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Zusammenfassung

In dieser Arbeit wird das Spektrum leichter Hadronen in der Quantenchromodynamik
(QCD) mithilfe des MIT Bag Model untersucht, ein Modell das 1974 am MIT entwickelt
wurde. Mit diesem Modell werden die Massen leichter Hadronen, deren radiale Anregungen
und ein asymptotisches Massenspektrum bestimmt. Die Ergebnisse dieser Untersuchung
werden benutzt um ein Gas von Hadronen zu beschreiben. Dieses Gas wird mit zwei Mo-
dellen beschrieben, als ein Quantengas von punktférmigen Teilchen und im Compressible
Bag Model, welches das Volumen der Hadronen beriicksichtigt. Die Eigenschaften eines Ha-
dronengases in diesen Modellen wird mit den Ergebnissen von Lattice QCD Berechnungen
verglichen. Dabei ist der Phaseniibergang in ein Quark-Gluonen-Plasma von besonderem
Interesse.

Abstract

In this work the spectrum of light hadrons in quantum chromodynamics (QCD) is investi-
gated by using the MIT Bag Model, a model that has been developed in 1974 at the MIT.
This model is used to calculate the masses of light hadrons, their radial excitations and an
asymptotic mass spectrum. The results of this investigation are used for the description of
a gas of hadrons. This gas is described by using two models, as a quantum gas of point-like
particles and in the compressible bag model, which incorporates the volume of the hadrons.
The properties of a hadron gas in these models are compared to the results of lattice QCD
calculations. The phase transition to a quark-gluon plasma is of special interest here.
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1 Introduction

The theory of quantum chromodynamics (QCD) describes the interactions of quarks and
gluons. A bound state of quarks in the QCD is called a hadron, which can not be left
by its valence quarks. In 1974 Chodos, Jaffe, Johnson, Thorn and Weisskopf from the
Massachusetts Institute of Technology introduced a new model of hadrons, see Ref. [2], in
which hadrons are treated as so-called 'bags’. This model has been used in 1975 by De-
Grand, Jaffe, Johnson and Kiskis to calculate the spectrum of light, ground-state hadrons,
see Ref. [3]. To describe the state of quarks inside a hadron the MIT Bag Model takes the
QCD vacuum to be a medium in which the quarks can not exist. They are bound inside a
region of space, a so-called 'bag’, in which they are treated as free particles. Their kinetic
energy and some correction terms are used to determine the hadron mass. This model
leads to a considerably good agreement with the experimental data, and is presented here.

After some hadron masses are calculated, the thermodynamic properties of a gas of
hadrons are investigated. The most interesting property of such a gas is the phase transition
to a quark-gluon plasma. In a quark-gluon plasma the quarks and gluons, which are
confined in hadronic matter, are deconfined. This state of matter is believed to be produced
in collider experiments of high energies, and is a subject of thorough investigations. To
describe a gas of hadrons, two models are used:

e An ideal quantum gas. The limits of this model will be reached when the phase
diagram of QCD is calculated.

e The compressible bag model, an approach in which the volume of the bags is taken
into account. This will result in a more reasonably phase diagram.

As no experimental data exist to date, the results from the bag model are compared to
lattice QCD calculations.

1.1 Units

Natural units are used here: = ¢ = kg = 1. With hc = 197.3MeVim and kg =
8,617 - 10’11% the conversions for length and temperature are 1fm = 5.068GeV ~! and
1K = 8,617 - 10" " MeV.



2 The MIT Bag Model

As the properties of hadrons could not yet be calculated with full QCD, several models
have been developed to describe a hadron. A relatively simple one is the bag model. The
hadron is described as a cavity to which the quarks are confined, and which they can not
leave. The MIT Bag Model explains the stability of this cavity by introducing the universal
bag constant B as the inward vacuum pressure. Now the radius of the bag is determined
by the equilibrium of B and the outward pressure created by the valence quarks.

To calculate the mass of a hadron the Dirac equation for one quark is solved inside a
spherical cavity of radius » with wave function 9 as solution. Qutside the bag, the wave
function is zero. (See Fig. 2.1 as an illustration.) The scalar ¥ has to vanish on the surface
of the bag, a consequence of the bag Lagrangian. This boundary condition determines the
kinetic energy of the quarks. Several correction energy terms are introduced: Zero point
fluctuations and center of mass movement are summarized in a parameter Z; which has to
be fitted to experimental values. The quark-gluon interactions are calculated to the lowest
order in the coupling constant ag. The sum over these energies and the energy contributed
by the bag constant is identified as the mass of the hadron, which is a function of the bag
radius: M(r). Now M (r) is minimized with respect to the radius. This determines the
hadron radius R, and therefore the resulting mass M (R). The minimization condition
is equivalent to the equilibrium of outside and inside pressure on the bag surface, and
therefore to the stability of the bag.

