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Abstract
The phase diagram of the quark-meson model is determined for different schemes of parameter
fixing. For this purpose the thermodynamic potential for non-vanishing temperature and che-
mical potential is examined by applying the parameters resulting from different schemes. Within
each scheme the parameter fixing is done in vacuum and the constituent quark mass in vacuum
is set to 300 MeV, the pion decay constant to 88 MeV and the sigma meson mass to 600 MeV. The
effects on the phase diagram caused by applying different schemes are studied and discussed.
Two schemes lead to useful results while one is not physical.
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Zusammenfassung
Das Quark-Meson-Modell Phasendiagramm wird für unterschiedliche Fixierungen der Parame-
ter ermittelt. Hierfür wird das thermodynamische Potential für nicht verschwindende Tem-
peratur und chemisches Potential mittels der in den unterschiedlichen Fixierungen erhalte-
nen Parameter untersucht. Alle Fixierungen werden im Vakuum durchgeführt und die Kon-
stituentenquarkmasse wird auf 300 MeV, die Pionenzerfallskonstante auf 88 MeV und die Masse
des Sigma-Mesons auf 600 MeV gesetzt. Die Effekte auf das Phasendiagramm durch die An-
wendung verschiedener Fixierungen werden untersucht und diskutiert. Zwei der Fixierungen
führen zu sinnvollen Ergebnissen, während eine unphysikalisch ist.
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1 Introduction
The physics of strong interacting particles, as quarks, is described by quantum chromodynamics
(QCD). Those particles carry a colour charge and couple to the strong force which is mediated
by gauge bosons, the so-called gluons. In contrast to the gauge bosons of the electromagnetic
interaction, the photons, gluons also carry colour charge which makes the theory more compli-
cated. A central phenomenon of QCD is confinement which postulates that only colour neutral
particles are observable. This is realized in nature by quark-antiquark pairs, the mesons, or in
three quark states, the baryons. Only at high temperatures or densities quarks and gluons are
deconfined and form a so-called quark-gluon-plasma (QGP). The understanding of the quark-
gluon-plasma is of big interest because it plays an important role in the development of the early
universe and in densed matter as in neutron stars.
The determination of the QCD phase diagram is very difficult and still not fully understood.
For this reason effective models reflecting the symmetries of the strong interaction are used
to describe the low-energy sector of QCD. Those models include parameters which have to be
fixed by observables but it is not clear without ambiguity in which way. Hence the phase di-
agram of the effective model depends on the scheme which is used to fix those parameters.
This dependence of the phase diagram on parameter fixing is studied in this thesis by apply-
ing the renormalizable quark-meson model considering the two lightest quarks with flavour up
and down. Due to global symmetries instead of local gauge symmetries within this model, the
phenomenon of confinement cannot be described but it contains the important SUL(2)⊗SUR(2)
symmetry of QCD in the limit of vanishing bare quark masses (chiral limit). We know, however,
that the bare quark masses are finite but compared to hadronic scales they are very small such
that the symmetry may be considered as an approximate symmetry of QCD. This symmetry is
called the chiral symmetry and means that each component of the decomposed quark spinor, in
particular decomposed in a left-handed and right-handed part by applying projection operators,
transforms independently from one another. The phase diagram of the quark-meson model dis-
tinguishes between the chiral spontaneously broken phase and the chiral restored phase. In the
spontaneously broken phase the quarks form a non-vanishing quark condensate and receive an
effective quark mass, the so-called constituent quark mass.
The goal of this thesis is to analyse the dependence of the quark-meson model phase diagram
on parameter fixing. Therefore the phase diagram is determined by applying different schemes
of parameter fixing and finally the results are discussed.
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2 Formalism

2.1 Conventions

Throughout this thesis natural units are used, meaning that the speed of light, Boltzmann con-
stant and the reduced Planck constant are set to one

ħh= c = kB = 1 . (2.1)

The units of physical quantities are then expressed in terms of units of energy.
Furthermore Feynman slash notation, a short notation for a contraction, e.g.

/A= γµAµ = γµAµ , (2.2)

is used. Here γµ represents the gamma matrices known as the Dirac matrices.

