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Abstract

In analogy to the Taylor expansion technique which extends lattice QCD calculations from µ = 0 to µ < T , we will
calculate the Taylor coefficients of the thermodynamic potential Ω up to sixth order in the expansion point µ/T = 0
using an extended NJL model. In particular the NJL model is extended by a vector interaction term which comes with a
coupling strength GV as parameter. The coupling strength GV will be varied and the influence of it will be investigated.
In comparison to lattice QCD results we will see that the high temperature limits as well as the course of the Taylor
coefficients can best be replicated when completely neglecting the vector interaction channel in the NJL model (thus
GV ≡ 0).
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1 Introduction

Quantum Chromodynamics is the established quantum field theory describing the strong interaction between quarks and
gluons. In attempts to describe the thermodynamics of the early universe and compact stars, one introduces the concept
of QCD matter. In QCD matter, quarks and gluons are the essential degrees of freedom. First principle calculations of
QCD thermodynamics cannot be done analytically, thus one developed the numerical technique of lattice QCD. However
a major flaw of the lattice QCD approach is that it cannot be directly extended to µ 6= 0 due to the fermion sign problem
[1]. To get some approximate knowledge about the QCD thermodynamics on the T -µ plane by theoretical studies, one
developed various methods [1, 2] which have some reliability for the vicinity of µ < T . One of these methods is to
perform a Taylor expansion of observables in terms of µ/T and neglect higher orders at will.

A completely different approach to investigate the T -µ plane of QCD matter by theoretical studies, is to use field theories
which are capable of replicating some prominent features of QCD. Such an approach is the Nambo-Jona-Lasinio model
[3, 4]. The basis of the interpretation of the NJL model is mainly based upon the fact that the NJL-Lagrangian has its chi-
ral symmetry in common with the QCD-Lagrangian [5]. The NJL model can be effectively used to describe various phase
transitions and thermodynamic properties, which are thought to occur for QCD matter. Constructing the NJL-Lagrangian
solely based upon symmetry considerations allows one to add various interaction terms. The basic NJL-Lagrangian as
found in most papers is only based upon a scalar and pseudo-scalar interaction term grouped together by a coupling
constant GS .

In the following we will consider an extended NJL-Lagrangian with a vector interaction term. The natural question
which is raised when one extends the NJL-Lagrangian, is whether or not these extensions yield better results in compari-
son to lattice QCD for the vicinity of µ < T . In this study we will answer this question by analogously calculating Taylor
coefficients up to sixth order in the NJL model and comparing them to results obtained in lattice QCD calculations [6, 7].
For this purpose we will vary the vector coupling strength GV and investigate the effects on the coefficients as well as
various functions.
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2 Theoretical foundations

In the following we will start with an introduction to Quantum Chromodynamics, explaining some of its fundamental
properties and then discussing associated Lagrangians and symmetries. We will especially focus on the symmetries of
the 2d flavour space. We then switch to a discussion of QCD matter on basis of the QCD phase diagram, explaining the
internal structure of the phase diagram and the problems to properly investigate it. From this we will see the necessity
of alternative approaches. Motivated by this, the NJL model as an alternative field theory will be introduced, which can
be used to investigate the phase diagram. Basis for these results are, that a majority of the global symmetries in the
NJL model are common with those discussed in the section about QCD. The discussion of the NJL model will then be
completed with some details provided on how to harness the model for the later calculations.

2.1 Quantum Chromodynamics

Quantum Chromodynamics is the established quantum field theory describing the strong interaction between quarks and
gluons. Its most important features are colour confinement and asymptotic freedom.

Colour confinement is the observed property that if one assigns colour charges red, green and blue as well as corre-
sponding anti-colours to quarks and gluons, one will only find bound systems such that the net colour charge is always
white. An important implication from colour confinement is that various coloured composite particles such as qq or
qqqq, etc. are forbidden to exist, whereas colour neutral states such as mesons (qq) and baryons (qqq) form bound
states. Hypothetically colour confinement also allows the existence of objects such as glueballs and various multi-quark
states like e.g. tetra-quarks such as the recently discovered possible candidate ZC (3900) [8, 9].

Asymptotic freedom is the property that quarks and gluons behave like quasifree1 particles for high energies and small dis-
tances. The notion of asymptotic freedom implies an energy dependent coupling strength αs(E). In particular asymptotic
freedom in QCD means limE→∞αs(E) = 0 [10]. Historically it was first thought to be impossible to construct a quantum
field theory which features asymptotic freedom, until Politzer, Gross and Wilczek proved in 1973 that non-abelian gauge
theories (Yang-Mills theories) do indeed maintain asymptotic freedom.

The Lagrangian of Quantum Chromodynamics is given by [11]:

LQCD =
∑

f

q f (i /D−m f )q f −
1

4
Ga
µνGµνa , (2.1)

where q f is a quark wave function of flavour f , q f = q†
f γ

0, /D the gauge covariant derivative Dµ = ∂µ+ i gAµ in Feynman
slash notation /a := γµaµ with coupling strength g and gluon vector potentials Aµ and Ga

µν gluon field strengths. We
implicitly assume that the quark wave functions live in the Hilbert spaceH =HC ⊗HD ⊗HF , which is a product of the
Hilbert spaces for colour, Dirac and flavour wave function.

