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ZusammenfassungIn dieser Arbeit wird das Spektrum lei
hter Hadronen in der Quanten
hromodynamik(QCD) mithilfe des MIT Bag Model untersu
ht, ein Modell das 1974 am MIT entwi
keltwurde. Mit diesem Modell werden die Massen lei
hter Hadronen, deren radiale Anregungenund ein asymptotis
hes Massenspektrum bestimmt. Die Ergebnisse dieser Untersu
hungwerden benutzt um ein Gas von Hadronen zu bes
hreiben. Dieses Gas wird mit zwei Mo-dellen bes
hrieben, als ein Quantengas von punktförmigen Teil
hen und im CompressibleBag Model, wel
hes das Volumen der Hadronen berü
ksi
htigt. Die Eigens
haften eines Ha-dronengases in diesen Modellen wird mit den Ergebnissen von Latti
e QCD Bere
hnungenvergli
hen. Dabei ist der Phasenübergang in ein Quark-Gluonen-Plasma von besonderemInteresse.

Abstra
tIn this work the spe
trum of light hadrons in quantum 
hromodynami
s (QCD) is investi-gated by using the MIT Bag Model, a model that has been developed in 1974 at the MIT.This model is used to 
al
ulate the masses of light hadrons, their radial ex
itations and anasymptoti
 mass spe
trum. The results of this investigation are used for the des
ription ofa gas of hadrons. This gas is des
ribed by using two models, as a quantum gas of point-likeparti
les and in the 
ompressible bag model, whi
h in
orporates the volume of the hadrons.The properties of a hadron gas in these models are 
ompared to the results of latti
e QCD
al
ulations. The phase transition to a quark-gluon plasma is of spe
ial interest here.
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1 Introdu
tionThe theory of quantum 
hromodynami
s (QCD) des
ribes the intera
tions of quarks andgluons. A bound state of quarks in the QCD is 
alled a hadron, whi
h 
an not be leftby its valen
e quarks. In 1974 Chodos, Ja�e, Johnson, Thorn and Weisskopf from theMassa
husetts Institute of Te
hnology introdu
ed a new model of hadrons, see Ref. [2℄, inwhi
h hadrons are treated as so-
alled 'bags'. This model has been used in 1975 by De-Grand, Ja�e, Johnson and Kiskis to 
al
ulate the spe
trum of light, ground-state hadrons,see Ref. [3℄. To des
ribe the state of quarks inside a hadron the MIT Bag Model takes theQCD va
uum to be a medium in whi
h the quarks 
an not exist. They are bound inside aregion of spa
e, a so-
alled 'bag', in whi
h they are treated as free parti
les. Their kineti
energy and some 
orre
tion terms are used to determine the hadron mass. This modelleads to a 
onsiderably good agreement with the experimental data, and is presented here.After some hadron masses are 
al
ulated, the thermodynami
 properties of a gas ofhadrons are investigated. The most interesting property of su
h a gas is the phase transitionto a quark-gluon plasma. In a quark-gluon plasma the quarks and gluons, whi
h are
on�ned in hadroni
 matter, are de
on�ned. This state of matter is believed to be produ
edin 
ollider experiments of high energies, and is a subje
t of thorough investigations. Todes
ribe a gas of hadrons, two models are used:
• An ideal quantum gas. The limits of this model will be rea
hed when the phasediagram of QCD is 
al
ulated.
• The 
ompressible bag model, an approa
h in whi
h the volume of the bags is takeninto a

ount. This will result in a more reasonably phase diagram.As no experimental data exist to date, the results from the bag model are 
ompared tolatti
e QCD 
al
ulations.1.1 UnitsNatural units are used here: h̄ = c = kB = 1. With h̄c = 197.3MeVfm and kB =

8, 617 · 10−11 MeV
K the 
onversions for length and temperature are 1fm = 5.068GeV−1 and

1K = 8, 617 · 10−11MeV.
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2 The MIT Bag ModelAs the properties of hadrons 
ould not yet be 
al
ulated with full QCD, several modelshave been developed to des
ribe a hadron. A relatively simple one is the bag model. Thehadron is des
ribed as a 
avity to whi
h the quarks are 
on�ned, and whi
h they 
an notleave. The MIT Bag Model explains the stability of this 
avity by introdu
ing the universalbag 
onstant B as the inward va
uum pressure. Now the radius of the bag is determinedby the equilibrium of B and the outward pressure 
reated by the valen
e quarks.To 
al
ulate the mass of a hadron the Dira
 equation for one quark is solved inside aspheri
al 
avity of radius r with wave fun
tion ψ as solution. Outside the bag, the wavefun
tion is zero. (See Fig. 2.1 as an illustration.) The s
alar ψ̄ψ has to vanish on the surfa
eof the bag, a 
onsequen
e of the bag Lagrangian. This boundary 
ondition determines thekineti
 energy of the quarks. Several 
orre
tion energy terms are introdu
ed: Zero point�u
tuations and 
enter of mass movement are summarized in a parameter Z0 whi
h has tobe �tted to experimental values. The quark-gluon intera
tions are 
al
ulated to the lowestorder in the 
oupling 
onstant αS. The sum over these energies and the energy 
ontributedby the bag 
onstant is identi�ed as the mass of the hadron, whi
h is a fun
tion of the bagradius: M(r). Now M(r) is minimized with respe
t to the radius. This determines thehadron radius R, and therefore the resulting mass M(R). The minimization 
onditionis equivalent to the equilibrium of outside and inside pressure on the bag surfa
e, andtherefore to the stability of the bag.