2.2 The quark-meson model

The Lagrangian of the two-flavour quark-meson model in the chiral limit is given by

LQM = ψ̄i /∂ψ− ψ̄g
�

σ+ iγ5~τ · ~π
�

ψ+L kin
M − U(σ, ~π) . (2.3)

Here ψ denotes a 4N f Nc-dimensional quark spinor with N f = 2 flavour and Nc = 3 colour
degrees of freedom, σ is the real scalar field of the sigma meson and ~π the real pseudo-scalar
fields of the pion triplet. The first term describes the free Dirac Lagrangian for massless fermions
(chiral limit), the second term their coupling to the sigma and pion fields. The third term repre-
sents the kinetic energies of the mesons and reads

L kin
M =

1
2

�

∂µσ∂
µσ+ ∂µ ~π∂

µ ~π
�

(2.4)

while the last term stands for the meson potential

U(σ, ~π) =
λ

4

�

σ2 + ~π2 − v 2
�2

(2.5)

in which v is a parameter.
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2.3 Symmetries

The introduced quark-meson Lagrangian exhibits a SUV (2) ⊗ SUA(2) symmetry which in chi-
ral representation reads SUL(2) ⊗ SUR(2). This is the so-called chiral symmetry. The SUV (2)
symmetry corresponds to the transformation

ΛV :ψ −→ e−i ~τ2
~θψ

ψ̄ −→ ψ̄ei ~τ2
~θ , (2.6)

whereas the SUA(2) symmetry corresponds to the transformation

ΛA :ψ −→ e−iγ5
~τ
2
~θψ

ψ̄ −→ ψ̄e−iγ5
~τ
2
~θ . (2.7)

The infinitesimal transformations are given by the series expansion of the exponential function
to first order. Those expressions are then applied to determine the transformations of each term
in the quark-meson Lagrangian. Since an infinitesimal transformation of the fields is considered,
terms with second order in ~θ are negligible. For the free Dirac Lagrangian we get

ΛV : iψ̄ /∂ψ −→ iψ̄
�

1+ i
~τ

2
~θ
�

/∂
�

1− i
~τ

2
~θ
�

ψ= iψ̄ /∂ψ (2.8)

ΛA : iψ̄ /∂ψ −→ iψ̄
�

1− iγ5
~τ

2
~θ
�

/∂
�

1− iγ5
~τ

2
~θ
�

ψ

= i

�

ψ̄ /∂ψ− i ~θ
�

ψ̄
~τ

2
γ5γ

µ∂µψ+ ψ̄
~τ

2
γµγ5∂µψ

�

�

= iψ̄ /∂ψ . (2.9)

Hence the free Dirac Lagrangian is invariant under application of ΛV and ΛA. In the last step
the relation {γ5,γµ}= 0 was used.
In order to find out how the meson fields transform under ΛV and ΛA, we consider combinations
of the quark fields that carry the quantum numbers of the mesons

pion-like state : ~π= iψ̄~τγ5ψ (2.10)

sigma-like state : σ = ψ̄ψ . (2.11)

Now the transformations can be applied to the quark fields in the meson-like states and using
the relations [τ j,τk] = 2iε jklτl and {τ j,τk}= 2δ jk1Flavour lead to

ΛV : ~π −→ ~π+ ~θ × ~π
σ −→ σ (2.12)

ΛA : ~π −→ ~π+ ~θσ

σ −→ σ− ~θ ~π . (2.13)
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The squares of the fields transform as

ΛV : ~π2 −→ ~π2

σ2 −→ σ2 (2.14)

ΛA : ~π2 −→ ~π2 + 2σ~θ ~π

σ2 −→ σ2 − 2σ~θ ~π . (2.15)

Therefore the combination
�

~π2 +σ2
�

is invariant under both transformations

�

~π2 +σ2
� ΛV ,ΛA−→

�

~π2 +σ2
�

. (2.16)

The transformation of the derivatives of the meson fields is performed analogously and we get

�

∂µσ∂
µσ+ ∂µ ~π∂

µ ~π
� ΛV ,ΛA−→

�

∂µσ∂
µσ+ ∂µ ~π∂

µ ~π
�

. (2.17)

As a result the meson potential U(σ, ~π) and the kinetic energies of the mesons L kin
M in the

quark-meson Lagrangian are invariant under both transformations.
Identifying the pion-like and sigma-like states in the term describing the coupling of the fermions
to the meson fields in the quark-meson Lagrangian,

ψ̄g
�

σ+ iγ5~τ · ~π
�

ψ , (2.18)

shows that this term transforms as g
�

σ2 + ~π2
�

and hence it is also invariant under both trans-
formations.
Altogether the quark-meson Lagrangian is invariant under SUV (2)⊗ SUA(2) transformations.
Moreover a global phase transformation leaves the quark-meson Lagrangian invariant which
reflects the UV (1) symmetry.
The full symmetry of the quark-meson Lagrangian reads

SUV (2)⊗ SUA(2)⊗ UV (1) . (2.19)

According to Noether’s theorem all those continuous symmetries lead to conserved quantities.
In this case the SUV (2) symmetry leads to the conserved vector current and analogously the
SUA(2) symmetry leads to the conserved axial vector current [1] while the UV (1) symmetry is
related to the conservation of the baryon number.