This Lagrangian has several symmetries. Gauge invariance of the local SU(3)C group in colour space gives rise to
the gluons. Maintaining this symmetry will forbid us to add any gluonic terms incorporating a mass [10]. Thus gluons
are massless. Further important symmetries can be found in flavour space. In this case however we will have to restrict
ourselves upon a given number of flavours. Since the scope of this work will focus on the study of a two flavour model
incorporating the up and down quark, we will restrict ourselves upon these. However one can analogously study flavour
space symmetries for more than two flavours. Further notes upon a three flavour model incorporating the strange quark
can be found in Ref. [5]. To study symmetries we decompose Eq. (2.1) into the following form:

LQCD =Lchiral −
∑

f ∈{u,d}

q f m q f +Lscbt , (2.2)

where we have introduced the mass matrix m= diag(mu, md) and the chiral Lagrangian into which we incorporated the
gluon field strengths:

Lchiral =
∑

f ∈{u,d}

q f i /D q f −
1

4
Ga
µνGµνa . (2.3)

1 They are still objected to colour confinement, thus only quasifree.
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Symmetry Transformation Noether Current Name

SUV (2) ψ→ e−i~τ ~ωψ J k
µ =ψγµτ

kψ isospin

UV (1) ψ→ e−iαψ jµ =ψγµψ baryonic

SUA(2) ψ→ e−i~τ ~θγ5ψ J k
5µ =ψγµγ5τ

kψ chiral

UA(1) ψ→ e−iβγ5ψ j5µ =ψγµγ5ψ axial

Table 2.1: Flavour space symmetries of Lchiral for two flavours with associated transformations and currents [5]. The
parameters α ∈ R, β ∈ R, ~ω ∈ R3 and ~θ ∈ R3 can be chosen arbitrarily.

The overall continuous symmetry group which Lchiral obeys can be written as SQCD =SUV (2)⊗SUA(2)⊗UV (1). It
may be noted that this symmetry is only approximately satisfied by LQCD in the case of small and similar masses. In
the chiral limit (∀ f : m f = 0), which yields Lchiral, this symmetry however becomes exact. It might also be noted that
the local SU(3)C group in colour space is always exact. A complete list of all flavour space symmetries can be found in
Tbl. 2.1, where the shorthand notation ψ = (qu, qd)T is used. We discuss these symmetries now in the context of the
QCD-Lagrangian LQCD, neglecting the remaining quark contributions from Lscbt. SUV (2) is an approximate symmetry
under the assumption mu ≈ md and gives rise to isospin conservation. UV (1) is an exact symmetry and gives rise to
baryon number conservation. SUA(2) is the chiral symmetry which is however broken for non-vanishing masses and is
spontaneously broken in the ground state. The symmetry breaking can be associated with a Goldstone boson, which
in this case is the pion. The UA(1) group is a symmetry in the classical sense, however is not realized in SQCD due to
quantum effects.

2.2 QCD matter and the phase diagram

Figure 2.1: The QCD phase diagram as can be conjectured. Roughly based on Ref. [12].

A great research interest lies in the study of QCD matter. In this state of matter quarks and gluons are the essential
degrees of freedom. Studying the thermodynamic properties for variable temperature and baryon chemical potential on
the T -µ plane, one finds in theoretical studies that QCD matter undergoes transitions into various different phases. The
visual representation of these phases is contained in the QCD phase diagram. The structure of the phase diagram pretty
much depends upon the used premises and the underlying models used for description. In the following we will briefly
describe the phase diagram shown in Fig. 2.1, which can be conjectured for the case of massive three flavours. Other
possible phase diagrams will show behaviours which are akin to that.

At low values of T and µ we find the quarks to be confined into a hadron gas. If we move along the T -axis for
µ = 0 towards higher temperatures we find a crossover transition at T ≈ 150 - 200 MeV, which extends to some
degree into the T -µ plane for non-vanishing µ. Moving along the µ-axis we find a first-order gas-to-liquid transition into
nuclear matter at µ ≈ 924 MeV. The phase transition extends into the T -µ plane until it ends in a second-order critical
point at about T ≈ 15 - 20 MeV. Moving away further from the origin along the µ-axis we find a first-order phase tran-
sition from the chirally broken (χsb) to the chirally symmetric (χsym) phase, which extends into the T -µ plane until it
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ends in a second-order critical point, which also is a boundary of the crossover region. For high temperatures the hadron
gas makes a phase transition into a quark gluon plasma via the first-order or the crossover transition. For low T and large
µ one finds a phase transtition to a colour superconducting phase.

As previously stated the phase diagram described above is conjectured, thus some of the proposed properties might
be falsified in future studies. A more extensive and speculative description of a phase diagram can be found in Ref. [12].
Compiling a phase diagram heavily relies on the use of QCD-like theories. Although the lattice QCD approach corresponds
to solving the QCD-Lagrangian numerically via Monte Carlo methods, such first principle calculations become unusable
for Re(µ) 6= 0 due to the fermion sign problem. For that reason several approaches are being made to circumvent this
problem, ranging from extrapolations from imaginary chemical potential to various reweighting methods. One method
which will play a crucial role in this work is the Taylor expansion of observables in terms of µ/T . A brief discussion of the
fermion sign problem and various methods can be found in Ref. [2] and [1]. However it must be noted that despite all
efforts, lattice QCD calculations can only be extended to the vicinity of µ < T . Thus, as long as the fermion sign problem
cannot be fully resolved, lattice QCD calculations are still rendered useless for a large chunk of the T -µ plane.