Figure 2.1: Illustration of the bag model: The quark wave fun
tion ψ is non-zero insidea spheri
al 
avity, surrounded by QCD va
uum in whi
h the wave fun
tion is
ψ = 0.2.1 The bag LagrangianTo start with, the bag Lagrangian for a spheri
al and stati
 bag of radius R is writtendown as

L =
{

ψ̄ (iγµ∂
µ −m)ψ −B

}

Θ(R− r) − ψ̄ψδ(R − r). (2.1)6



Here Θ is the Heaviside step fun
tion and δ the Dira
 delta fun
tion. They are relatedthrough
∂µΘ(r) = nµδ(r),where (nµ) = (0, ~er) is the unit ve
tor perpendi
ular to the bag surfa
e. Inside the bag(r < R), the bag Lagrangian is just the Lagrangian for a free fermion of mass m. Also thebag 
onstant B is subtra
ted here as it 
ontributes to the energy density, but with no e�e
ton the equations of motion. On the bag surfa
e (r = R) the term ψ̄ψ in the Lagrangianwill give the boundary 
ondition.Now a

ording to Hamilton's prin
iple the a
tion of the system is minimized, whi
hleads to the Euler-Lagrange equations

∂µ
∂L

∂(∂µψ)
− ∂L
∂ψ

= 0. (2.2)Deriving these equations from Eq. (2.1) leads to the Dira
 equation
(iγµ∂

µ −m)ψ = 0 (2.3)inside the bag. This equation will be solved in the following se
tion. On the bag surfa
ethe Euler-Lagrange equations lead to
−i~γ~erψ = ψ,whi
h is the boundary 
ondition. It 
an also be written as iψ̄~γ~er = ψ̄. Now ψ̄ψ is
onstru
ted from both forms, and one gets

ψ̄ψ = iψ̄~γ~erψ = −iψ̄~γ~erψ = 0. (2.4)This is the boundary 
ondition that will be used to determine the momentum of a quarkinside the bag.A word about 
hiral symmetry is in order here. The Lagrangian of a free massless quarkis 
hirally symmetri
, but the symmetry is broken when a quark mass is introdu
ed. Sothe symmetry breaking term is mψ̄ψ. In the bag Lagrangian the term δ(R − r)ψ̄ψ doesthe same, even for vanishing quark masses. In a 
hirally symmetri
 theory massless pionsare expe
ted if the symmetry is dynami
ally broken. If the symmetry is expli
itely brokenon the level of the Langrangian, as it is here, the pions should be massive.2.2 Cal
ulation of hadron massesIn this se
tion the masses of light hadrons will be 
al
ulated in the way des
ribed byDeGrand in Ref. [3℄. The mass of a hadron is 
omposited in the following way:
M = Ekin + E0 + Emag + Eel + Evol.The 
ontributions in this formula are

• the kineti
 energy of the quarks Ekin,
• the 
orre
tion energy E0 whi
h in
ludes e�e
ts not 
al
ulated here,
• the magneti
 and ele
tri
 intera
tion energies Emag and Eel,
• and the volume energy Evol given by the bag 
onstant.These energies will now be dis
ussed. 7



2.2.1 The kineti
 energy of a fermion in a spheri
al 
avityAs shown above, the Lagrangian of one quark leads to the Dira
 equation inside the bag,whi
h is a spheri
al 
avity here:
(iγµ∂

µ −m)ψ = 0. (2.5)Here, ψ is the four-
omponent wave fun
tion, m the mass of the quark, γµ are the γ-matri
es and ∂µ =
(

∂
∂t ,−~∇

). Now the Dira
 representation of the γ-matri
es is 
hosen:
γ0 =

(

1 0
0 −1

)

, γi =

(

0 σi

−σi 0

)

,where σi are the Pauli matri
es. This allows for ψ to be written as two two-
omponentspinors for parti
le and anti-parti
le. Together with the stationary 
ase as solution for thetime dependen
e, the wave fun
tion be
omes:
ψ(~x, t) =

(

φ(~x)
χ(~x)

)

e−iEt.With φ(~x) and χ(~x) for parti
le and antiparti
le, respe
tively. The energy isE =
√

m2 + p2.The Dira
 equation is now written as two 
oupled equations of φ and χ by using the Dira
representation of the gamma matri
es. With these Eq. (2.5) be
omes:
(~σ~p)χ+mφ = Eφ, (2.6)
(~σ~p)φ−mχ = Eχ. (2.7)These 
oupled equations 
an easily be de
oupled by solving e.g. Eq. (2.6) for φ andinserting it into Eq. (2.7). Now the momentum is written in its operator representation

~p = −i~∇, and the identity (~σ~a)2 = ~a2 is used to get the de
oupled equations
−∆φ =

(

E2 −m2
)

φ, (2.8)
−∆χ =

(

E2 −m2
)

χ, (2.9)where ∆ = ~∇2. The solutions for these equations are well known, as they appear forexample in a similar form in the S
hrödinger des
ription of the hydrogen atom. And justas in that 
ase, the angular part of the Lapla
e operator 
an be separated here. It is solvedby spheri
al harmoni
 fun
tions but with the di�eren
e that here, unlike the 
ase of theS
hrödinger equation, the spin has to be taken 
are of. The solution looks like
φ(~r) = g(r)Yj3

j,l(θ, ϕ), (2.10)
χ(~r) = f(r)Yj3

j,l′(θ, ϕ), (2.11)where Yj3
j,l is a spinor in spa
e representation for the total angular momentum ~J = ~L+ 1

2~σwith quantum number j. The spinor is written as
Yj3

j,l =

(

(

l 1
2 j3 − 1

2
1
2

∣

∣ j j3
)

