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Abstract

In this bachelor’s thesis we analyze strongly interacting matter under certain conditions. These
are vanishing baryon chemical potential, finite isospin chemical potential and finite tempera-
ture. Further, we take only two flavors with identical bare quark mass into account. For our
calculations we use the Nambu–Jona-Lasinio model in mean field approximation and consider
sigma and pion condensation. Through minimization of the grand potential we obtain pressure,
isospin density and energy density. We also compare our results to the previous works [3] and
[1], where different methods have been used.
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1 Introduction

We want to analyze the properties of strongly interacting matter, which is described by quantum
chromodynamics (QCD), a part of the standard model. This interaction couples to color charged
particles and is mediated by gluons. Both quarks and gluons themselves are color charged. This
leads to the complexity emerging from the strong interaction. For example only color neutral
particles are observed, a fact called confinement. Although quantum chromodynamics is be-
lieved to describe the strong interaction correctly, it is difficult to directly calculate predictions
from it. Perturbation theory can only be applied at large energies due to the large coupling con-
stant at low energies. Furthermore the symmetry group it is based on, SU(3), is non-abelian.
With increasing computational power, the theory can be evaluated numerically on a discretized
spacetime, a method called lattice QCD. This method is however only applicable if the baryon
chemical potential vanishes.
To evaluate a system containing a large number of degrees of freedom, statistical physics is ap-
plied. Its results can be visualized in a phase diagram. In figure 1.1 a qualitative picture of the
phase diagram of QCD is drawn. It shows the different phases of strongly interacting matter for
two flavors with vanishing bare quark mass depending on baryon chemical potential and tem-
perature. At low temperature and baryon chemical potential the quarks and gluons are confined
in hadrons. There is a first order phase transition, that means non-continuous transition, from
this phase to the deconfined phase at low temperatures and large enough baryon chemical po-
tential. This phase is called the quark-gluon plasma (QGP). In the case shown in the figure there
is also a second order phase transition, that means non-differentiable transition, at small baryon
chemical potential and large enough temperatures. The point where these two phase transitions
meet is called tricritical point. If we instead consider two flavors with finite bare quark mass, as
we do in this thesis, the first order phase transition ends in a critical endpoint and the second
order phase transition is replaced by a crossover. As mentioned above it is so far not possible to
derive these properties from QCD directly. The phases and their boundaries, especially the first
order phase transition and its endpoint, are results of simplifying models and hence speculative.
The crossover can be confirmed by lattice QCD at zero baryon chemical potential.
To get predictions on strongly interacting matter at low energies, despite the difficulties with
quantum chromodynamics, simplifying models can be used. Their predictions can then be com-
pared for specific regions and parameters. If predictions of different models match it increases
their significance. Especially lattice QCD results can validate other models in certain regions.
Conversely these models my be used to make predictions about regions not accessible to lattice
QCD. It turns out, that lattice QCD can be applied to systems with vanishing baryon chemi-
cal potential but finite isospin chemical potential. The chemical potential describes the change
in energy for varying particle number. Therefore the isospin chemical potential describes the
change in energy that is caused by the difference between the number of up quarks and down
quarks. This particular case is only of theoretical interest, since such conditions are not found
in nature. Inside of neutron stars the isospin chemical potential and baryon chemical potential
are both finite.
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Figure 1.1: QCD phase diagram taken from [6]

As a simplifying model to work with we choose the Nambu–Jona-Lasinio (NJL) model [5]. It
was first introduced to describe nucleons and is now used as an approximation for quantum
chromodynamics. In this model gluons are replaced by a four point quark interaction. This
makes the model simpler and predictions can be made about regions not accessible with QCD.
On the downside, it does not describe correctly the physics at small scales and high energies.
Within the NJL model it is possible to calculate predictions for finite baryon chemical potential
as well as for finite isospin chemical potential. This way we can compare the results at finite
isospin chemical potential and test the validity of the NJL model. One example for a compara-
ble result is the so called pion condensation. It is predicted to emerge at large enough isospin
chemical potential by lattice QCD and can also be described by the NJL model. These lattice
calculations have been performed by [1] and others. Another example is the analysis of ther-
modynamic properties of strongly interacting matter. In particular we will calculate pressure,
isospin density and energy density. We will compare our zero temperature results to [3], where
analytic expressions have been derived via an effective theory, chiral perturbation theory (χPT).
In short it is our goal to compare the predictions made by the Nambu–Jona-Lasinio model with
those made by lattice QCD and chiral perturbation theory. We focus on the case that the baryon
chemical potential is zero but there is a difference in the chemical potential for up and down
quarks, because only here lattice QCD is applicable.
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2 Calculations

2.1 Mean field approximation

The concrete Lagrangian we use, given by the Nambu–Jona-Lasinio model, is

L= ψ̄(i /∂ −m)ψ+ G((ψ̄ψ)2 + (ψ̄iγ5~τψ)
2) .