2.3 The NJL model

As previously stated one way to study QCD matter is to use field theories which have a similar behaviour to the QCD-
Lagrangian. Such an approach is the Nambu-Jona-Lasinio model. The Nambu-Jona-Lasinio model was originally pro-
posed in a paper published in 1961 by Yoichiro Nambu and Giovanni Jona-Lasinio [3, 4]. Its original purpose was to
describe the mass of nucleons by a process of dynamic mass generation through self-energy contributions.

The whole description is an analogy to the BCS theory of superconductivity [13], in which phonons mediate an at-
tractive force between pairs of electrons (Cooper pairs). To create excited electron states in the superconductor one is
forced to break up the Cooper pairs first, thus there is an energy gap between the ground state and excited states in
the spectrum of superconductors. In the NJL model as originally proposed, the Cooper pairs have to be replaced with
nucleons and anti-nucleons paired by an attractive force [3]. In this framework the nucleon masses are a consequence of
this attractive interaction. Thus one speaks in the NJL model of a mass gap. Now in order to understand the QCD phase
diagram, this model was later reinterpreted as a model of interacting quarks. In the same manner as before, attractive
interactions now pair up quarks and anti-quarks. We additionally consider the quarks to possess a bare mass which we
will denote with m.

Basis for this reinterpretation of the NJL model is the underlying SNJL = SUV (2)⊗SUA(2)⊗UV (1) symmetry in the
chiral NJL-Lagrangian, which is identical to the symmetry of the chiral QCD-Lagrangian contained in SQCD. The chiral
and full Lagrangian of the NJL model are given by:

Lchiral =ψi /∂ψ+ GS[(ψψ)
2 + (ψiγ5~τψ)

2],

LNJL =ψ(i /∂ −m)ψ+ GS[(ψψ)
2 + (ψiγ5~τψ)

2].
(2.4)

GS denotes the interaction strength of the scalar interaction terms. If we now compare the Lagrangian of the NJL model
(2.4) to the one of QCD (2.1), we see that the basic difference lies in the fact that we replaced the parts incorporating
the gluon fields with mathemically much easier to handle scalar interaction terms, which still display the important sym-
metries. A direct consequence of these simplifications is that the SU(3)C group in colour space is now global. The chiral
SUA(2) symmetry for m = 0 and its breaking is often coined as the most important feature of the NJL model, allowing
one to investigate the chiral phase transition and its critical end point. The new interaction terms we incorporated can
in fact be given a physical meaning via the Bethe-Salpeter equation. We can associate the first interaction term (ψψ)2

with a σ meson and the second term (ψiγ5τψ)2 with a π meson [5]. The NJL-Lagrangian as given by Eq. (2.4) can
be further extended by terms which obey the symmetry SNJL. In the following we will work with a Lagrangian which is
further extended by a repulsive vector interaction term [14]:

LNJL ≡ψ(i /∂ −m)ψ+ GS[(ψψ)
2 + (ψiγ5~τψ)

2]− GV (ψγ
µψ)2. (2.5)

The inclusion of this term is motivated by the Walecka model, in which additionally ω mesons play an important role.

The NJL model has two great shortcomings. One being that it does not feature confinement. The other is that since
the interaction terms are constructed as contact interactions, the model is nonrenormalizable. The practical consequence
is that we need to define an energy scale on which the theory is valid. So in order to handle divergent momentum
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integrals we must introduce a regularization scheme. Common regularization schemes are the three-momentum cutoff,
the four-momentum cutoff, regularization in proper time and the Pauli-Villars method, with the latter three having the
advantage of being Lorentz-invariant. In this work we will focus on the use of a three-momentum cutoff. Details on
the other regularization schemes can be found in Ref. [5]. The three-momentum cutoff basically works by substituting
any divergent 3d momentum integrals over the spherical domain Sr with radius r ≡ ∞ with integrals over a spherical
domain with finite radius r ≡ Λ.

In order to yield physically consistent results the cutoff parameter Λ is of course not chosen arbitrarily. Further, the
interaction strength GS and bare masses m f must also be determined in a way which yields physical meaningful results.
This is usually done by fitting them to the pion mass mπ, the pion decay constant fπ (from π−→ µ−+νµ) and the quark
condensates 〈q f q f 〉. In this work we will assume that mu = md ≡ m and use a parameter set determined in Ref. [14],
with Λ = 587.9 MeV, GS = 2.44/Λ2 and m = 5.6 MeV. This set is tuned to reproduce a pion mass of mπ = 135 MeV, a
decay constant of fπ = 92.4 MeV and quark condensate of 〈ququ〉= 〈qdqd〉= (−240.8 MeV)3.
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3 Calculations

Based on our basic understanding of the NJL model from the previous chapter, we now want to derive and motivate the
introduction of the thermodynamic apparatus to describe QCD matter. In particular we are interested in calculating the
grand canonical potential Ω. As has been stated previously, a common technique to circumvent the fermion sign problem
in lattice QCD is to expand thermodynamic functions and observables in terms of µ/T . Although the NJL model is a
completely different approach to describe QCD matter we will equivalently investigate an expansion in this model and
compare them to results obtained in lattice QCD. In particular we are interested into whether or not the vector coupling
constant GV can be tuned to deliver results which better resemble those of lattice QCD.

3.1 Pure scalar interaction in mean-field approximation

Figure 3.1: The Hartree approximation.