Figure 2.1: Illustration of the bag model: The quark wave function 9 is non-zero inside
a spherical cavity, surrounded by QCD vacuum in which the wave function is

¥ =0.

2.1 The bag Lagrangian

To start with, the bag Lagrangian for a spherical and static bag of radius R is written
down as

L= {4 (i7, 0" —m) — B} O(R—r) — Yy§(R — ). (2.1)



Here © is the Heaviside step function and § the Dirac delta function. They are related
through
0,0(r) = nud(r),

where (n*) = (0, ¢€,) is the unit vector perpendicular to the bag surface. Inside the bag
(r < R), the bag Lagrangian is just the Lagrangian for a free fermion of mass m. Also the
bag constant B is subtracted here as it contributes to the energy density, but with no effect
on the equations of motion. On the bag surface (r = R) the term ¢ in the Lagrangian
will give the boundary condition.

Now according to Hamilton’s principle the action of the system is minimized, which
leads to the Euler-Lagrange equations

oL oL
% o0y "o "

Deriving these equations from Eq. (2.1) leads to the Dirac equation

(2.2)

(i7" —m) =0 (2.3)

inside the bag. This equation will be solved in the following section. On the bag surface
the Euler-Lagrange equations lead to

_1’757“1/} = 1/}7

which is the boundary condition. It can also be written as iy€, = 1. Now 1) is
constructed from both forms, and one gets

U = WpYE = —ipYE = 0. (2.4)

This is the boundary condition that will be used to determine the momentum of a quark
inside the bag.

A word about chiral symmetry is in order here. The Lagrangian of a free massless quark
is chirally symmetric, but the symmetry is broken when a quark mass is introduced. So
the symmetry breaking term is m1). In the bag Lagrangian the term (R — 7)) does
the same, even for vanishing quark masses. In a chirally symmetric theory massless pions
are expected if the symmetry is dynamically broken. If the symmetry is explicitely broken
on the level of the Langrangian, as it is here, the pions should be massive.

2.2 Calculation of hadron masses

In this section the masses of light hadrons will be calculated in the way described by
DeGrand in Ref. [3]. The mass of a hadron is composited in the following way:

M = Eyin + Eo + Epag + Eep + Eyor.
The contributions in this formula are
e the kinetic energy of the quarks Fy;,,
e the correction energy Ejy which includes effects not calculated here,
e the magnetic and electric interaction energies E,,,4 and Fgy,
e and the volume energy F,, given by the bag constant.

These energies will now be discussed.



2.2.1 The kinetic energy of a fermion in a spherical cavity

As shown above, the Lagrangian of one quark leads to the Dirac equation inside the bag,
which is a spherical cavity here:

(170" —m)1p = 0. (2.5)

Here, v is the four-component wave function, m the mass of the quark, v, are the ~-

matrices and O* = (%, —6) Now the Dirac representation of the y-matrices is chosen:

(1 0 (0 o
FYO - O _1 ) 71 - —0; O )

where ¢; are the Pauli matrices. This allows for @ to be written as two two-component
spinors for particle and anti-particle. Together with the stationary case as solution for the
time dependence, the wave function becomes:

With ¢(Z) and x(Z) for particle and antiparticle, respectively. The energy is E = y/m?2 + p2.
The Dirac equation is now written as two coupled equations of ¢ and y by using the Dirac
representation of the gamma matrices. With these Eq. (2.5) becomes:

(@P)x +mo = E¢, (2.6)
(@p)¢ —mx = Ex.
These coupled equations can easily be decoupled by solving e.g. Eq. (2.6) for ¢ and

inserting it into Eq. (2.7). Now the momentum is written in its operator representation
p = —iV, and the identity (5’&’)2 = @ is used to get the decoupled equations

-A¢p = (B*-m?)¢, (2.8)
—-Axy = (E2 — m2) X, 2.9

where A = V2. The solutions for these equations are well known, as they appear for
example in a similar form in the Schrodinger description of the hydrogen atom. And just
as in that case, the angular part of the Laplace operator can be separated here. It is solved
by spherical harmonic functions but with the difference that here, unlike the case of the
Schrédinger equation, the spin has to be taken care of. The solution looks like

oF) = g(r)VE6,¢). (2.10)
X® = F)YVE6.¢), (2.11)

where yﬁ is a spinor in space representation for the total angular momentum J = L + %5’
with quantum number j. The spinor is written as

ja— L
yj3:< (1335 =3 8|52 v )
(

Jil . .. ja+3
I5js+3 —5|id) Y, ?



where (ll3 sms|jj3) are the Clebsch-Gordan coefficients, which transform the basis of L
with quantum numbers [ and I3 and %6’ with quantum numbers s = % and my to the basis

of the total spin J with quantum numbers j and j3. The quantum numbers of particle and
antiparticle, [ and [’, are related through the quantum number &, defined as the eigenvalues
of