Further, we assume only two quark flavors, up u and down d, such that ψ = (u, d)T and
m= diag(mu, md). ~τ are the Pauli matrices in isospin space. Then the Lagrangian, expressed as
a function of u and d, is

L= ū(i /∂ −mu)u+ d̄(i /∂ −md)d + G(ūu+ d̄d)2

+ G(ūiγ5u− d̄ iγ5d)2 + 4G(ūiγ5d)(d̄ iγ5u)) .

Now we conduct a mean field approximation, that means we expand the Lagrangian linearly
around the expectation values of ψ̄ψ and ψ̄iγ5~τψ. We substitute

ψ̄ψ= 〈ψ̄ψ〉+δ(ψ̄ψ) ,

ψ̄iγ5~τψ= 〈ψ̄iγ5~τψ〉+δ(ψ̄iγ5~τψ) .

These expressions only appear squared and the resulting δ(ψ̄ψ)2 and δ(ψ̄iγ5~τψ)2 are omitted.
The remaining δ terms can be written in terms of the original expression. This leads to

(ψ̄ψ)2 = 2〈ψ̄ψ〉(ψ̄ψ)− 〈ψ̄ψ〉2 ,

(ψ̄iγ5~τψ)
2 = 2〈ψ̄iγ5~τψ〉(ψ̄iγ5~τψ)− 〈ψ̄iγ5~τψ〉2 .

〈ψ̄ψ〉 is interpreted as the sigma condensate σ and 〈ψ̄iγ5~τψ〉 as the pion condensate
~π= (π1,π2,π3). This way L can be written as

L= ψ̄(i /∂ −m)ψ+ ψ̄(2Gσ)ψ+ ψ̄(2Giγ5~τ · ~π)ψ− G(σ2 + ~π2) .

Now the interaction parts are of the form ψ̄ψ times a constant and thus can be absorbed in an
effective mass term M. With

M = m− 2G(σ+ iγ5~τ · ~π)

we get a Lagrangian that resembles the Lagrangian of free fermions plus a constant term

L= ψ̄(i /∂ −M)ψ− G(σ2 + ~π2) .

Note that M is not diagonal and the two flavors do not decouple. The Lagrangian is therefore
more complex than the one for free fermions.
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2.2 Chemical potential

We are only interested in the case that the baryon chemical potential vanishes

µB =
3
2
(µu +µd) = 0 .

µu and µd are the chemical potential for the up and down quarks respectively. The isospin
chemical potential is defined as

µI = 2∆µ= (µu −µd) .

Thus µu =∆µ and µd = −∆µ.

2.3 Grand potential

The partition function Z is defined as

Z = Tr

�

exp

�

−β
∫

d3x(H−ψ†µψ)

��

with the Hamiltonian density H and µ = diag(µu,µd). By a long calculation [4] which we do
not carry out here, it can be shown that

Z =exp(−βV G(σ2 + ~π2))

×exp

�

2ncV

∫

d3p
(2π)3

(βE+ + βE− + 2 ln (1+ exp(−βE+)) + 2 ln (1+ exp(−βE−))

�

,

where nc is the color degeneracy and

E± =

s

�
Æ

~p2 + (2Gσ−m)2 + (2Gπ3)2 ±∆µ
�2
+ (2Gπ1)2 + (2Gπ2)2 .

From this the grand potential Ω can be obtained by

Ω= −
1
βV

logZ .

We get the grand potential describing the system in mean field approximation

Ω= G(σ2 + ~π2)− 2nc

∫

d3p
(2π)3

(E+ + E−)

− 2nc

∫

d3p
(2π)3

2
β
(ln (1+ exp(−βE+)) + ln (1+ exp(−βE−))) .