Although the bulk of this work will focus upon the inclusion of the vector interaction (GV 6= 0), there is a quite
demonstrative way of deriving the mass gap equation for a pure scalar interaction (GV = 0) in vacuum. In particular,
incorporating the vector interaction would not change it. We can obtain the mentioned equation using the Hartree
approximation (see Fig. 3.1), which expresses a relationship between the propagation of quarks with a dressed mass M
and quarks with a bare mass m, where the former is denoted by thick and the latter by thin lines. In terms of operators
Fig. 3.1 reads:

iS(p) = iS0(p) + iS0(p)(−iΣ)iS(p), (3.1)

where S(p) denotes the dressed, S0(p) the bare Feynman propagator andΣ the self-energy contribution. The propagators
are simply fermionic propagators with their respective masses. The calculation of the self-energy part is non-trivial and
needs to be done explicitly for the given interaction terms. In the following we will just write down the necessary
definitions and calculate Σ straightforwardly. For a more elaborate description of the necessary Feynman rules required
for the evaluation see Ref. [15]. The self-energy contribution can be calculated from the definition as follows:

Σ= 2iG jΓ j

∫

d4k

(2π)4
Tr[Γ jS(k)]

= 2iGS1
∫

d4k

(2π)4
Tr[1S(k)] + 2iGS(iγ5τa)

∫

d4k

(2π)4
Tr[iγ5τaS(k)]
︸ ︷︷ ︸

=0

= 2iGS

∫

d4k

(2π)4
1

k2 −M2 + iε
Tr(γµkµ +M)

= 2iGS

∫

d4k

(2π)4
1

k2 −M2 + iε
NcN f 4M =: 8GSNcN f M I(M),

(3.2)

where we have introduced the operators Γ j (i.e. Γσ = 1, Γ a
π = iγ5τa) and the coupling constants with G j (i.e. Gσ =

Ga
π = GS). We implicitly assumed that operators and traces have to be evaluated on the product Hilbert space. Using

these results we can now obtain the mass gap equation. Multiplying Eq. (3.1) by S−1
0 (p) = /p−m from the left side and

S−1(p) = /p−M from the right side yields:

S−1
0 (p) = S−1(p) +Σ

⇐⇒ /p−m= /p−M + 8GSNcN f M I(M)

⇐⇒ M = m+ 8GSNcN f M I(M).
(3.3)
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The equation obtained in the last step is the mass gap equation. In particular calculating dressed masses M relies on
knowing the result of I(M). This expression can be easily evaluated in the vacuum case using the residue theorem.
However in order to introduce temperatures T and chemical potential µ the I(M) function has to be modified using the
Matsubara formalism. The calculation could be roughly sketched in a few steps for this particular integral, but the results
one obtains are the same as when choosing a more generalized approach for GV 6= 0 and then setting GV a posteriori to
0. Thus we instead postpone the results for GV = 0 to the latter sections of this work for a more comparative analysis
and refer to [16] for an explicit treatment of the integral function I(M). The important lesson of this derivation becomes
clearer in the next section. To make a long story short: We will see that the case of pure scalar interaction in Hartree
approximation is equivalent to the introduction of the chiral quark condensate 〈ψψ〉.

3.2 Deriving the thermodynamic potential

We now want to calculate the thermodynamic potential Ω. We start by the definition of the thermodynamic potential Ω
and the partition function Z:

Ω(T,µ) = −
T

V
ln[Z(T,µ)],

Z(T,µ) = Tr[e−
1
T (H−µN)].

(3.4)

It has to be noted that the Hamilton function is given by H =
∫

d3 xH and the quark number by N =
∫

d3 xψ†ψ. In
this sense we calculate the HamiltonianH by taking the Legendre transform of the LagrangianL . We further introduce
the condensates σ and ω:

σ = 〈ψψ〉,

ω= 〈ψγ0ψ〉.
(3.5)

We further assume that we can approximate the interaction terms using their associated condensates, which yield ψψ=
σ + δ(ψψ) and ψγ0ψ = ω + ε(ψψ). We linearize the squares of the interaction terms by considering the quadratic
orders of δ and ε as negligible. Thus we get:

(ψψ)2 ≈ 2σ(ψψ)−σ2 and

(ψγ0ψ)2 ≈ 2ω(ψγ0ψ)−ω2.
(3.6)

Having introduced two condensates for two interaction terms, we assume that the remaining terms do not result in
condensates, thus are to be neglected [14]. This allows us to approximate the Lagrangian (2.5):

LNJ L +µ(ψγ
0ψ)≈ψ(i /∂ − (m− 2GSσ)

︸ ︷︷ ︸

=:M

)ψ−σ2GS +ω
2GV + (µ− 2GVω)

︸ ︷︷ ︸

=:µ̃

ψγ0ψ

=ψ(i /∂ −M)ψ−
(M −m)2

4GS
+
(µ− µ̃)2

4GV
+ µ̃ψ†ψ=:L +µψ†ψ.