2.4 Spontaneous symmetry breaking

In case of invariances of the Lagrangian under given continuous symmetry transformations the
ground state does not need to possess the same symmetries. In general it will show the same
or less symmetries. The latter describes spontaneous symmetry breaking which is the essential
part of Goldstone’s theorem.
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2.4.1 Goldstone’s theorem

In order to apply Goldstone’s theorem [2] to a certain theory or model the following three
conditions have to be fulfilled:

1. Poincaré invariance (Lorentz invariance and additional invariance under linear translation
in spacetime)

2. Existence of a conserved Noether current jµ with ∂ µ jµ = 0 which implies a continuous
symmetry of the considered Lagrangian

3. The symmetry of the Noether charge Q may be spontaneously broken. That means that the
ground state is not invariant under the action of the charge operator Q |0〉 6= 0

Goldstone’s theorem then predicts a massless boson in the spectrum of the theory or model, the
so-called Goldstone boson [3]. If the continuous symmetry is just an approximate symmetry,
the boson receives a light mass and is called a pseudo-Goldstone boson [4].
We know that in nature the bare quark masses are finite but small compared to hadronic scales
which results in a small explicit breaking of chiral symmetry. Due to small explicit breaking, the
chiral symmetry may be considered as an approximate symmetry and hence we have pseudo-
Goldstone bosons with light masses, the pions.
Since the explicit breaking of the chiral symmetry has no influence on the study in this the-
sis such part in the quark-meson Lagrangian is omitted and therefore the Lagrangian describes
massless fermions, in particular the two lightest quarks with the flavours up and down.

If the model is in the spontaneously broken phase then the Goldstone bosons are given by
the pion triplet and the expectation value of the sigma meson denoted by 〈σ〉 is not vanishing.
When the Lagrangian is now expanded around this expectation value, the fermions appear with
a mass term, the so-called constituent quark mass. Instead of expanding the quark-meson La-
grangian around the sigma meson expectation value, we could just replace the sigma meson
field in the Lagrangian by its expectation value so we get a term

ψ̄
�

i /∂ − g〈σ〉
�

ψ , (2.20)

which describes fermions with a mass given by

M = g〈σ〉 . (2.21)

This means that the spontaneous breakdown of chiral symmetry generates a fermion mass or in
other words the fermions form a non-vanishing quark condensate.

2.5 Thermodynamic potential

In order to analyse the thermodynamic properties of the considered model it is necessary to
derive an expression for the grand potential per Volume V

Ω(T,µ) = −
T
V

logZ (T,µ) = −
T
V

log

∫

Dψ̄DψDσD ~πexp

�∫

V4

d4xE(LQM +µψ̄γ
0ψ)

�

[5] .

(2.22)
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Here Z (T,µ) denotes the grand canonical partition function depending on the temperature T
and the quark chemical potential µ while the integral in the exponent is performed in Euclidean
spacetime xE = (τ, ~x) with the imaginary time τ= i t and extends over the four-volume [5]
V4 = [0, 1

T ]× V .
In mean-field approximation, in which the meson fields are replaced by their expectation values
and so become classical fields, and in case of homogeneous fields, the quark energies can be
expressed as

E~p =
Æ

~p2 + g2(σ2 + ~π2) [5] (2.23)

and the thermodynamic potential then takes the form [5]

Ωhom(T,µ;σ, ~π) = −2N f Nc

∫

d3p
(2π)3

§

E~p + T log
�

1+ e−
E~p−µ

T

�

+ T log
�

1+ e−
E~p+µ

T

�ª

+ U(σ, ~π) .

(2.24)

Due to the relation M = g〈σ〉 the quark energies and thermodynamic potential can also be
expressed via a new variable m= gσ and hence we get for the energies

E~p =
Æ

~p2 +m2 + g2 ~π2 (2.25)

and for the thermodynamic potential

Ωhom(T,µ;σ, ~π) = −2N f Nc

∫

d3p
(2π)3

§

E~p + T log
�

1+ e−
E~p−µ

T

�

+ T log
�

1+ e−
E~p+µ

T

�ª

+ U(m, ~π).

(2.26)

The latter expression for the thermodynamic potential is used in chapter 5 to determine the
phase diagram.