Its first integral is divergent. We solve this problem by applying a momentum cutoff. Our model
is not renormalizable and the cutoff is chosen to reproduce observables of the pion, as described
in section 3.1.
With the grand potential we can calculate the sigma and pion condensate at given isospin chem-
ical potential ∆µ and temperature T . The ground state is at the global minimum of the grand
potential which must therefore be minimized. Calculating the derivative and setting it zero
yields the gap equation, which must be solved.
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2.4 Gap equation

The solution to the gap equation is not unique and the values of the grand potential must be
compared for all solutions, to find the global minimum. The grand potential only depends on
σ, π3 =: π0 and

q

π2
1 +π

2
2 =: π±. Thus the gap equation is a system of three equations. These

equations are

0
!
=
∂Ω

∂ σ
= 2Gσ−

nc

π2

∫ Λ

0

dpp2
�

∂ E+
∂ σ

+
∂ E−
∂ σ

�

+
nc

π2

∫ ∞

0

dpp2
�

∂ E+
∂ σ

2
1+ exp(−βE+)

+
∂ E−
∂ σ

2
1+ exp(−βE−)

�

,

(2.1)

0
!
=
∂Ω

∂ π0
= 2Gπ0 −

nc

π2

∫ Λ

0

dpp2
�

∂ E+
∂ π0

+
∂ E−
∂ π0

�

+
nc

π2

∫ ∞

0

dpp2
�

∂ E+
∂ π0

2
1+ exp(−βE+)

+
∂ E−
∂ π0

2
1+ exp(−βE−)

�

,

(2.2)

0
!
=
∂Ω

∂ π±
= 2Gπ± −

nc

π2

∫ Λ

0

dpp2
�

∂ E+
∂ π±

+
∂ E−
∂ π±

�

+
nc

π2

∫ ∞

0

dpp2
�

∂ E+
∂ π±

2
1+ exp(−βE+)

+
∂ E−
∂ π±

2
1+ exp(−βE−)

�

.

(2.3)

The derivatives of E± are

∂ E±
∂ σ

=2G
2Gσ−m

E±

�

1±
∆µ

p

~p2 + (2Gσ−m)2 + (2Gπ0)2

�

,

∂ E±
∂ π0

=2G
2Gπ0

E±

�

1±
∆µ

p

~p2 + (2Gσ−m)2 + (2Gπ0)2

�

,

∂ E±
∂ π±

=2G
2Gπ±

E±
.
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We observe that the integral parts of equation 2.1 and equation 2.2 only differ by factors of
2Gσ − m and 2Gπ0. Adding and subtracting m from equation 2.1 allows us to rewrite both
equations as

0
!
=
∂Ω

∂ σ
= m+ (2Gσ−m) f , (2.4)

0
!
=
∂Ω

∂ π0
= 2Gπ0 f , (2.5)

where

f = 1− 2G
nc

π2

∫ Λ

0

dpp2
�

1+ g
E+

+
1− g

E−

�

+ 2G
nc

π2

∫ ∞

0

dpp2
�

1+ g
E+

2
1+ exp(−βE+)

+
1− g

E−

2
1+ exp(−βE−)

�

and

g =
∆µ

p

~p2 + (2Gσ−m)2 + (2Gπ0)2
.

Now we can use that m > 0 and conclude from equation 2.4 that f 6= 0. Then it follows from
equation 2.5 that π0 = 0. Since π0 is always zero, if the gap equation is fulfilled, the system of
equations can be reduced to two equations of two variables

0
!
=
∂Ω

∂ σ
= 2Gσ−

nc

π2

∫ Λ

0

dpp2

�

∂ Ẽ+
∂ σ

+
∂ Ẽ−
∂ σ

�

+
nc

π2

∫ ∞

0

dpp2

�

∂ Ẽ+
∂ σ

2

1+ exp(−β Ẽ+)
+
∂ Ẽ−
∂ σ

2

1+ exp(−β Ẽ−)

�

,

0
!
=
∂Ω

∂ π±
= 2Gπ± −

nc

π2

∫ Λ

0

dpp2

�

∂ Ẽ+
∂ π±

+
∂ Ẽ−
∂ π±

�

+
nc

π2

∫ ∞

0

dpp2

�

∂ Ẽ+
∂ π±

2

1+ exp(−β Ẽ+)
+
∂ Ẽ−
∂ π±

2

1+ exp(−β Ẽ−)

�

.

The new variables

Ẽ± =

s

�
Æ

~p2 + (2Gσ−m)2 ±∆µ
�2
+ (2Gπ±)2
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and their derivatives

∂ Ẽ±
∂ σ

=2G
2Gσ−m

Ẽ±

�

1±
∆µ

p

~p2 + (2Gσ−m)2

�

,

∂ Ẽ±
∂ π±

=2G
2Gπ±

Ẽ±

no longer depend on π0. We did not attempt to solve the gap equation analytically. All further
results are obtained by numerical methods. Specifically we used the fsolve and fmin routine
provided in SciPy for the Python programming language. Note, that the first routine is not
enough, because a solution to the gap equation can also be a maximum or saddle point of the
grand potential. We therefore visually analyzed the global behavior ofΩ and used the algorithms
with appropriate starting points.