(3.7)

We have introduced the dressed quark mass M and the renormalized chemical potential µ̃ via gap equations:

M = m− 2GSσ,

µ̃= µ− 2GVω.
(3.8)

In particular getting solutions for M and µ̃ requires one to calculate σ and ω first (which are again functions of M and
µ̃) and then to solve the gap equations self-consistently. The condensates can be calculated straightforwardly from the
definition of the thermal expectation values and subsequent application of the Matsubara formalism or as a consequence
by enforcing thermodynamic consistency. We will choose the latter approach, however set aside an explicit discussion for
the next section. Taking the Legendre transform, we obtain:

H = ψ̇( j)π( j) −L = −ψ(iγk∂k −M)ψ+
(M −m)2

4GS
−
(µ− µ̃)2

4GV
− (µ̃−µ)ψ†ψ, (3.9)
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with j denoting the components of the Dirac spinor, π the field momentum and k the spatial components. Putting the
result into Eq. (3.4), we see that Ω decomposes into a non-trivial and a trivial part:

Ω(T,µ; M , µ̃) = −
T

V
ln{Tr[exp

�

−
1

T

∫

d3 x −ψ(iγk∂k −M)ψ− µ̃ψ†ψ

�

]}
︸ ︷︷ ︸

non-trivial

+
(M −m)2

4GS
−
(µ− µ̃)2

4GV
︸ ︷︷ ︸

trivial

. (3.10)

Note: M and µ̃ are no independent variables but functions of µ and T . Thus we seperated them in the function header.
Let us take a further look and identify some of the terms in the non-trivial part which we will denote with ΩM :

ΩM (T,µ; M , µ̃) = −
T

V
ln{Tr[exp



−
1

T

∫

d3 x −ψ(iγk∂k −M)ψ
︸ ︷︷ ︸

Hfree

−µ̃ ψ†ψ
︸︷︷︸

N



]}= −
T

V
ln(Zfree). (3.11)

The argument of the potential is resembling to a free Fermi gas with mass M and chemical potential µ̃. An explicit
calculation of that expression is possible but lengthy and is given in Ref. [17] for a flavour- and colourless gas (Nc= N f=1)
of fermions and anti-fermions. In the following we will just give the final result of ln(Zfree) and explain the physical
meaning of the terms.

ln(Zfree) = 2NcN f
︸ ︷︷ ︸

spins, colours
and flavours

V

∫

d3p

(2π)3

�

Ep

T
︸︷︷︸

zero-point
energy

+ ln[1+ exp
�

−
1

T
(Ep − µ̃)

�

]
︸ ︷︷ ︸

quark contribution

+ ln[1+ exp
�

−
1

T
(Ep + µ̃)

�

]
︸ ︷︷ ︸

anti-quark contribution

�

. (3.12)

The prefactor 2NcN f is the result of up and down spins, as well as the colours and flavours. The integral over the
zero-point energy term Ep/T is divergent and needs to be treated by a regularization scheme of choice (in our case
the three-momentum cutoff). The remaining terms are contributions from quarks and anti-quarks. For the sake of
completeness we will now write down the final result for the thermodynamic potential Ω:

Ω(T,µ; M , µ̃) =
(M −m)2

4GS
−
(µ− µ̃)2

4GV

− 2NcN f

¨

∫

SΛ

d3p

(2π)3
Ep +

∫

R3

d3p

(2π)3
�

T ln(1+ e−
1
T (Ep−µ̃)) + T ln(1+ e−

1
T (Ep+µ̃))

�

«

.

(3.13)

3.3 Self-consistency equations

As previously stated the equations (3.8) define us a set of gap equations which needs to be self-consistently solved. As a
first step one needs to calculate explicit expressions for the condensates σ = σ(T,µ; M , µ̃) and ω = ω(T,µ; M , µ̃). For
a thermodynamic consistent treatment we require that [14]:

dΩ

dm
!
=
∂Ω

∂m
= σ and −

dΩ

dµ
!
=−

∂Ω

∂ µ
=ω. (3.14)

Calculating the total derivatives, we find that the partial derivatives ∂MΩ and ∂µ̃Ω have to vanish in order to meet
the previously mentioned requirements. This leads to a set of equations which gives us explicit expressions for the
condensates σ and ω:

0=
∂Ω

∂M
=

M −m

2GS
− 2N f Nc

∫

d3p

(2π)3
M

Ep
[1− np(T, µ̃)− np(T, µ̃)] =

M −m

2GS
+σ,

0=
∂Ω

∂ µ̃
=
µ− µ̃
2GV

− 2N f Nc

∫

d3p

(2π)3
[np(T, µ̃)− np(T, µ̃)] =

µ− µ̃
2GV

−ω.

(3.15)

We have introduced the quark occupation number

np(T, µ̃) =
1

1+ exp[−1/T (Ep − µ̃)]
(3.16)

and anti-quark occupation number np(T, µ̃) = np(T,−µ̃). One can interpret the equations (3.15) in terms of vector
calculus: Arbitrary points (M , µ̃) at a preset temperature T and chemical potential µ are only solutions if they form
extrema of Ω. A problem which becomes evident is that the map (T,µ) → (M , µ̃) is not necessarily injective, thus we
may find more than one solution for a given point (T,µ). Since in thermodynamics the potential Ω is supossed to be
minimized, we will assume that the physically valid solution (M , µ̃) is the one which minimizes Ω the most. The solution
of the equation for µ̃ is always unique for a given point (T,µ, M). At constant T and µ this allows us to introduce the
parameterization µ̃ = µ̃(M) and Ω(M) = Ω(M , µ̃(M)). So finding the physically legitimate solution (M , µ̃(M)) now
only corresponds to finding the global minimum of Ω(M).
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3.4 Extrema of the thermodynamic potential
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Figure 3.2: Plots of the thermodynamic potential Ω(M) for different constant µ.
Left image: GV = 0, m= 0; µ= 0, 300,368.6 and 400 MeV (red, green, blue, magenta).
Middle image: GV = GS , m= 0; µ= 0,430, 440 and 444.3 MeV (red, green, blue, magenta).
Right image: GV = 0, m= 5.6 MeV; µ= 0,375, 400 and 440 MeV (red, green, blue, magenta).