K=3 (z T 1) .
This leads to

K, for k >0
b= { —(k+1), fork <0 (2.12)

. {H—l, for Kk >0

-k, fork<0 (2.13)

After the separation of the angular dependencies, the radial components of Egs. (2.8) and
(2.9) are

d2f df

2 2.2

0 = r —dr2 +2T_r + [r D —l(l+ 1)] 7, (2-14)
d29 dg
2 2,2

0 = r —dr2 + 2r_dr + [7“ P — l’(l’ + 1)] g. (2-15)

This form of differential equation is again well known, the solutions are spherical Bessel
functions. With them, the Dirac equation is solved and the radial components of Egs. (2.10)
and (2.11) are:

f) = Ny,
o) = N E ),

Where N is the normalization constant. It is now easy to show that the density ¥ is
only radial symmetric if [ = 0 and I’ = 1 (which means k = —1). This has to be fulfilled,
as the basic assumption was that the pressure is in equilibrium on the whole surface of the
bag. If the density was not radial symmetric, the bag would not be spherical anymore.

Nt Nt
2 2
ply = (f (95) Vi + g (V2) j-;’;) (2.16)
Now using that unity can be written as 1 = (¢'¢;) (F¢;) and that (see for example Ref. [4])
(7€) Vi3 = —=Y5} Eq. (2.16) becomes

Nt
vl = (77 +¢%) (V) i

As the only spherical harmonic function that is independent of the angle is YOO, the claim
is proven. Recalling Eq. (2.4), QMMTZR = 0, the boundary condition is

SGRRIPE
R

$lp = vhov| = (9) ( 4 )

It follows the final equation to calculate the momentum as a function of radius:



(E+m) - j5(pR) = (E —m)- j; (pR), (2.17)

where the first and second spherical Bessel functions are

jo(z) = Sinf), (2.18)
@) = sir;(f)_cosx(ac). (2.19)

This equation has to be solved numerically. The solution is p(R), and the kinetic energy
of quark ¢ inside the bag is written as

FEini(R) = \/p}(R) + m?. (2.20)

With the sum of the kinetic energies of the quarks in a hadron and the volume term, the
mass of a hadron could now be calculated to a first approximation. But some correction
and interaction terms will also be added.

2.2.2 The correction term £,

The correction energy
Eo = Zy/r (2.21)

contains contributions that are difficult or impossible to calculate. In Ref. [3], an estimate
for zero-point energies is given, resulting in a Zy =~ —2. The correction term also includes
center of mass corrections, which are approximated in some works, for example in Ref. [5].
Here Z; is treated as an open parameter of the bag model and will be fitted together with
the bag constant and the coupling constant to hadron masses later.

2.2.3 Quark interaction energy

AbdAd\

Figure 2.2: Lowest order interaction Feynman diagrams. The straight lines are quark prop-
agators and the jagged lines are gluon propagators.

The gluon exchange and the quark self energy terms, as shown in Fig. 2.2, are calculated

here. To the lowest order in ag = %, where g is the color charge in QCD, the problem

reduces to solving the electromagnetic case with the boundary conditions

& x B® = 0, (2.22)

r=R

é. - E° = 0, (2.23)

r=R

where a € {1,8} denotes the color index. The electric and magnetic interaction energies
are then
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1 - 2
Emag = _592;/bagd3$( a(f)) ) (2.24)

E, = %gQZ/bagd% (E“(g?))Q. (2.25)

See Ref. [3] for more information. A short presentation of the calculation follows now.

Magnetic interaction

To calculate Eq. (2.24) Maxwell’s equations are used to determine the magnetic field of
the i-th quark:

— -

Vx B = jf, (2.26)
VB! = 0, (2.27)

inside the bag. The vector current is j;q = 1 7A\%);, where the Gell-Mann matrices A% are
generators for the SU(3) symmetry group. From these equations, the magnetic interaction
energy for a hadron in the ground state becomes

Emag = QCMS)\Z <5:25:]> 'LL( RS

i>j

with A = 2 for mesons and A = 1 for baryons. The magnetic moment of one quark is

! R AREgy,;+2miR—3
A _ 3. 1 T N (o _ kin,i 7
u(mi, B) /d rarx (% (x)a%(x)) 6 2REpin,i(REyin,i — 1) +miR’

Where Ej;p ; is the kinetic energy of quark . The function I in Eq. (2.28) is

R dr
iy, B) =142 [ St )t ).
0

The mean product of the spins (7;6;) is calculated in Appendix B.

Electric interaction

The effect of the electric interaction energy is comparably small. For example for the
mesons whose masses will be calculated, it does not vanish only for the K and K*, where
E. ~ 4MeV. Nevertheless, it is included in the total hadron mass. Eq. (2.25) integrates
as:

Eelz—QO‘TS'/ORer<M>2. (2.29)

Here p;(r) is the integral over the charge density of the i-th quark to a radius r: p;(r) =
for dr/47r7“/2¢3 (r")ab;(r").