Y
j3−

1

2

l
(

l 1
2 j3 + 1

2 − 1
2

∣

∣ j j3
)

Y
j3+ 1

2

l

)

,8



where ( l l3 sms| j j3) are the Clebs
h-Gordan 
oe�
ients, whi
h transform the basis of ~Lwith quantum numbers l and l3 and 1
2~σ with quantum numbers s = 1

2 and ms to the basisof the total spin ~J with quantum numbers j and j3. The quantum numbers of parti
le andantiparti
le, l and l′, are related through the quantum number κ, de�ned as the eigenvaluesof
K = β

(

~Σ ·~l + 1
)

.This leads to
l =

{

κ, for κ > 0
−(κ+ 1), for κ < 0

(2.12)
l′ =

{

κ− 1, for κ > 0
−κ, for κ < 0

(2.13)After the separation of the angular dependen
ies, the radial 
omponents of Eqs. (2.8) and(2.9) are
0 = r2

d2f

dr2
+ 2r

df

dr
+
[

r2p2 − l(l + 1)
]

f, (2.14)
0 = r2

d2g

dr2
+ 2r

dg

dr
+
[

r2p2 − l′(l′ + 1)
]

g. (2.15)This form of di�erential equation is again well known, the solutions are spheri
al Besselfun
tions. With them, the Dira
 equation is solved and the radial 
omponents of Eqs. (2.10)and (2.11) are:
f(r) = N

√

E +m

E
jl(pr),

g(r) = N

√

E −m

E
jl′(pr).Where N is the normalization 
onstant. It is now easy to show that the density ψ†ψ isonly radial symmetri
 if l = 0 and l′ = 1 (whi
h means κ = −1). This has to be ful�lled,as the basi
 assumption was that the pressure is in equilibrium on the whole surfa
e of thebag. If the density was not radial symmetri
, the bag would not be spheri
al anymore.

ψ†ψ =

(

f2
(

Yj3
j,l′

)†
Yj3

j,l′ + g2
(

Yj3
j,l

)†
Yj3

j,l

) (2.16)Now using that unity 
an be written as 1 = (~σ~er) (~σ~er) and that (see for example Ref. [4℄)
(~σ~er)Yj3

j,l′ = −Yj3
j,l Eq. (2.16) be
omes

ψ†ψ =
(

f2 + g2
)

(

Yj3
j,l

)†
Yj3

j,l.As the only spheri
al harmoni
 fun
tion that is independent of the angle is Y 0
0 , the 
laimis proven. Re
alling Eq. (2.4), ψ̄ψ∣∣

r=R
= 0, the boundary 
ondition is

ψ̄ψ
∣

∣

R
= ψ†γ0ψ

∣

∣

∣

R
= (g f)

(

g
−f

)
∣

∣

∣

∣

R

=
(

g2 − f2
)∣

∣

R

!
= 0.It follows the �nal equation to 
al
ulate the momentum as a fun
tion of radius: 9



(E +m) · j20(pR) = (E −m) · j21(pR), (2.17)where the �rst and se
ond spheri
al Bessel fun
tions are
j0(x) =

sin(x)

x
, (2.18)

j1(x) =
sin(x)

x2
− cos(x)

x
. (2.19)This equation has to be solved numeri
ally. The solution is p(R), and the kineti
 energyof quark i inside the bag is written as

Ekin,i(R) =
√

p2
i (R) +m2. (2.20)With the sum of the kineti
 energies of the quarks in a hadron and the volume term, themass of a hadron 
ould now be 
al
ulated to a �rst approximation. But some 
orre
tionand intera
tion terms will also be added.2.2.2 The 
orre
tion term E0The 
orre
tion energy

E0 = Z0/r (2.21)
ontains 
ontributions that are di�
ult or impossible to 
al
ulate. In Ref. [3℄, an estimatefor zero-point energies is given, resulting in a Z0 ≈ −2. The 
orre
tion term also in
ludes
enter of mass 
orre
tions, whi
h are approximated in some works, for example in Ref. [5℄.Here Z0 is treated as an open parameter of the bag model and will be �tted together withthe bag 
onstant and the 
oupling 
onstant to hadron masses later.2.2.3 Quark intera
tion energy
Figure 2.2: Lowest order intera
tion Feynman diagrams. The straight lines are quark prop-agators and the jagged lines are gluon propagators.The gluon ex
hange and the quark self energy terms, as shown in Fig. 2.2, are 
al
ulatedhere. To the lowest order in αS = g2

4π , where g is the 
olor 
harge in QCD, the problemredu
es to solving the ele
tromagneti
 
ase with the boundary 
onditions
~er × ~Ba

∣

∣

∣

r=R
= 0, (2.22)

~er · ~Ea
∣

∣

∣

r=R
= 0, (2.23)where a ∈ {1, 8} denotes the 
olor index. The ele
tri
 and magneti
 intera
tion energiesare then10



Emag = −1

2
g2
∑

a

∫

bag
d3x

(

~Ba(~x)
)2
, (2.24)

Eel =
1

2
g2
∑

a

∫

bag
d3x

(

~Ea(~x)
)2
. (2.25)See Ref. [3℄ for more information. A short presentation of the 
al
ulation follows now.Magneti
 intera
tionTo 
al
ulate Eq. (2.24) Maxwell's equations are used to determine the magneti
 �eld ofthe i-th quark:

~∇× ~Ba
i = ~jai , (2.26)

