i . Ai(vi) is independent of the volume formassless quarks only, see setion 2.2.4. From omparison with numerial results, a linearapproximation A(v) = A0+d·v1/3 is very good. Fig. 3.4 shows an exemplary illustration ofa linear �t to the funtion A(r). A0 will be eliminated by using the bag equation in vauumand d will be omputed with the tehniques developed in hapter 2 for eah hadron. Themass of the bag in vauum is de�ned as mi with ∂mi

∂vi
= 0, while the mass of the bag insidethe gas is Mi. Using Eqs. (3.9) and (3.10), the problem is almost solved. It follows

vi(p,mi) =
mi − di

4B

(

1 +
bp

B 〈γ−1〉

)−3/4

, (3.11)
Mi(p,mi) = (mi − di)

(

1 +
3bp

4B 〈γ−1〉

)(

1 +
bp

B 〈γ−1〉

)−3/4

+ di. (3.12)To �t the exlusion e�ieny parameter b to the proton harge radius RP , the volume
vN,0 = mN

4B of the bag for the proton in vauum is taken. b beomes
b =

4
3πR

3
P

vN,0
=

16πR3
PB

3mN
,where mN is the nuleon mass. With this �t the only parameter of the ompressible bagmodel is �xed.The hemial potential µ is not idential to µ′ in the free energy. The dependeny isgiven by

µi =
∂F̂

∂Ni
=
∂Ff

∂Ni
+ bvip = µ′i + bvip, (3.13)with µi = aiµB and the baryo-hemial potential µB.20



3.2.1 Pressure and energy densityThe total pressure p follows from Eqs. (3.1), (3.11), (3.12) and (3.13):
p =

n
∑

i=1

pf (T, µ′,Mi). (3.14)The right side of Eq. (3.14) depends on p itself, therefore a numerial algorithm has to beused to solve this equation additionally to the numerial integration.The energy density is given by
ǫ =

1

V

∂
(

βF̂
)

∂β
=

n
∑

i=1

[

µ′ρi −
(

1 − b

n
∑

i=1

ρivi

)

g

∫

d3k

(2π)3
µ′ − E

eβ(E−µ′) + η

]

,with the partile density
ρi =

∂pf

∂µ
= g

∫

d3k

(2π)3
1

eβ(E−µ′) + η
.The pressure and the energy density are shown in Figs. 3.5, 3.6 and 3.7, where they areompared to the ideal gas. For low temperatures (< 130 MeV) the ompressible bag modelresembles the ideal gas. This also inludes that the ritial temperature (whih is below

130 MeV here) will not hange signi�antly. But as the plot of the pressure shows, theseond phase transition disappears. Pressure and energy density in the ompressible bagmodel ompare poorly to the lattie data, the ideal gas gives a better desription of thesevalues. This is in ontrast to the phase diagram whih is more realisti in the ompressiblebag model.
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(ǫ − 3p)/T 4, for om-pressible bags and an idealgas.3.2.2 Phase diagramThe quark-gluon plasma is again taken as an ideal quantum gas, just as in setion 3.1.The masses for the hadroni phase are also the same. The ompressible bag model givesthe expeted result, with no additional hadroni phase, as shown in Fig. 3.8. Here, theapproximation 〈γ−1

〉

≈ 1 mentioned above is made, leading to a negligible error butdereasing omputation time. For example, the pion pressure at 165 MeV is only 0.3 % tosmall in the nonrelativisti ase.The phase diagram in Fig. 3.8 still has two problems:1. TC still is too low for the bag onstant used here.2. The hadroni phase ould well be approximated with phad = 0 and would still leadto almost the same phase diagram. This is aused by the low hadroni pressure at
TC , as Fig. 3.5 shows.
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4 SummaryIn the seond hapter the MIT Bag Model has been investigated. On the level of thebag Lagrangian it has been found that the hiral symmetry is expliitly broken on thebag's surfae. Nevertheless, the masses of nine hadrons have been predited on basis ofthe masses of four hadrons as �t parameters. These preditions are good, onsidering thesimpliity of the model. Only the mass of the pion is signi�antly to large, as it is twie thepion mass found experimentally. Hadrons with an exited angular momentum an not betreated in a theory of spherial bags. Radial exitations are possible, but give results whihare too narrow. While the spetrum grows strongly it does not grow exponentially in theasymptoti ase. Therefore, the MIT Bag Model does not predit a Hagedorn temperaturewithout being modi�ed.In the third hapter the thermodynamis of a gas of bags has been investigated by usingtwo models. These have been used to alulate the pressure, the energy density and aphase diagram to a quark-gluon plasma. The �rst model treats treats the gas of bags asa gas of ideal point-like partiles. It gives a onsiderably good agreement with data fromlattie QCD for the pressure and the energy density of the hadroni phase, while the phasediagram has two �aws: The ritial temperature is too low a value and an extra hadroniphase appears for large temperatures and for large hemial potentials. In the seondmodel, the bag volume has been inorporated in form of the ompressible bag model. Thisleads to a more reasonably phase diagram with only one hadroni phase, and is in thisregard a better model of a gas of bags. The downsides of the ompressible bag model arethat the problem of the low ritial temperature has not been solved, and that pressureand energy density do not agree with the lattie data.
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A Numerial alulationsAll numerial alulations here were done with C++ programs using the GNU Sienti�Library (GSL) and the GNU C Compiler (GCC). The used program versions were GCC3.3.5 and GSL 1.6. The GSL has been used mainly for numerial integration on in�niteintervals, a root �nding algorithm and the spherial Bessel funtions. For numerial inte-gration the funtion gsl_integration_qagiu with a relative error of 10−5 has been used.For root �nding it was Brent's method with a relative error of 10−4 and a maximum of
100 iterations.
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B Spin-Spin ouplingFor the magneti interation energy the mean produt of the spins of two quarks, 〈~σ1 · ~σ2〉,has to be alulated in dependeny of the total angular momentum ~J . The angular momen-tums ~l of the quarks are zero in the MIT Bag Model. For a meson this is easy by squaring
~J = ~s1 + ~s2: ~σ1~σ2 = 4 ·

(

1
2J(J + 1) − 3

4

). For a baryon, the wave funtions oupling to atotal Spin J have to be found expliitly. The operator ~σi ·~σj an be represented by Ti,j −1,where Ti,j swithes the z-omponent of the quarks i and j. For the wave funtions �rstquarks two and three are oupled to a total spin J23 ∈ {1, 0}. Then, quark one is oupledagainst spin J23 to a total spin J ∈ {3
2 ,

1
2}. Note that the result is independent of Jz . Theresults are given in Table B.1.

J = 3/2 J = 1/2

J23 = 1 J23 = 1 J23 = 0

〈~σ1 · ~σ2〉 1 1 -3
〈~σ1 · ~σ3〉 1 -2 0
〈~σ2 · ~σ3〉 1 -2 0Table B.1: Spin produts for a baryon.
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