11



2.2.4 Calculating the resulting mass

Now all the above calculations, Eqgs. (2.20), (2.21), (2.28) and (2.29) are summarized
together with the volume term E,,; =V - B as the mass of the hadron:

2,3

7 47
M(r) = Z Elini(r) + Eo(r) + Epag(r) + Ee (1) + ?733_
i=1

Fig. 2.3 shows the M (r) dependency for the ¥* baryon. As the plot shows, the mass has
one well-behaved minimum. This minimum is M (R) with

oM

=1 Lo

or |,_p

This minimum is generally found numerically, and used as the resulting mass. Only in the
case where all constituent quarks are massless an analytic expression is possible.

1450 T T T T T T T

1400

1350

1300

M/MeV

1250

1200

1150

1100 1 1 1 1 1 1 1

R*GeV

Figure 2.3: Mass over radius for the . The minimum is at R ~ 4.9 GeV~! and the mass
becomes M (R) ~ 1140 MeV.

Massless quarks

The case becomes especially easy for massless quarks. Here, the boundary condition in

Eq. (2.17) becomes independent of the quark energy. The first root now simply is pR =

2.04, and the kinetic energy becomes Fy;, = %. The magnetic interaction energy is

Md:d;)as-0.053
R

calculated as Ey,qy = and the electric interaction vanishes. In this case the

minimization is easily done, and the mass becomes

A dr 4
M=%+ RB=_AY*(4rB)/* 2.30
£+ TR = LAY (4mB) (2.30)
where A = n-2.04+ X\ EZ;]- (065) ag-0.053+ Zy, with number of quarks n. A is a constant

for each hadron.

2.3 Fitting the parameters

To fit B, Zy and «ag the N, A and w hadrons are used. The quark masses are set to
zero (m, = mg = 0). This yields B4 = 146.2 MeV, Zy = —1.86 and ag = 2.19. These

12



results are the same as in Ref. [3]. Then, the strange quark mass is fitted against the Q~,
which yields ms; = 277.7 MeV. Similarly one would find the mass of the charm quark as
m. = 1546.6 MeV if fitted against the J/i. But because of their high masses, which are
unimportant in the following thermodynamics, charmed hadrons won’t be discussed here.

One comment is in order here: The coupling constant ag is to large to justify a per-
turbative approach as it was done to calculate the interaction energies. Nevertheless, the
results are quite good, and this problem is not investigated further.

2.4 The hadronic mass spectrum

2.4.1 Results for light hadrons

The resulting masses for hadrons consisting of u,d and s quarks are shown in Table 2.1,
using the parameters of section 2.3. While most of the results are pretty good for such a
naive model as the bag model, it is noticeable that the pion mass is two times to large.

Particle Meg;p Mbag Ekzn Emag Eel E() Evol R
N 938 | 938™) [ 1234 | -156 | 0 |-374 | 235 | 4.968
A 1116 | 1100 | 1405 | -158 | 1.35 | -377 | 228 | 4.924
»t 1189 | 1140 | 1405 | -118 | 1.35 | -377 | 229 | 4.926
=0 1321 | 1291 | 1598 | -138 | 9.22 | -382 | 221 | 4.867
A 1236 | 1236 | 1125 | 143 0 |-341 | 309 | 5.446
o* 1385 | 1381 | 1297 | 124 | 1.35 | -344 | 302 | 5.406
=* 1533 | 1534 | 1470 | 108 | 9.82 | -347 | 294 | 5.354

O 1672 | 1672 | 1640 | 93 0 |-350 | 288 | 5.318
T 139 273 1241 472 | 0 [-564 | 68 | 3.293
w/p 783 | 783() | 873 | 111 0 |-397 | 196 | 4.677
K 495 488 | 1425 | -424 | 3.37 | -579 | 63 | 3.209

K* 892 927 1043 | 92.1 | 4.45 | -402 | 189 | 4.623
0] 1019 1065 | 1211 | 77.3 0 |-406 | 183 | 4.575

Table 2.1: Spectrum of hadrons compared to experimental values taken from Ref. [7].
Masses/Energies are given in MeV, the radius in 1/GeV. The masses marked
with a ) are used for the fit.