~∇ ~Ba
i = 0, (2.27)inside the bag. The ve
tor 
urrent is ~jai = ψ̄i~γλ

aψi, where the Gell-Mann matri
es λa aregenerators for the SU(3) symmetry group. From these equations, the magneti
 intera
tionenergy for a hadron in the ground state be
omes
Emag = 2αSλ

∑

i>j

〈~σi~σj〉
µ(mi, R) · µ(mj , R)

R3
I(mi,mj , R), (2.28)with λ = 2 for mesons and λ = 1 for baryons. The magneti
 moment of one quark is

µ(mi, R) =

∫

d3x
1

2
~r ×

(

ψ†
i (~x)~αψi(~x)

)

=
R

6

4REkin,i + 2miR− 3

2REkin,i(REkin,i − 1) +miR
.Where Ekin,i is the kineti
 energy of quark i. The fun
tion I in Eq. (2.28) is

I(mi,mj , R) = 1 + 2

∫ R

0

dr

r4
µ(mi, r)µ(mj , r).The mean produ
t of the spins 〈~σi~σj〉 is 
al
ulated in Appendix B.Ele
tri
 intera
tionThe e�e
t of the ele
tri
 intera
tion energy is 
omparably small. For example for themesons whose masses will be 
al
ulated, it does not vanish only for the K and K∗, where

Eel ≈ 4MeV . Nevertheless, it is in
luded in the total hadron mass. Eq. (2.25) integratesas:
Eel = −2αS

3
·
∫ R

0
dr
∑

i>j

(

ρi(r) − ρj(r)

r

)2

. (2.29)Here ρi(r) is the integral over the 
harge density of the i-th quark to a radius r: ρi(r) =
∫ r
0 dr

′4πr′2ψ†
i (r

′)ψi(r
′). 11



2.2.4 Cal
ulating the resulting massNow all the above 
al
ulations, Eqs. (2.20), (2.21), (2.28) and (2.29) are summarizedtogether with the volume term Evol = V ·B as the mass of the hadron:
M(r) =

2,3
∑

i=1

Ekin,i(r) + E0(r) + Emag(r) + Eel(r) +
4π

3
r3B.Fig. 2.3 shows the M(r) dependen
y for the Σ+ baryon. As the plot shows, the mass hasone well-behaved minimum. This minimum is M(R) with

∂M

∂r

∣

∣

∣

∣

r=R

!
= 0.This minimum is generally found numeri
ally, and used as the resulting mass. Only in the
ase where all 
onstituent quarks are massless an analyti
 expression is possible.
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Figure 2.3: Mass over radius for the Σ+. The minimum is at R ≈ 4.9 GeV−1 and the massbe
omes M(R) ≈ 1140 MeV.Massless quarksThe 
ase be
omes espe
ially easy for massless quarks. Here, the boundary 
ondition inEq. (2.17) be
omes independent of the quark energy. The �rst root now simply is pR =
2.04, and the kineti
 energy be
omes Ekin = 2.04

R . The magneti
 intera
tion energy is
al
ulated as Emag =
λ〈~σi~σj〉αS ·0.053

R and the ele
tri
 intera
tion vanishes. In this 
ase theminimization is easily done, and the mass be
omes
M =

A

R
+

4π

3
R3B =

4

3
A3/4 (4πB)1/4 , (2.30)where A = n ·2.04+λ

∑n
i>j 〈~σi~σj〉αS ·0.053+Z0 , with number of quarks n. A is a 
onstantfor ea
h hadron.2.3 Fitting the parametersTo �t B, Z0 and αS the N , ∆ and ω hadrons are used. The quark masses are set tozero (mu = md = 0). This yields B1/4 = 146.2 MeV, Z0 = −1.86 and αS = 2.19. These12



results are the same as in Ref. [3℄. Then, the strange quark mass is �tted against the Ω−,whi
h yields ms = 277.7 MeV. Similarly one would �nd the mass of the 
harm quark as
mc = 1546.6 MeV if �tted against the J/ψ. But be
ause of their high masses, whi
h areunimportant in the following thermodynami
s, 
harmed hadrons won't be dis
ussed here.One 
omment is in order here: The 
oupling 
onstant αS is to large to justify a per-turbative approa
h as it was done to 
al
ulate the intera
tion energies. Nevertheless, theresults are quite good, and this problem is not investigated further.2.4 The hadroni
 mass spe
trum2.4.1 Results for light hadronsThe resulting masses for hadrons 
onsisting of u,d and s quarks are shown in Table 2.1,using the parameters of se
tion 2.3. While most of the results are pretty good for su
h anaive model as the bag model, it is noti
eable that the pion mass is two times to large.Parti
le Mexp Mbag Ekin Emag Eel E0 Evol R