2.5 Thermodynamic quantities

We can derive all thermodynamic quantities from the partition function and therefore from the
grand potential. Here we calculate the pressure, the isospin density and the energy density
using the following thermodynamic relations. To normalize the pressure and energy density in
vacuum to zero, we subtract Ω0, the grand potential at T = ∆µ = 0, from the grand potential
everywhere. Changing the grand potential by a global constant does not change physics.

p =− (Ω−Ω0)

nI =−
∂Ω

∂ µI

ε=− p−
∂Ω

∂ T
T −

∂Ω

∂ µI
µI

The grand potential is evaluated at its global minimum with respect to the condensates. Pres-
sure, isospin density and energy density therefore only depend on the temperature T and the
isospin chemical potential ∆µ. The resulting dependencies are presented in the next chapter.
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3 Results

3.1 Parameters

We set the same mass mu = md = m= 5.6MeV for up and down quarks. The momentum cutoff
is chosen as Λ = 587.9MeV. The coupling constant of our Lagrangian is set to G = 2.44/Λ2.
These three parameters have been taken from [2]. Together they produce a physical pion mass
mπ = 135MeV and pion decay constant fπ = 92.4 MeV. Furthermore the color degeneracy is
nc = 3, since there are three types of color charge.

3.2 Condensates

In figure 3.1 and figure 3.2 the pion condensate is shown, scaled with a factor of 2G. Pion
condensate from here on always means the condensate of π±, since for π0 no condensation
occurs. Figure 3.3 and figure 3.4 show the scaled sigma condensate respectively. At an isospin
chemical potential smaller than the mass of the pion, ∆µ < mπ/2, the pion condensate is zero.
This is expected, since the difference of µu and −µd is 2∆µ < mπ. The sigma condensate is
negative and constant at vanishing temperatures. Its value is slightly larger than −400MeV/2G.
We first look at the behavior at T = 0. Both, sigma and pion condensate, show a rapid increase
when the isospin chemical potential is increased to ∆µ > mπ/2. The sigma condensate goes
asymptotically to a value smaller than zero, since we chose a finite bare quark mass. The pion
condensate shows a similar growth and goes asymptotically to 400 MeV/2G.
At T > 0 the phase transition at small temperature remains the same for both condensates.
Around T = 100 MeV the phase transition for the pion condensate starts shifting towards larger
isospin chemical potential. The sigma condensate goes to its maximal value, which is negative,
as the temperature increases, at first slowly, than faster. Also the shift of the phase transition to
larger∆µ for increasing T appears as it did for the pion condensate. Unlike the pion condensate,
the sigma condensate at finite ∆µ drops for small T to smaller values before it starts growing
again at larger T . It does however always grow with ∆µ.
A special property of the sigma and pion condensate is highlighted in figure 3.5. Adding together
the squares of both condensates at low temperatures results in a nearly constant function of∆µ.
The square root of this quantity can be interpreted as the length of a vector in the σ-π±-plane.
When the isospin chemical potential changes this vector rotates, but does not change its length.
At higher temperatures this property is lost, since both condensates ultimately go to zero.
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Figure 3.1: Pion condensate against∆µ at different T
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Figure 3.2: Pion condensate against T at different∆µ
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Figure 3.3: Sigma condensate against∆µ at different T
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Figure 3.4: Sigma condensate against T at different∆µ
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Figure 3.5: Combination of sigma and pion condensate against∆µ at T = 0

3.3 Pressure

The pressure dependence on T and ∆µ can be seen in figure 3.6 and figure 3.7. Since the
pressure p is just −Ω, its value at a given point in the phase diagram is the negative of the
global minimum of the grand potential at this point. The pressure increases when the isospin
chemical potential or the temperature are increased. For this reason, p remains greater than
zero. The pressure grows faster with temperature than it does with isospin chemical potential.
At zero temperature the pressure only starts growing for ∆µ > mπ/2.
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Figure 3.6: Pressure against∆µ at different T
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Figure 3.7: Pressure against T at different∆µ
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3.4 Isospin density

At zero temperature the isospin density nI vanishes until ∆µ > mπ/2, analogous to the pion
condensate. Above this point the isospin density starts growing asymptotically linear with ∆µ.
For T > 0 and vanishing isospin chemical potential the isospin density is also zero. But now at
finite ∆µ there is always nI > 0. The finite temperature makes pion creation and hence a finite
isospin density possible, even at ∆µ < mπ/2. For temperatures larger than about 200MeV the
isospin density grows linearly with the isospin chemical potential. We show the isospin density
dependence on T and ∆µ in figure 3.8 and figure 3.9.
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Figure 3.8: Isospin density against∆µ at different T
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Figure 3.9: Isospin density against T at different∆µ