2.4.2 Higher radial excitations

Until now only the smallest root of Eq. (2.17) has been used to determine the momentum of
a quark. But the equation has infinite roots (becoming m/2-periodic for large arguments),
what happens if those are used? These radial excited baryons share the same quantum
numbers as the ground state. For example the nucleon N(1440) shares its quantum num-
bers with the ground state N(939). This hadron may be identified with a bag containing
a radial excited quark. The first nucleon excitations are listed in Table 2.2. The known
experimental values would be 1440 MeV, 1710 MeV and 2100 MeV, see Ref. [7|. As this
example shows, the results from the bag model are to narrow in comparison to the exper-
imental values. In Fig. 2.4 the mass density resulting of radial excitations is shown and
compared to the mass density resulting from experimental data. In the figure all hadrons
(including their degeneracy factors) in a given range are summarized. The comparison to
the experimental values shows the same effect as in Table 2.2, the bag model leads to a

13



number of hadrons that is too large. The cubic fit shown in Fig. 2.4 is explained in the
following section.

ny | n2 | N3 Mbag
2 1 1 1351
2 2 1 1601
3 1 1 | 1705
2 2 2 | 1890
3 2 1 1918

Table 2.2: Radial excitations of the nucleon. n; denotes the number of root in the boundary
condition.

300

T
Mass spectrum ——
Mass spectrum PDG -------

250 F 1Y/ {1 S _
200

150

Number of hadrons

50

1500 2000

Figure 2.4: Histogram showing the mass density with a bin size of 100 MeV. The cubic
fit shows a good agreement. As a comparison, the mass density taken from
Ref. [7] with baryons up to 2000 MeV and mesons up to 1800 MeV is shown.

2.4.3 Asymptotic mass spectrum and Hagedorn temperature

In Ref. |[6] R. Hagedorn introduced a maximum temperature above which the partition
function of a hadronic gas would diverge. This happens if the density of hadrons grows
exponentially. Taking the partition function for a high number of particles as

Z = zk:/dmp(m) exp [—%]

the divergence happens if the asymptotic density of particles p(m) increases faster than

exp (m/Tr). Then, the integrand for the ground state (H = m) becomes proportional to
exp [m (ﬁ — %)} . For T > Ty, the integral over m diverges. Therefore, the Hagedorn
temperature Ty is the upper boundary for the temperature of a hadronic system. This
means that all thermodynamical properties, which are derivatives of the partition function,

also diverge.

14



The asymptotic mass spectrum for radial excited bags

With radial excitations as in section 2.4.2 the number of hadrons does not grow exponen-
tially, which is now proven. In the following, hadrons consisting of massless quarks are
investigated for simplicity. As stated above, for high arguments the boundary condiction
becomes 7/2-periodic. So the kinetic energy becomes Ej;, =~ 5, where n is the num-
ber of the root. The factor A in Eq. (2.30) now becomes approximately proportional to
N = nj 4+ ng + ng for baryons and N = n; + ny for mesons:

m o N3/4,
The number of masses in an interval [m, m+Am] is therefore proportional to (m-+Am)*3 —
m*/3. This number is degenerated: N can be composed in (]Z) ways, where k is the number
of quarks in the bag. For mesons the degeneracy is N and for baryons it is N(N —1) ~ N2.
With these the density function becomes

plm) o Tt A = mP (})

Am k

Now the limes Am — 0 is built and N is expressed through m. The asymptotical density
function for the MIT Bag Model becomes

m?°/2,  for mesons
p(m) o

m?, for baryons

In Fig. 2.4 an m? fit shows a good agreement with the numerical results. The case is
not different if one takes into account higher angular momenta (ignoring that the bags
would not be spherical anymore), because the roots to the boundary condition would
approximately grow linearly, giving a similar situation as with radial excitations. Therefore,
the MIT Bag Model does not lead to a Hagedorn temperature.

Bags with growing numbers of quark-antiquark pairs

A way to get to a Hagedorn temperature is described for example in Ref. [1]. A high
number of quark-antiquark pairs is introduced inside the bag. These pairs are treated as
a non-interacting ideal gas. On one hand, in an ideal gas the pressure is related to the
temperature through a Stefan-Boltzmann like law (see section 3.1):

— ﬁT{
90

where g is the degeneracy factor, 8 -2 + %3 -2-2-2 =37 for a (massless) quark-antiquark-
gluon gas. On the other hand, the pressure of the bag is identified with the bag constant.
Therefore, the temperature has to be a constant, too:

1/4
Ty = (@B) . (2.31)

With a bag constant of B/4 = 146 MeV, one gets Ty ~ 103 MeV. This value is of course
to low for a Hagedorn temperature, as for example the critical temperature for the phase
transition to a quark-gluon plasma is expected to be around 180 MeV.

15



3 Thermodynamics

In this chapter the characteristics of a hadronic system as a thermodynamic gas are inves-
tigated. The goal is to describe the phase transition from a hadronic gas to a quark-gluon
plasma (QGP). The QGP is described here as an ideal gas, while two models are used for
the hadronic phase:

e An ideal gas of point-like particles in section 3.1.

e The compressible bag model in section 3.2.

3.1 Hadronic phase and quark-gluon plasma as an ideal
quantum gas

A first approximations to a system of hadrons and the QGP is an ideal (Bose/Fermi)
quantum gas. The grand canonical potential for this system is (see for example Ref. [8]):
d3k
InZ =ngV 8 In{1+nexp (—B(E —pn))}-

Here, n = +1/ — 1 for bosons/fermions, E = vk? + m? and ¢ is the degeneracy factor.
From this, all other thermodynamical properties can be derived.