In this section we will discuss the influence of the bare mass m and the vector coupling constant GV on the extrema
of Ω(M), which we know from the previous section are essential for knowing the legitimate solutions (M , µ̃(M)) for a
given point (T,µ). In this section we set T = 1 MeV and investigate the behaviour ofΩ(µ; M , µ̃(µ, M)) on the µ-M plane.

In Fig. 3.2 are three plots of the thermodynamic potential in the range from µ = 0 to 444.3 MeV. The specific val-
ues for µ used in the plots were chosen to make characteristic behaviour evident, thus the plots are not directly
comparable. In the first and the second plot the bare mass m is kept constant at m = 0 (chiral limit) and the cou-
pling constant GV is varied from 0 (first plot) to GS (second plot). The thermodynamic potential Ω remains symmetric,
which is an obvious behaviour when considering the mass gap equation under the sign transformation M → −M in
the chiral limit. The characteristic features however change significantly. Although we observe a characteristic µ for
GV = 0 at which the mass gap equation has five numerical solutions, we find that such a value of µ does not exist for
GV = GS , at which the mass gap equation yields at maximum only three numerical solutions. An interesting feature is
that although one can easily verify that the mass gap equation always yields the trivial solution M = 0 in the chiral limit,
this solution is not the physically relevant one for too low values of µ, even forming a maximum for low enough values.
Another consequence of the symmetry is that for low values of µ one observes two identical solutions |M | with different
algebraic sign. These can however not be distinguished by the minimization criteria. We therefore will just assume that
the physical mass can only be positive.

Abandoning the discussion of the influence of the coupling constant GV , we now investigate the influence of the
bare mass m on the thermodynamic potential. In the first and the third plot of Fig. 3.2 the coupling constant GV is
kept constant at GV = 0 and we vary the bare mass m from m = 0 (first plot) to 5.6 MeV (third plot). While one can
see that Ω keeps its general shape, one can also see that the plot is skewed compared to the chiral limit. The main
consequence of this is that the trivial solution M = 0 disappears and is replaced by solutions of M ¦ 0. The general trend
which can be observed in all plots, is that for large µ there is only one numerical solution which either is M = 0 (chiral
limit) or m ¦ M . This behaviour is somewhat intuitive when considering that our model reflects the chiral phase tran-
sition in the QCD phase diagram and therefore tries to replicate the bare quark mass m. Deviations from this expected
behaviour can be dependent on the used regularization scheme.

3.5 Solutions of the self-consistency equations for variable chemical potential

In pursuit of automating the sketched way of solving M for variable µ in the previous section (we keep the temperature
at T = 1 MeV), we can construct an algorithm which is capable of providing a function M(µ). The resulting plots for
variable coupling constant GV and bare mass m are listed in the upper row of Fig. 3.3.
We can observe that the generated dynamical mass M is discontinuous in µ for GV = 0 and 0.5 GS , whereas it is con-
tinuous for GV = GS . The discontinuous behaviour is already evident when comparing the parametric plots of the
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Figure 3.3: Plots of M(µ) (upper row) and µ̃ (lower row) for variable bare quark mass m and vector coupling constant
GV . From left to right: GV = 0, 0.5 GS and GS . The blue lines correspond to m= 5.6 MeV and the red lines to
m= 0.

thermodynamic potential in Fig. 3.2. The plots in Fig. 3.3 can already be used to classify phase transitions. The dis-
continuous behaviours of the mass plots for GV = 0 and GV = 0.5 GS are classified as first order phase transitions. In
particulary they correspond to the chiral phase transition at T = 1 MeV in the phase diagram in Fig. 2.1. The phase
transition for GV = GS and m = 0 is continuous, however it is discontinuous in its derivative with respect to µ. This is
classified as second order phase transition. The case of GV = GS and m = 5.6 MeV is continuous in all of its derivatives
with respect to µ. It is commonly labeled as a crossover transition, however, in fact it is not a phase transition.

Since we now have a function M(µ) we can also calculate solutions µ̃(µ) = µ̃(µ, M(µ)). The resulting plots are
given in the lower row of Fig. 3.3. The GV = 0 case is obvious since the second gap equation yields µ̃ = µ, the
course of the remaining plots for GV = 0.5 and GS is a direct consequence of the behaviour of M(µ), thus will not be
further discussed.

3.6 Calculation of the Taylor coefficients to sixth order

We now want to calculate the Taylor coefficients of the thermodynamic potentialΩ(T,µ) in terms of µ/T at the expansion
point µ/T = 0 to sixth order. We therefore just expand Ω in terms of µ/T :

Ω(T,µ) =
∞
∑

n=0

c∗n

�µ

T

�n
=
∞
∑

n=0

1

n!

∂ nΩ

∂ (µ/T )n

�

�

�

�

µ/T=0

�µ

T

�n
. (3.17)

Further we will follow the convention of using the reduced thermodynamic potential Ω̃ = −Ω/T 4, thus effectively
multiplying the definition of the coefficient by a prefactor:

cn = −
1

T 4 c∗n = −T n−4 1

n!