N 938 938(∗) 1234 -156 0 -374 235 4.968
Λ 1116 1100 1405 -158 1.35 -377 228 4.924

Σ+ 1189 1140 1405 -118 1.35 -377 229 4.926
Ξ0 1321 1291 1598 -138 9.22 -382 221 4.867
∆ 1236 1236(∗) 1125 143 0 -341 309 5.446
Σ∗ 1385 1381 1297 124 1.35 -344 302 5.406
Ξ∗ 1533 1534 1470 108 9.82 -347 294 5.354
Ω− 1672 1672(∗) 1640 93 0 -350 288 5.318
π 139 273 1241 -472 0 -564 68 3.293
ω/ρ 783 783(∗) 873 111 0 -397 196 4.677
K 495 488 1425 -424 3.37 -579 63 3.209
K∗ 892 927 1043 92.1 4.45 -402 189 4.623
φ 1019 1065 1211 77.3 0 -406 183 4.575Table 2.1: Spe
trum of hadrons 
ompared to experimental values taken from Ref. [7℄.Masses/Energies are given in MeV, the radius in 1/GeV. The masses markedwith a (∗) are used for the �t.2.4.2 Higher radial ex
itationsUntil now only the smallest root of Eq. (2.17) has been used to determine the momentum ofa quark. But the equation has in�nite roots (be
oming π/2-periodi
 for large arguments),what happens if those are used? These radial ex
ited baryons share the same quantumnumbers as the ground state. For example the nu
leon N(1440) shares its quantum num-bers with the ground state N(939). This hadron may be identi�ed with a bag 
ontaininga radial ex
ited quark. The �rst nu
leon ex
itations are listed in Table 2.2. The knownexperimental values would be 1440 MeV, 1710 MeV and 2100 MeV, see Ref. [7℄. As thisexample shows, the results from the bag model are to narrow in 
omparison to the exper-imental values. In Fig. 2.4 the mass density resulting of radial ex
itations is shown and
ompared to the mass density resulting from experimental data. In the �gure all hadrons(in
luding their degenera
y fa
tors) in a given range are summarized. The 
omparison tothe experimental values shows the same e�e
t as in Table 2.2, the bag model leads to a13



number of hadrons that is too large. The 
ubi
 �t shown in Fig. 2.4 is explained in thefollowing se
tion.
n1 n2 n3 Mbag2 1 1 13512 2 1 16013 1 1 17052 2 2 18903 2 1 1918Table 2.2: Radial ex
itations of the nu
leon. ni denotes the number of root in the boundary
ondition.
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Figure 2.4: Histogram showing the mass density with a bin size of 100 MeV. The 
ubi
�t shows a good agreement. As a 
omparison, the mass density taken fromRef. [7℄ with baryons up to 2000 MeV and mesons up to 1800 MeV is shown.2.4.3 Asymptoti
 mass spe
trum and Hagedorn temperatureIn Ref. [6℄ R. Hagedorn introdu
ed a maximum temperature above whi
h the partitionfun
tion of a hadroni
 gas would diverge. This happens if the density of hadrons growsexponentially. Taking the partition fun
tion for a high number of parti
les as
Z =

∑

k

∫

dmρ(m) exp

[

−Hk

T

]

,the divergen
e happens if the asymptoti
 density of parti
les ρ(m) in
reases faster than
exp (m/TH). Then, the integrand for the ground state (H = m) be
omes proportional to
exp

[

m
(

1
TH

− 1
T

)]

. For T ≥ TH , the integral over m diverges. Therefore, the Hagedorntemperature TH is the upper boundary for the temperature of a hadroni
 system. Thismeans that all thermodynami
al properties, whi
h are derivatives of the partition fun
tion,also diverge.14



The asymptoti
 mass spe
trum for radial ex
ited bagsWith radial ex
itations as in se
tion 2.4.2 the number of hadrons does not grow exponen-tially, whi
h is now proven. In the following, hadrons 
onsisting of massless quarks areinvestigated for simpli
ity. As stated above, for high arguments the boundary 
ondi
tionbe
omes π/2-periodi
. So the kineti
 energy be
omes Ekin ≈ πn
2r , where n is the num-ber of the root. The fa
tor A in Eq. (2.30) now be
omes approximately proportional to

N = n1 + n2 + n3 for baryons and N = n1 + n2 for mesons:
m ∝ N3/4.The number of masses in an interval [m,m+∆m] is therefore proportional to (m+∆m)4/3−

m4/3. This number is degenerated: N 
an be 
omposed in (Nk ) ways, where k is the numberof quarks in the bag. For mesons the degenera
y is N and for baryons it is N(N−1) ≈ N2.With these the density fun
tion be
omes
ρ(m) ∝ (m+ ∆m)4/3 −m4/3

∆m

(

N

k

)

.Now the limes ∆m→ 0 is built and N is expressed through m. The asymptoti
al densityfun
tion for the MIT Bag Model be
omes
ρ(m) ∝

{

m5/3, for mesons
m3, for baryons .In Fig. 2.4 an m3 �t shows a good agreement with the numeri
al results. The 
ase isnot di�erent if one takes into a

ount higher angular momenta (ignoring that the bagswould not be spheri
al anymore), be
ause the roots to the boundary 
ondition wouldapproximately grow linearly, giving a similar situation as with radial ex
itations. Therefore,the MIT Bag Model does not lead to a Hagedorn temperature.Bags with growing numbers of quark-antiquark pairsA way to get to a Hagedorn temperature is des
ribed for example in Ref. [1℄. A highnumber of quark-antiquark pairs is introdu
ed inside the bag. These pairs are treated asa non-intera
ting ideal gas. On one hand, in an ideal gas the pressure is related to thetemperature through a Stefan-Boltzmann like law (see se
tion 3.1):
p =

gπ2

90
T 4,where g is the degenera
y fa
tor, 8 · 2 + 7

83 · 2 · 2 · 2 = 37 for a (massless) quark-antiquark-gluon gas. On the other hand, the pressure of the bag is identi�ed with the bag 
onstant.Therefore, the temperature has to be a 
onstant, too:
TH =

(

90

π2g
B

)1/4

. (2.31)With a bag 
onstant of B1/4 = 146 MeV, one gets TH ≈ 103 MeV. This value is of 
ourseto low for a Hagedorn temperature, as for example the 
riti
al temperature for the phasetransition to a quark-gluon plasma is expe
ted to be around 180 MeV.
15