2.5.1 Vacuum ground state

For the determination of the vacuum ground state it is necessary to study the thermodynamic
potential of the vacuum which is given by the thermodynamic potential itself in the
T = µ = 0-limit

Ωvac(σ, ~π) = −2N f Nc

∫

d3p
(2π)3

Æ

~p2 + g2(σ2 + ~π2) +
λ

4
(σ2 + ~π2 − v 2)2 . (2.27)

In order to obtain a vacuum state with positive parity the expectation value of the pseudo-scalar
pion field with negative parity has to vanish while the sigma meson expectation value with
positive parity is denoted by 〈σ〉[6].
The necessary condition for the minimum is a vanishing derivative of the vacuum potential

∂Ωvac

∂ σ

�

�

�

�

σ=〈σ〉, ~π=0

=
∂Ωvac

∂ πa

�

�

�

�

σ=〈σ〉, ~π=0

= 0 , (2.28)
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where a represents a component of the pion field. The resulting equation is divided by 〈σ〉 such
that the trivial solution 〈σ〉= 0 is excluded. This leads to the so-called gap equation

λ
�

〈σ〉2 − v 2
�

= 2N f Nc g2

∫

d3p
(2π)3

1
p

~p2 + g2〈σ〉2
. (2.29)

Inserting equation (2.21) gives

λ

�

M2

g2
− v 2

�

= 2N f Nc g2

∫

d3p
(2π)3

1
p

~p2 +M2
. (2.30)

In the following the integral in equation (2.30) together with the factor 2N f Nc is labelled L1
and using the residue theorem it can also be written as

L1 = 4iN f Nc

∫

d4p
(2π)4

1
p2 −M2 + iε

= 2N f Nc

∫

d3p
(2π)3

1
p

~p2 +M2
(2.31)

so the gap equation reads

λ

�

M2

g2
− v 2

�

= g2L1 , (2.32)

which can be solved for v 2

v 2 =
M2

g2
−

g2L1

λ
. (2.33)

The quark loop L1 is quadratically divergent and needs to be regularized in order to get a finite
value (see section 3.4).

7



3 Meson masses
In this chapter different definitions of the meson masses are introduced.

3.1 Tree-level mass

The tree-level mass of the mesons is defined by the second derivative of the meson potential at
the thermodynamic minimum

m2
j,t =

∂ 2U
∂ φ2

j

�

�

�

�

σ=〈σ〉, ~π=0

, (3.1)

where the field φ j stands for the sigma meson or the pion field depending on the index j.
This definition leads to masses which the mesons would have in the absence of the coupling to
the Dirac sea quarks.
Using equation (2.33) leads to the following expressions

m2
σ,t = λ

�

3
M2

g2
− v 2

�

= 2λ
M2

g2
+ g2L1 (3.2)

m2
π,t = λ

�

M2

g2
− v 2

�

= g2L1 . (3.3)

For L1 6= 0 the pion has a non-vanishing mass which is in contradiction to Goldstone’s theorem
predicting massless Goldstone bosons. This error can be corrected by taking quark-antiquark
polarization loops into account which results in a dressed massless pion.

3.2 Dressed pole mass

The determination of the pole masses requires propagators of the mesons because their masses
are then defined by the implicit equation

D−1
j (q

2 = m2
j ) = 0 . (3.4)

First the tree-level propagators with their corresponding tree-level masses are defined

iDj,t(q
2) =

i
q2 −m2

j,t + iε
(3.5)

which are then dressed with quark-antiquark polarization loops

−iΠ j(q
2) = −

∫

d4p
(2π)4

tr
�

Γ j iSF(p+ q)Γ j iSF(p)
�

, (3.6)
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where

Γσ = 1Dirac ⊗ 1Colour ⊗ 1Flavour , (3.7)

Γπa = iγ5 ⊗ 1Colour ⊗τa (3.8)

and SF(p) is the quark propagator in Minkowski space

SF(p) =
1

/p−M + iε
. (3.9)

Those self-energy loops are summed up in a geometrical series as illustrated in figure 3.1.

 

Figure 3.1.: The dressed meson propagator is given by a geometrical sum of quark-antiquark po-
larization loops and is indicated by a double line. The bare propagators are indicated
by dashed lines while the filled circle stands for the Yukawa coupling g.