3.1.1 Pressure and energy density

The pressure p and the energy density e of an ideal gas are calculated as follows:

10
A3k
= 5 | G e (-8 - )} (3.1)
(£) _ 10
€ = 7 = V 8/8 lIlZ
A3k E—u
B g/ (2m)® P E=1) -’ 32

In the case of massless constituents the integrals can be evaluated. For a vanishing chemical
potential pressure and energy density become a form like the Stefan-Boltzmann law. For
bosons:

w274
PB = 990 , € =3pB, (3.3)

16



and for fermions:

7 gmT4
8 90 ’
To compare the case of an hadronic gas with the massless case, p/T*, ¢/T* and (e — 3p) /T*
are plotted, see Figs. 3.5, 3.6 and 3.7. In Fig. 3.1 (e — 3p) /T* is compared to lattice QCD
data, which were extracted from Ref. [9] by F. Karsch. Just as in Ref. [9], the ideal
quantum gas is in good agreement with the lattice data for the hadronic phase which ends
at To ~ 170 MeV in the Karsch data. But the gradient of the ideal gas is to low compared
to the lattice data. The situation is even worse when the experimental particle masses are
used. Therefore, the problem is the used model not the used hadron data. The particles
used to create the figures in this chapter are:

pPrF = €r = 3pF. (3.4)

e Gluons, up-, down- and strange- quarks for the QGP. The quark masses are the same
as they were used to calculate the hadronic mass spectrum, see section 2.3.

e The hadronic phase consists of all the particles in section 2.4.1 and all their radial
excitations up to 2000 MeV for baryons and 1800 MeV for mesons. These upper
limits were used in the Karsch data, too.

10

Ideal gas '
Lattice QCD +---+--+

(e-3p)IT*
I
L

2 1 1 1 1 1
0 50 100 150 200 250 300
T/MeV

Figure 3.1: Comparison of (¢ — 3p)/T* for an ideal gas and lattice QCD data extracted
from Ref. [9].

3.1.2 Critical temperature and phase diagram

The phase transition from a hadron gas to a quark-gluon plasma is characterized by the
point where the pressure of the two phases become identical: ppadron = Dqgp- Here, pggp =
unarks Di + Pgluon — B is taken as an ideal gas. For the particle setup as above, the critical
temperature becomes T ~ 102 MeV for u = 0, where B is the value from section 2.3. The
critical baryo-chemical potential is about pc =~ 775 MeV for T = 0. Fig. 3.3 shows the
resulting phase diagram. The critical temperature can also be approximated by using that
the pressure of the hadronic gas is much less than the bag constant at T and by treating
the strange quark as massless. This gives

1/4
To ~ (?B) , (3.5)
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Figure 3.2: Comparison of the energy density for an ideal gas and lattice QCD data ex-
tracted from Ref. [9].

which is coincidental the same formula as Eq. (2.31). With a degeneracy factor of 8 -2 +
gS -3+ 2-2 =475, including strange quarks, the critical temperature is approximated as
97 MeV. This is only 5 MeV below the value where the hadronic phase was included. For
temperatures much larger than the particle masses, the pressure of the hadron gas becomes
Stefan-Boltzmann-like, as in Egs. (3.3) and (3.4). With a large number of hadrons the
degeneracy factor also becomes large and exceeds the degeneracy factor of the quark-gluon
plasma. So, the pressures for large temperatures are compared as phadron/T4 X Ghadron >
pqu/T4 X gggp- This means that the pressure of the hadron gas will cross the pressure of
the QGP again. This leads to a second phase transition to a second hadronic phase, which
is shown in Fig. 3.3.

300 T T T T T

250 Hadronic

200

150

T/MeV

100

50

Hadronic

0 1 1
0 200 400 600 800 1000 1200
ug/MeV

Figure 3.3: Phase diagram for an ideal quantum gas with an extra hadronic phase.
As shown above, two problems arise in the model of an ideal gas:

1. Depending on the number of hadrons in the gas the hadronic pressure may exceed the
QGP pressure again. This unphysical behavior is corrected in the compressible bag
model described in section 3.2. Fig. 3.5, showing the pressure at pu = 0, illustrates
what happens.
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2. The critical temperature is expected to be around 170 — 190 MeV, so the result above
is much to low. This can be corrected by using a larger bag constant.

To solve the second problem, the bag constant has to be altered. To be consistent with
chapter 2, the mass spectrum is altered, too: Using the N and A to fit Zy and ag and
the 7 to fit the strange mass, but keeping B as a free variable, gives rise to some slightly
better results. While the critical temperature rises with the bag constant, the pion mass
decreases. At B4 = 181 MeV m,, hits zero and T becomes 131 MeV. With a larger bag
constant the pion mass becomes negative, so 131 MeV is the largest critical temperature
that is possible within this model, as long as the masses of the N, A and 2~ are taken as
fixed values.