3 Thermodynami
sIn this 
hapter the 
hara
teristi
s of a hadroni
 system as a thermodynami
 gas are inves-tigated. The goal is to des
ribe the phase transition from a hadroni
 gas to a quark-gluonplasma (QGP). The QGP is des
ribed here as an ideal gas, while two models are used forthe hadroni
 phase:
• An ideal gas of point-like parti
les in se
tion 3.1.
• The 
ompressible bag model in se
tion 3.2.3.1 Hadroni
 phase and quark-gluon plasma as an idealquantum gasA �rst approximations to a system of hadrons and the QGP is an ideal (Bose/Fermi)quantum gas. The grand 
anoni
al potential for this system is (see for example Ref. [8℄):

lnZ = ηgV

∫

d3k

(2π)3
ln {1 + η exp (−β(E − µ))} .Here, η = +1/ − 1 for bosons/fermions, E =

√
k2 +m2 and g is the degenera
y fa
tor.From this, all other thermodynami
al properties 
an be derived.3.1.1 Pressure and energy densityThe pressure p and the energy density ǫ of an ideal gas are 
al
ulated as follows:

p =
1

β

∂

∂V
lnZ

=
ηg

β

∫

d3k

(2π)3
ln {1 + η exp (−β(E − µ))} , (3.1)

ǫ =
〈E〉
V

= − 1

V

∂

∂β
lnZ

= g

∫

d3k

(2π)3
E − µ

eβ(E−µ) + η
. (3.2)In the 
ase of massless 
onstituents the integrals 
an be evaluated. For a vanishing 
hemi
alpotential pressure and energy density be
ome a form like the Stefan-Boltzmann law. Forbosons:

pB =
gπ2T 4

90
, ǫB = 3pB , (3.3)

16



and for fermions:
pF =

7

8

gπ2T 4

90
, ǫF = 3pF . (3.4)To 
ompare the 
ase of an hadroni
 gas with the massless 
ase, p/T 4, ǫ/T 4 and (ǫ− 3p) /T 4are plotted, see Figs. 3.5, 3.6 and 3.7. In Fig. 3.1 (ǫ− 3p) /T 4 is 
ompared to latti
e QCDdata, whi
h were extra
ted from Ref. [9℄ by F. Kars
h. Just as in Ref. [9℄, the idealquantum gas is in good agreement with the latti
e data for the hadroni
 phase whi
h endsat TC ≈ 170 MeV in the Kars
h data. But the gradient of the ideal gas is to low 
omparedto the latti
e data. The situation is even worse when the experimental parti
le masses areused. Therefore, the problem is the used model not the used hadron data. The parti
lesused to 
reate the �gures in this 
hapter are:

• Gluons, up-, down- and strange- quarks for the QGP. The quark masses are the sameas they were used to 
al
ulate the hadroni
 mass spe
trum, see se
tion 2.3.
• The hadroni
 phase 
onsists of all the parti
les in se
tion 2.4.1 and all their radialex
itations up to 2000 MeV for baryons and 1800 MeV for mesons. These upperlimits were used in the Kars
h data, too.
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Figure 3.1: Comparison of (ǫ − 3p)/T 4 for an ideal gas and latti
e QCD data extra
tedfrom Ref. [9℄.3.1.2 Criti
al temperature and phase diagramThe phase transition from a hadron gas to a quark-gluon plasma is 
hara
terized by thepoint where the pressure of the two phases be
ome identi
al: phadron = pqgp. Here, pqgp =
∑

quarks pi +pgluon−B is taken as an ideal gas. For the parti
le setup as above, the 
riti
altemperature be
omes TC ≈ 102 MeV for µ = 0, where B is the value from se
tion 2.3. The
riti
al baryo-
hemi
al potential is about µC ≈ 775 MeV for T = 0. Fig. 3.3 shows theresulting phase diagram. The 
riti
al temperature 
an also be approximated by using thatthe pressure of the hadroni
 gas is mu
h less than the bag 
onstant at TC and by treatingthe strange quark as massless. This gives
TC ≈

(

90

π2g
B

)1/4

, (3.5)17
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Figure 3.2: Comparison of the energy density for an ideal gas and latti
e QCD data ex-tra
ted from Ref. [9℄.whi
h is 
oin
idental the same formula as Eq. (2.31). With a degenera
y fa
tor of 8 · 2 +
7
83 · 3 · 2 · 2 = 47.5, in
luding strange quarks, the 
riti
al temperature is approximated as
97 MeV. This is only 5 MeV below the value where the hadroni
 phase was in
luded. Fortemperatures mu
h larger than the parti
le masses, the pressure of the hadron gas be
omesStefan-Boltzmann-like, as in Eqs. (3.3) and (3.4). With a large number of hadrons thedegenera
y fa
tor also be
omes large and ex
eeds the degenera
y fa
tor of the quark-gluonplasma. So, the pressures for large temperatures are 
ompared as phadron/T

4 ∝ ghadron >
pqgp/T

4 ∝ gqgp. This means that the pressure of the hadron gas will 
ross the pressure ofthe QGP again. This leads to a se
ond phase transition to a se
ond hadroni
 phase, whi
his shown in Fig. 3.3.
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Figure 3.3: Phase diagram for an ideal quantum gas with an extra hadroni
 phase.As shown above, two problems arise in the model of an ideal gas:1. Depending on the number of hadrons in the gas the hadroni
 pressure may ex
eed theQGP pressure again. This unphysi
al behavior is 
orre
ted in the 
ompressible bagmodel des
ribed in se
tion 3.2. Fig. 3.5, showing the pressure at µ = 0, illustrateswhat happens.18