∂ nΩ

∂ µn

�

�

�

�

µ=0

. (3.18)
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We can calculate the Taylor coefficients from the definition (3.18) straightforwardly. However, we only have to calculate
the Taylor coefficients of even order. This property is realized due to the symmetry of Ω under charge conjugation, which
is a fundamental property of QCD. In a world in which we replace quarks by anti-quarks and vice versa the physics should
stay the same. We can further prove that this property is fulfilled using the gap equations (3.15).

Using the gap equation of the renormalized chemical potential µ̃ and the fact that solutions of this equation are unique
for a given point (T,µ, M), we find under the transformation µ→−µ, that −µ̃(−µ) = µ̃(µ), thus rendering the solutions
anti-symmetric in µ. Further taking a look at the mass gap equation shows that M(µ̃(µ)) = M(−µ̃(µ)) = M(µ̃(−µ)),
thus rendering the solutions symmetric in µ. So in conclusion we find that (µ̃, M)

µ→−µ
−−−→ (−µ̃, M). It is now quite obvious

when applying the transformation to Eq. (3.13) that Ω is symmetric in µ. In particular we can now easily prove that odd
terms have to vanish in the Taylor expansion:

Ω(T,µ) =
∞
∑

n even

c∗n

�µ

T

�n
+

∞
∑

n odd

c∗n

�µ

T

�n !
=

∞
∑

n even

c∗n

�µ

T

�n
+

∞
∑

n odd

−c∗n

�µ

T

�n
= Ω(T,−µ). (3.19)

Thus Eq. (3.19) is only satisfied for non-vanishing values µ/T , if odd ordered coefficients vanish .

So we now only have to calculate the Taylor coefficients of second, fourth and sixth order. For that purpose we will
use the finite difference method and approximate the derivatives with central difference quotients. In particular we use:

∂ 2Ω

∂ µ2

�

�

�

�

�

µ=0

≈
1

12∆2

§

2[−Ω(2∆) + 16Ω(∆)]− 30Ω(0)
ª

,

∂ 4Ω

∂ µ4

�

�

�

�

�

µ=0

≈
1

6∆4

§

2[−Ω(3∆) + 12Ω(2∆)− 39Ω(∆)] + 56Ω(0)
ª

and

∂ 6Ω

∂ µ6

�

�

�

�

�

µ=0

≈
1

240∆6

§

2[13Ω(5∆)− 190Ω(4∆) + 1305Ω(3∆)− 4608Ω(2∆) + 9690Ω(∆)]− 12276Ω(0)
ª

.

(3.20)

The expressions were shortened using the symmetry of Ω in respect to µ= 0. The order of approximation was chosen
so that approximation errors are of third power in ∆ for the second and fourth derivative and of fifth power for the sixth
derivative. This directly corresponds to using five, seven and eleven sampling points for the derivatives. Further the grid
spacing was chosen for every coefficient so that numerical errors which become emergent for large values of T and too
small grid spacing are minimized.

When discussing the course of the Taylor coefficients in the high temperature district, it is useful to refer to the lim-
its of the Stefan-Boltzmann gas. The Stefan-Boltzmann gas with thermodynamic potential ΩSB, corresponds to the
potential of a free quark gluon gas:

−
ΩSB

T 4 = 2NcN f

�

7π2

360
+

1

12

�µ

T

�2
+

1

24π2

�µ

T

�4
�

−
Ωglue

T 4 , (3.21)

where Ωglue is the gluonic contribution with Ωglue ∝ T 4. The Stefan-Boltzmann limits of the coefficients can now be
straightforwardly calculated by taking the derivatives of ΩSB and the limit µ/T → 0 . In particular we find in this limit:
c2 = 1, c4 = 0.051 and c6 = 0.

A presentation of all calculated Taylor coefficients for m = 5.6 MeV, variable order n and vector coupling constant
GV is given in Fig. 3.4. All calculations were performed in C++ using some functions contained in the GNU Scientific
Library. Roughly, one can say that coefficients of second and fourth order are always positive, have one maximum or
become asymptotical constant for GV = 0 and large T , while sixth order coefficients always become asymptotical zero,
but also possess a zero crossing, a positive maximum and a negative minimum. Much more information yields the com-
parison for constant order n and variable coupling constant GV , which we can see in the fourth lower row in Fig. 3.4.
The second order coefficient at GV = 0 is a steeply rising function reaching a plateau value of c2 ≈ 1 for large T . Putting
in a vector interaction destroys the constant Stefan-Boltzmann limit and creates a global positive maximum at about
T ≈ 200 MeV, which becomes smaller the greater GV gets. The fourth order coefficient is also a steeply rising function,
reaching a global maximum at about T ≈ 190 MeV and then sinking to reach its Stefan-Boltzmann limit for large T
of about c4 ≈ 0.051. Turning on the vector interaction also destroys the Stefan-Boltzmann limit and results into the
maximum shrinking the greater GV gets. The sixth order coefficient rises first to a positive maximum, then does a zero
crossing, reaches a minimum and approaches then 0 for large T . Turning on the vector interaction drastically reduces
the magnitudes of the extrema.
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Figure 3.4: Taylor coefficients of variable order n and vector coupling constant GV .
From left to right: Taylor coefficients of order 2, 4 and 6.
First three rows from top to bottom: Taylor coefficients for GV = 0, 0.5 GS and GS .
Fourth row on the bottom: Comparative plots the Taylor coefficients for coupling constant GV = 0, 0.5 GS
and GS (blue, red, green).
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3.7 Comparison to lattice data
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Figure 3.5: Comparison of Taylor coefficients c2, c4 and c6 (left to right) obtained from lattice QCD calculations (red and
green) to the vector interaction extended NJL model (black). Red squares represent data by C.R. Allton et al.
[6] and green squares M. Cheng et al. [7]. Empty green squares were done on a 163 × 4 lattice, filled green
squares on a 243 × 6 lattice. The vector coupling strength is set in the extended NJL model to GV = 0, 0.5 GS
and GS (continuous, dashed, dotted).