3.2 Compressible bag model

A modified model for the thermodynamical properties of a hadronic gas has been intro-
duced in Ref. [10]. In the compressible bag model a Van-der-Waals like way of describing
the gas is chosen, where the volume of the bags is subtracted from the volume of the sys-
tem. Note that this can be considered a more realistic approach to a gas of MIT bags as
they have a well-defined volume. The volume becomes

n
V=V -b) Nu, (3.6)
=1

where b is the exclusion efficiency parameter, N; the number of particles of type i and v;
the volume of one such particle. The exclusion efficiency parameter will be chosen to scale
the nucleon’s bag radius to the proton charge radius. Now the free energy of the total
system is written as:

n
F(N, V', T) =) Fp(N;, V', T, Mi(v;)).
i=1
Where Fy(N,V,T,M) = —ps(p,T, M) -V + pi- N is the free energy as in the free quantum
gas discussed above. With the new volume in Eq. (3.6), the chemical potential u has to
be changed, and the free energy is Fy(N,V',T,M) = —ps(p/, T, M) - V' + 1/ - N. Now
the requirement of the bag model, that the mass has to be minimized with respect to the
volume, is replaced by the minimization of F with respect to v;:

oF OF; OM;\
N (bp+ NS L, 3.7
81/2' < p+ ’ 8MZ 8’UZ‘ > 0 ( )

The term Ni_l% is equal to the mean inverse Lorentz factor <’y‘1>:

Jdp A3k M; 1
N 19F _ —ant; _ S oy B sy _ /M — () (3.8)
LM, 9pr | 3k 1 “\g/ "\ 7/ :
o’ @n)® exp((B— )/ T)

The nonrelativistic case <’y*1> ~ 1 significantly decreases computation time, it will later
be discussed where it applies. With Eq. (3.8) Eq. (3.7) becomes:

e i (3.9)
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Figure 3.4: The function A(r) for the Z° together with a linear fit.

This equation is equivalent to the bag model in vacuum for either p = 0 or b = 0, as one
should expect. The extra pressure from the gas leads to a compression of the bags, which
again leads to an increased mass of the bags. Recall the bag equation:

Aq(v;)
1/3
Yy

MZ(UZ) = + Bu;, (310)
written here as a function of the volume v; = %”R?. A;(v;) is independent of the volume for
massless quarks only, see section 2.2.4. From comparison with numerical results, a linear
approximation A(v) = Ag+d-v'/3 is very good. Fig. 3.4 shows an exemplary illustration of
a linear fit to the function A(r). Ap will be eliminated by using the bag equation in vacuum
and d will be computed with the techniques developed in chapter 2 for each hadron. The
mass of the bag in vacuum is defined as m; with %—TZZ = 0, while the mass of the bag inside
the gas is M;. Using Egs. (3.9) and (3.10), the problem is almost solved. It follows

e — d ~3/4
w(p.my) = " (1 . <lfy”_1>) | (3.11)
—3/4
Mi(p7 mz) = (mz - dz) <1 + %) (1 + %) + d;. (3.12)

To fit the exclusion efficiency parameter b to the proton charge radius Rp, the volume
vn,0 = 45 of the bag for the proton in vacuum is taken. b becomes

3R}, _ 167R%B

b=
UN,0 3mpy

)

where my is the nucleon mass. With this fit the only parameter of the compressible bag
model is fixed.

The chemical potential y is not identical to p’ in the free energy. The dependency is
given by

_OF  OF
~ON;  ON;
with pu; = a;up and the baryo-chemical potential pp.

i + buip = i + buip, (3.13)
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3.2.1 Pressure and energy density

The total pressure p follows from Egs. (3.1), (3.11), (3.12) and (3.13):

Y

n
i=1

The right side of Eq. (3.14) depends on p itself, therefore a numerical algorithm has to be

used to solve this equation additionally to the numerical integration.
The energy density is given by

8(ﬂﬁ> n n 3 r_
_ii_ o o 9. d°k K £
€=y B Z [# Pi (1 b;pﬂh) g/ (2m)3 eB(E-1) 4 g

i=1

i

with the particle density

oy / &k 1
Pi="0u ~ 7] @rpeBE—) £y

The pressure and the energy density are shown in Figs. 3.5, 3.6 and 3.7, where they are
compared to the ideal gas. For low temperatures (< 130 MeV) the compressible bag model
resembles the ideal gas. This also includes that the critical temperature (which is below
130 MeV here) will not change significantly. But as the plot of the pressure shows, the
second phase transition disappears. Pressure and energy density in the compressible bag
model compare poorly to the lattice data, the ideal gas gives a better description of these
values. This is in contrast to the phase diagram which is more realistic in the compressible

bag model.
10 T T T T - T
Compressible bag model
9} Ideal gas -------, /'
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8k // -
7t .
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Vt /

= ST 22NN e
4} ” 4
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2k -
1 = - -
O 1 1

0 50 100 150 200 250 300

T/MeV

Figure 3.5: The pressure for the hadronic phase in both models and for the QGP phase.
The figure nicely shows how the lowered pressure in the compressible bag model
circumvents a second phase transition.