2. The 
riti
al temperature is expe
ted to be around 170−190 MeV, so the result aboveis mu
h to low. This 
an be 
orre
ted by using a larger bag 
onstant.To solve the se
ond problem, the bag 
onstant has to be altered. To be 
onsistent with
hapter 2, the mass spe
trum is altered, too: Using the N and ∆ to �t Z0 and αS andthe Ω− to �t the strange mass, but keeping B as a free variable, gives rise to some slightlybetter results. While the 
riti
al temperature rises with the bag 
onstant, the pion massde
reases. At B1/4 = 181 MeV mπ hits zero and TC be
omes 131 MeV. With a larger bag
onstant the pion mass be
omes negative, so 131 MeV is the largest 
riti
al temperaturethat is possible within this model, as long as the masses of the N , ∆ and Ω− are taken as�xed values.3.2 Compressible bag modelA modi�ed model for the thermodynami
al properties of a hadroni
 gas has been intro-du
ed in Ref. [10℄. In the 
ompressible bag model a Van-der-Waals like way of des
ribingthe gas is 
hosen, where the volume of the bags is subtra
ted from the volume of the sys-tem. Note that this 
an be 
onsidered a more realisti
 approa
h to a gas of MIT bags asthey have a well-de�ned volume. The volume be
omes
V ′ = V − b

n
∑

i=1

Nivi, (3.6)where b is the ex
lusion e�
ien
y parameter, Ni the number of parti
les of type i and vithe volume of one su
h parti
le. The ex
lusion e�
ien
y parameter will be 
hosen to s
alethe nu
leon's bag radius to the proton 
harge radius. Now the free energy of the totalsystem is written as:
F̂ (N,V ′, T ) =

n
∑

i=1

Ff (Ni, V
′, T,Mi(vi)).Where Ff (N,V, T,M) = −pf (µ, T,M) ·V +µ ·N is the free energy as in the free quantumgas dis
ussed above. With the new volume in Eq. (3.6), the 
hemi
al potential µ has tobe 
hanged, and the free energy is Ff (N,V ′, T,M) = −pf (µ′, T,M) · V ′ + µ′ · N . Nowthe requirement of the bag model, that the mass has to be minimized with respe
t to thevolume, is repla
ed by the minimization of F̂ with respe
t to vi:

∂F̂

∂vi
= Ni

(

bp+N−1
i

∂Ff

∂Mi

∂Mi

∂vi

)

!
= 0. (3.7)The term N−1

i
∂Ff

∂Mi
is equal to the mean inverse Lorentz fa
tor 〈γ−1

〉:
N−1

i

∂Ff

∂Mi
=

− ∂pf

∂Mi

∂pf

∂µ′

=

∫

d3k
(2π)3

Mi

E
1

exp((E−µ′)/T )+ηi
∫

d3k
(2π)3

1
exp((E−µ′)/T )+ηi

=

〈

Mi

E

〉

=
〈

γ−1
〉

. (3.8)The nonrelativisti
 
ase 〈γ−1
〉

≈ 1 signi�
antly de
reases 
omputation time, it will laterbe dis
ussed where it applies. With Eq. (3.8) Eq. (3.7) be
omes:
∂Mi

∂vi
= − bp

〈γ−1〉 . (3.9)19
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Figure 3.4: The fun
tion A(r) for the Ξ0 together with a linear �t.This equation is equivalent to the bag model in va
uum for either p = 0 or b = 0, as oneshould expe
t. The extra pressure from the gas leads to a 
ompression of the bags, whi
hagain leads to an in
reased mass of the bags. Re
all the bag equation:
Mi(vi) =

Ai(vi)

v
1/3
i

+Bvi, (3.10)written here as a fun
tion of the volume vi = 4π
3 R

3
i . Ai(vi) is independent of the volume formassless quarks only, see se
tion 2.2.4. From 
omparison with numeri
al results, a linearapproximation A(v) = A0+d·v1/3 is very good. Fig. 3.4 shows an exemplary illustration ofa linear �t to the fun
tion A(r). A0 will be eliminated by using the bag equation in va
uumand d will be 
omputed with the te
hniques developed in 
hapter 2 for ea
h hadron. Themass of the bag in va
uum is de�ned as mi with ∂mi

∂vi
= 0, while the mass of the bag insidethe gas is Mi. Using Eqs. (3.9) and (3.10), the problem is almost solved. It follows

vi(p,mi) =
mi − di

4B

(

1 +
bp

B 〈γ−1〉

)−3/4

, (3.11)
Mi(p,mi) = (mi − di)

(

1 +
3bp

4B 〈γ−1〉

)(

1 +
bp

B 〈γ−1〉

)−3/4

+ di. (3.12)To �t the ex
lusion e�
ien
y parameter b to the proton 
harge radius RP , the volume
vN,0 = mN

4B of the bag for the proton in va
uum is taken. b be
omes
b =

4
3πR

3
P

vN,0
=

16πR3
PB

3mN
,where mN is the nu
leon mass. With this �t the only parameter of the 
ompressible bagmodel is �xed.The 
hemi
al potential µ is not identi
al to µ′ in the free energy. The dependen
y isgiven by

µi =
∂F̂

∂Ni
=
∂Ff

∂Ni
+ bvip = µ′i + bvip, (3.13)with µi = aiµB and the baryo-
hemi
al potential µB.20



3.2.1 Pressure and energy densityThe total pressure p follows from Eqs. (3.1), (3.11), (3.12) and (3.13):
p =

n
∑

i=1

pf (T, µ′,Mi). (3.14)The right side of Eq. (3.14) depends on p itself, therefore a numeri
al algorithm has to beused to solve this equation additionally to the numeri
al integration.The energy density is given by
ǫ =

1

V

∂
(

βF̂
)