In this section we now want to compare the results we have obtained to available lattice data and find out whether or
not we can tune the vector coupling constant GV to deliver better results with the vector interaction extended NJL model.
In particular we will use results of calculations done by C.R. Allton et al. [6] (red data) for two flavours on a 163 × 4
lattice using p4-improved staggered fermions with bare quark mass m/T = 0.4 and M. Cheng et al. [7] (green data) for
three flavours on a 163×4 and a 243×6 lattice using p4-improved staggered fermions and fixed quark masses. The data
can be directly found in Ref. [6] and [7], errors were taken from the plots. The temperature values which were used for
the calculated sampling points are all given in respect to the pseudocritical temperature T0, which is the temperature at
which the crossover transition for µ = 0 is located. This allows us to translate the results into the NJL model, in which
the pseudocritical temperature is estimated to be T0 = 193.6 MeV [16].

Comparing the lattice data with the results in our extended NJL model (Fig. 3.5), we see that the course of the Tay-
lor coefficients, as well as the Stefan-Boltzmann limits, are best replicated by the NJL model for GV = 0. Further one
finds a systematic discrepance between lattice data and the NJL model. For the lattice data of c2 and c4 one sees that
the flank is significantly shifted to higher temperatures. For data provided by Ref. [6] (red) c2 does not reach the pre-
dicted Stefan-Boltzmann limit, instead converges towards c2 ≈ 0.8. This does not comply with data provided by Ref.
[7] (green), in which c2 does indeed reach its predicted limit. So this abberation might be a result due to the temper-
ature dependent bare mass. The remaining coefficients c4 and c6 seem to follow the trend of converging towards their
predicted limits. A notable feature of c4 in lattice calculations is that its peak is higher than in the NJL model. The data
provided on c6 is highly speculative due to the large errors, however for that reason complies with the scalar NJL model
except for a few data points.

Overall the study confirms a similar analysis done by J. Steinheimer and S. Schramm in 2011 [18], comparing sec-
ond and fourth order Taylor coefficients of the PNJL and QHC model with lattice QCD calculations from Ref. [7].
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4 Résumé and outlook

The motivation of this work was to investigate the Taylor coefficients of the NJL model under the inclusion of a repulsive
vector interaction term −GV (ψγµψ)2 and find out whether or not the vector coupling GV can be tuned to deliver better
results in comparison to lattice QCD calculations. For the investigation the NJL model in the two flavour case under the
inclusion of an up and down quark of equal mass and chiral condensate was chosen. Divergent momentum integrals are
regularized using a sharp three-momentum cutoff, which however is not Lorentz invariant. The parameter set which is
used was determined by Ref. [14].

Investigating first the case of a pure scalar interaction, which is the special case for GV = 0, actually shows that one
can derive the mass gap equation using the Hartree approximation. In particular this is equivalent to the introduction of
the chiral quark condensate 〈ψψ〉. The Lagrangian with the vector interaction term can be treated by the introduction
of the condensates 〈ψψ〉 and 〈ψγ0ψ〉. These condensates result into a set of two gap equations, one describing the
generated mass M and the other the renormalized chemical potential µ̃. Approximating the interaction terms with their
associated condensates allows us to calculate the thermodynamic potential Ω of the grand canonical ensemble. One can
show that pairs of M and µ̃ are only valid solutions of the gap equations if they are extrema of Ω. If there is more
than one solution (M , µ̃) for a given point (T,µ), the one is chosen which is a global minimum of Ω. Following these
principles one can now construct an algorithm to calculate (M , µ̃) for any given point (T,µ) and thus Ω. Calculating
the Taylor coefficients can now be done numerically using finite differences. Furthermore one just needs to calculate
even ordered coefficients. The odd orders vanish as a direct consequence of the symmetry of QCD under charge con-
jugation (µ → −µ) and thus Ω. In general a non-vanishing vector interaction (GV 6= 0) leads to a reduction of the
magnitude of the course of the coefficients. Further the Stefan-Boltzmann limits are destroyed for c2 and c4. Comparing
the coefficients to lattice data from Ref. [6] and [7] shows that there are some significant discrepancies, however the
course of the lattice results, as well as the Stefan-Boltzmann limits, are best replicated by neglecting the vector interac-
tion term. This conclusion complies with an analysis of Taylor coefficients done in Ref. [18] for the PNJL and QHC model.

Summing up the results one obtains from the study of these QCD-like theories shows that it seems to become evi-
dent that vector interaction terms generally are negligible if one aims to get results which are similar to those of lattice
QCD. Although this should hold up to various other lattice QCD extension methods apart from the Taylor expansion tech-
nique, it is an interesting afterthought whether or not the effects are as drastical. An answer to this question therefore
remains open for future studies.
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