21



10 T T T T T T 10 T T L T/ T
Compressible bag model Compressible bag model
8 Ideal gas ------- 8 F Ideaf gas ------- E
,’/ 6 | / A
/ . < /
< 61 / ; 4r A T
£ g
w 4 | /, - \JL 2 - /,/,/ -
/ T T
0
, L 1 \—
2F
O 1 1 1 1 _4 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T/MeV T/MeV
Figure 3.6: Energy density for compress- Figure 3.7: Comparison of energy
ible bags and an ideal gas. density and pressure,

(e — 3p)/T*, for com-
pressible bags and an ideal
gas.

3.2.2 Phase diagram

The quark-gluon plasma is again taken as an ideal quantum gas, just as in section 3.1.
The masses for the hadronic phase are also the same. The compressible bag model gives
the expected result, with no additional hadronic phase, as shown in Fig. 3.8. Here, the
approximation <7_1> ~ 1 mentioned above is made, leading to a negligible error but
decreasing computation time. For example, the pion pressure at 165 MeV is only 0.3 % to
small in the nonrelativistic case.

The phase diagram in Fig. 3.8 still has two problems:

1. T still is too low for the bag constant used here.

2. The hadronic phase could well be approximated with pp.q = 0 and would still lead
to almost the same phase diagram. This is caused by the low hadronic pressure at
Tc, as Fig. 3.5 shows.
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20
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Figure 3.8: Phase diagram for the compressible bag model.

22



4 Summary

In the second chapter the MIT Bag Model has been investigated. On the level of the
bag Lagrangian it has been found that the chiral symmetry is explicitly broken on the
bag’s surface. Nevertheless, the masses of nine hadrons have been predicted on basis of
the masses of four hadrons as fit parameters. These predictions are good, considering the
simplicity of the model. Only the mass of the pion is significantly to large, as it is twice the
pion mass found experimentally. Hadrons with an excited angular momentum can not be
treated in a theory of spherical bags. Radial excitations are possible, but give results which
are too narrow. While the spectrum grows strongly it does not grow exponentially in the
asymptotic case. Therefore, the MIT Bag Model does not predict a Hagedorn temperature
without being modified.

In the third chapter the thermodynamics of a gas of bags has been investigated by using
two models. These have been used to calculate the pressure, the energy density and a
phase diagram to a quark-gluon plasma. The first model treats treats the gas of bags as
a gas of ideal point-like particles. It gives a considerably good agreement with data from
lattice QCD for the pressure and the energy density of the hadronic phase, while the phase
diagram has two flaws: The critical temperature is too low a value and an extra hadronic
phase appears for large temperatures and for large chemical potentials. In the second
model, the bag volume has been incorporated in form of the compressible bag model. This
leads to a more reasonably phase diagram with only one hadronic phase, and is in this
regard a better model of a gas of bags. The downsides of the compressible bag model are
that the problem of the low critical temperature has not been solved, and that pressure
and energy density do not agree with the lattice data.
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A Numerical calculations

All numerical calculations here were done with C++ programs using the GNU Scientific
Library (GSL) and the GNU C Compiler (GCC). The used program versions were GCC
3.3.5 and GSL 1.6. The GSL has been used mainly for numerical integration on infinite
intervals, a root finding algorithm and the spherical Bessel functions. For numerical inte-
gration the function gsl_integration_gagiu with a relative error of 107> has been used.
For root finding it was Brent’s method with a relative error of 107* and a maximum of
100 iterations.
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B Spin-Spin coupling

For the magnetic interaction energy the mean product of the spins of two quarks, (¢ - 72),
has to be calculated in dependency of the total angular momentum J. The angular momen-
tums { of the quarks are zero in the MIT Bag Model. For a meson this is easy by squaring
J =51+ 3y 10y =4- (%J(J +1)— %) For a baryon, the wave functions coupling to a
total Spin J have to be found explicitly. The operator ;- can be represented by T; ; — 1,
where T; ; switches the z-component of the quarks ¢ and j. For the wave functions first
quarks two and three are coupled to a total spin Jog € {1,0}. Then, quark one is coupled
against spin Jogz to a total spin J € {%, %} Note that the result is independent of J,. The
results are given in Table B.1.

T=3/2 T=1/2

Jog =1 | Jo3=1| Jog=0
G | 1 T 3
a1 9 0
G- | 1 9 0

Table B.1: Spin products for a baryon.
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