∂β
=

n
∑

i=1

[

µ′ρi −
(

1 − b

n
∑

i=1

ρivi

)

g

∫

d3k

(2π)3
µ′ − E

eβ(E−µ′) + η

]

,with the parti
le density
ρi =

∂pf

∂µ
= g

∫

d3k

(2π)3
1

eβ(E−µ′) + η
.The pressure and the energy density are shown in Figs. 3.5, 3.6 and 3.7, where they are
ompared to the ideal gas. For low temperatures (< 130 MeV) the 
ompressible bag modelresembles the ideal gas. This also in
ludes that the 
riti
al temperature (whi
h is below

130 MeV here) will not 
hange signi�
antly. But as the plot of the pressure shows, these
ond phase transition disappears. Pressure and energy density in the 
ompressible bagmodel 
ompare poorly to the latti
e data, the ideal gas gives a better des
ription of thesevalues. This is in 
ontrast to the phase diagram whi
h is more realisti
 in the 
ompressiblebag model.
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Figure 3.7: Comparison of energydensity and pressure,
(ǫ − 3p)/T 4, for 
om-pressible bags and an idealgas.3.2.2 Phase diagramThe quark-gluon plasma is again taken as an ideal quantum gas, just as in se
tion 3.1.The masses for the hadroni
 phase are also the same. The 
ompressible bag model givesthe expe
ted result, with no additional hadroni
 phase, as shown in Fig. 3.8. Here, theapproximation 〈γ−1

〉

≈ 1 mentioned above is made, leading to a negligible error butde
reasing 
omputation time. For example, the pion pressure at 165 MeV is only 0.3 % tosmall in the nonrelativisti
 
ase.The phase diagram in Fig. 3.8 still has two problems:1. TC still is too low for the bag 
onstant used here.2. The hadroni
 phase 
ould well be approximated with phad = 0 and would still leadto almost the same phase diagram. This is 
aused by the low hadroni
 pressure at
TC , as Fig. 3.5 shows.
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Figure 3.8: Phase diagram for the 
ompressible bag model.
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4 SummaryIn the se
ond 
hapter the MIT Bag Model has been investigated. On the level of thebag Lagrangian it has been found that the 
hiral symmetry is expli
itly broken on thebag's surfa
e. Nevertheless, the masses of nine hadrons have been predi
ted on basis ofthe masses of four hadrons as �t parameters. These predi
tions are good, 
onsidering thesimpli
ity of the model. Only the mass of the pion is signi�
antly to large, as it is twi
e thepion mass found experimentally. Hadrons with an ex
ited angular momentum 
an not betreated in a theory of spheri
al bags. Radial ex
itations are possible, but give results whi
hare too narrow. While the spe
trum grows strongly it does not grow exponentially in theasymptoti
 
ase. Therefore, the MIT Bag Model does not predi
t a Hagedorn temperaturewithout being modi�ed.In the third 
hapter the thermodynami
s of a gas of bags has been investigated by usingtwo models. These have been used to 
al
ulate the pressure, the energy density and aphase diagram to a quark-gluon plasma. The �rst model treats treats the gas of bags asa gas of ideal point-like parti
les. It gives a 
onsiderably good agreement with data fromlatti
e QCD for the pressure and the energy density of the hadroni
 phase, while the phasediagram has two �aws: The 
riti
al temperature is too low a value and an extra hadroni
phase appears for large temperatures and for large 
hemi
al potentials. In the se
ondmodel, the bag volume has been in
orporated in form of the 
ompressible bag model. Thisleads to a more reasonably phase diagram with only one hadroni
 phase, and is in thisregard a better model of a gas of bags. The downsides of the 
ompressible bag model arethat the problem of the low 
riti
al temperature has not been solved, and that pressureand energy density do not agree with the latti
e data.
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A Numeri
al 
al
ulationsAll numeri
al 
al
ulations here were done with C++ programs using the GNU S
ienti�
Library (GSL) and the GNU C Compiler (GCC). The used program versions were GCC3.3.5 and GSL 1.6. The GSL has been used mainly for numeri
al integration on in�niteintervals, a root �nding algorithm and the spheri
al Bessel fun
tions. For numeri
al inte-gration the fun
tion gsl_integration_qagiu with a relative error of 10−5 has been used.For root �nding it was Brent's method with a relative error of 10−4 and a maximum of
100 iterations.
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B Spin-Spin 
ouplingFor the magneti
 intera
tion energy the mean produ
t of the spins of two quarks, 〈~σ1 · ~σ2〉,has to be 
al
ulated in dependen
y of the total angular momentum ~J . The angular momen-tums ~l of the quarks are zero in the MIT Bag Model. For a meson this is easy by squaring
~J = ~s1 + ~s2: ~σ1~σ2 = 4 ·

(

1
2J(J + 1) − 3

4

). For a baryon, the wave fun
tions 
oupling to atotal Spin J have to be found expli
itly. The operator ~σi ·~σj 
an be represented by Ti,j −1,where Ti,j swit
hes the z-
omponent of the quarks i and j. For the wave fun
tions �rstquarks two and three are 
oupled to a total spin J23 ∈ {1, 0}. Then, quark one is 
oupledagainst spin J23 to a total spin J ∈ {3
2 ,

1
2}. Note that the result is independent of Jz . Theresults are given in Table B.1.

J = 3/2 J = 1/2

J23 = 1 J23 = 1 J23 = 0

〈~σ1 · ~σ2〉 1 1 -3
〈~σ1 · ~σ3〉 1 -2 0
〈~σ2 · ~σ3〉 1 -2 0Table B.1: Spin produ
ts for a baryon.
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