3.5 Energy density

The energy density is shown in figure 3.10 and figure 3.11. For vanishing temperature it is zero
up to an isospin chemical potential of ∆µ = mπ/2. From there it grows asymptotically linear
with∆µ. At low temperatures the behavior for∆µ > mπ/2 stays the same. For∆µ < mπ/2 and
finite temperature the energy density does not vanish, analogous to the isospin density. Unlike
the isospin density the energy density is not zero for finite∆µ. The growth of the energy density
with temperature is comparable to that of the pressure and begins likewise around 80MeV. At
T = 200 MeV there is still a small bump in figure 3.10. This is a remainder of the transition
from ∆µ < mπ/2 to ∆µ > mπ/2 that shifted towards larger ∆µ with increasing temperature.
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Figure 3.10: Energy density against∆µ at different T
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Figure 3.11: Energy density against T at different∆µ
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4 Comparison with literature results

4.1 Vanishing temperature

In this section we compare our results with those in [3]. There chiral perturbation theory is used
at zero temperature. The equation of state they obtained at leading order is a relation between
energy and pressure,

εLO = 2
q

p(2 f 2
πm2

π + p)− p ,

depending on the pion mass mπ and the pion decay constant fπ. We use the same values for
mπ = 135 MeV and fπ = 92.4 MeV as in section 3.1, to compare this relation with our results.
In [3] different values for mπ and fπ have been used. This way we obtain the pressure energy
dependence shown in figure 4.1. Our own results are also plotted there. Different points on
these curves correspond to different isospin chemical potential 0MeV ≤ ∆µ ≤ 350 MeV, all at
T = 0. Up to an energy density of about ε = 70 MeVfm−3 both results agree. From there they
start to diverge. This might be due to the use of different models. It may also point to the
missing orders in the chiral perturbation approach or the use of the mean field approximation.
Another relation given in [3] is the energy density dependence on ∆µ at T = 0 in leading order
chiral perturbation theory.

εLO = 2 f 2
π∆µ

2

�

1+
m2
π

2∆µ2
−

3m4
π

16∆µ4

�

,

where the same values for mπ and fπ as above have been used. The comparison of this result
with our calculations in the Nambu–Jona-Lasinio model is shown in figure 4.2. Here the energy
density has been divided by the Stefan-Boltzmann limit εSB = 36∆µ/π2. The results from both
models are almost identical.

4.2 Finite temperature

Now we compare our results with the ones from [1]. They use lattice QCD to find the phase
transition for the pion condensate phase. In figure 4.3 their results are shown, as well as our
own. In both models the pion condensate phase at low temperatures starts at ∆µ = mπ/2. At
temperatures above 140MeV, according to the lattice QCD results, the phase transition shifts
to higher isospin chemical potential. The results obtained via the Nambu–Jona-Lasinio model
predict the start of this shift for larger temperatures around T = 200 MeV. Unlike at zero
temperature there is a large discrepancy between the predictions made by the NJL model and
the ones made by QCD. This difference in temperature dependence does not only affect the
pion condensate but all thermodynamic quantities that have been calculated in chapter 3. When
probing the theory at high temperatures, this implies high energies, as can be seen in figure 3.11.
To describe the behavior of a system at high energies, the physics at small distances needs to be
known. Since there are no gluons in the NJL model, the physics of short scales is not represented
correctly. This is an explanation for the deviation in temperature dependence.
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Figure 4.1: Pressure energy dependence at T = 0
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Figure 4.2: Energy divided by the Stefan-Boltzmann limit against∆µ/mπ at T = 0
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in blue to our results.
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5 Conclusion

It was the goal to compare predictions made by the Nambu–Jona-Lasinio model with those made
by quantum chromodynamics. Therefore we linearized the Lagrangian around the expectation
values of sigma and pion condensate. In a next step we used the grand canonical formalism
to obtain the gap equation. Its solution gave the condensates dependence on isospin chemical
potential and temperature. Then we analyzed the derived thermodynamic quantities pressure,
isospin density and energy density. In the end we compared these results with those from
previous works. We confirmed the energy pressure dependence predicted by chiral perturbation
theory within the scope of the NJL model for low isospin chemical potential. The results for the
energy density dependence on isospin chemical potential do also match. That being said, we
found out, that the NJL model yields a quantitatively wrong temperature dependence for many
observables. Qualitatively these finite temperature results agree with those obtained by lattice
QCD calculations. In the future, the discrepancy of the NJL model and QCD at finite temperature
could be investigated closer. The NJL model may not yield predictions about reality, but it can
serve as a hint and help to advance the insight in strongly interacting matter.
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