Now the dressed meson propagator reads

Dj(q
2) =

1
q2 −m2

j,t + g2Π j(q2) + iε
(3.10)

with its corresponding pole mass

m2
j = m2

j,t − g2Π j(m
2
j ) . (3.11)

After evaluating the polarization loop (see Appendix A) the meson propagators read

Dπ(q
2) =

1

q2(1− 1
2 g2L2(q2)) + iε

(3.12)

Dσ(q
2) =

1

q2 − 1
2 g2(q2 − 4M2)L2(q2)− 2λM2

g2 + iε
, (3.13)

where the quark loop L2(q2) using the residue theorem is given by

L2(q
2) = 4iN f Nc

∫

d4p
(2π)4

1
[(p+ q)2 −M2 + iε][p2 −M2 + iε]

= 4N f Nc

∫

d3p
(2π)3

1
p

~p2 +M2

1
�

q2 − 4(~p2 +M2) + iε
� . (3.14)

Hence the pion pole mass is now vanishing in consistency with Goldstone’s theorem while the
corresponding implicit equation for the determination of the sigma meson pole mass is given by

m2
σ −

1
2

g2(m2
σ − 4M2)L2(m

2
σ)−

2λM2

g2
= 0 . (3.15)
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3.2.1 Renormalized quark-meson coupling constant

If the polarization loop is expanded around the pole mass

Π j(q
2) = Π j(m

2
j ) +Π

′(m2
j )(q

2 −m2
j ) + ... (3.16)

with

Π′ =
d

dq2
Π(q2) , (3.17)

the meson propagator in the vicinity of the pole can be written as

Dj(q
2) =

Z j

q2 −m2
j + iε

+ regular terms , (3.18)

where Z j is the wave-function renormalization constant and is given by

Z j =
1

1+ g2Π′j(m
2
j )

. (3.19)

 

Figure 3.2.: Scattering of two quarks by an exchange of a dressed meson.

Considering the scattering of two quarks by an exchange of a dressed meson as depicted in
figure 3.2 leads to the expression

g2Dj(q
2) = g2

Z j

q2 −m2
j + iε

=
g2

j

q2 −m2
j + iε

(3.20)

which gives the renormalized quark-meson coupling constant at the pole

g j = g
Æ

Z j . (3.21)

This expression can now be used to determine the renormalized quark-meson coupling constant
in the vicinity of the pole

g2
π = g2Zπ = g2Dπ(m

2
π)(q

2 −m2
π) = g2Dπ(0)q

2 =
g2

1− 1
2 g2L2(0)

. (3.22)

10



3.3 Screening mass

Analogously to the definition of the tree-level mass, the screening meson mass is defined by the
curvature of the thermodynamic potential instead of the meson potential and is also evaluated
at the thermodynamic minimum, e.g. in vacuum

m2
j,s =

∂ 2Ωvac

∂ φ2
j

�

�

�

�

σ=〈σ〉, ~π=0

. (3.23)

Using the definition of the screening mass, the gap-equation solved for v 2 given by equation
(2.33) and the relation M = g〈σ〉 leads to the expression

m2
σ,s = 2λ

M2

g2
+ 2g2M2N f Nc

∫

d3p
(2π)3

1
p

~p2 +M2
3 , (3.24)

so the sigma meson screening mass reads

m2
σ,s = 2λ

M2

g2
− 2g2M2L2(0) . (3.25)

For the pion meson mass we obtain

m2
πa =

∂ 2Ωvac

∂ (πa)2

�

�

�

�

σ=〈σ〉, ~π=0

= −g2L1 +λ
�

〈σ〉2 − v 2
�

. (3.26)

Now using the gap equation solved for v 2 given by equation (2.33) and the relation M = g〈σ〉
gives

m2
πa = −g2L1 +λ

�

M2

g2
−

M2

g2
+

g2L1

λ

�

= 0 . (3.27)

Hence the pion screening mass is vanishing. This is in consistency with Goldstone’s theorem.
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3.4 Regularization

In order to remove the quadratic divergence in the quark loop L1, the logarithmic divergence in
L2(q2) and the quartic divergence in the thermodynamic potential a regularization is needed.
In this thesis the standard Pauli-Villars regularization scheme [7] is used with three regulating
functions

∫

d3p
(2π)3

F(M2) −→
∫

d3p
(2π)3

3
∑

j=0

c j F(M
2 + jΛ2) (3.28)

with a cutoff parameter Λ and the coefficients c0 = 1, c1 = −3, c2 = 3 and c3 = −1. Those
regulating functions have the same asymptotic behaviour as the original such that they cancel
out each other for asymptotic momenta by subtracting themselves.
The number of regulating functions needed to ensure convergence increases by increasing the
degree of divergence.
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4 Parameter fixing
In this chapter different schemes of parameter fixing for determination of the parameters λ, g2

and v 2 are introduced. The calculations within each scheme are done in vacuum. They differ
from one another by using different relations but the same given data, the constituent quark
mass in vacuum M = 300 MeV, the pion decay constant fπ = 88 MeV and the sigma meson mass
given by 2M . It is not specified which of the introduced sigma meson mass is set to 2M .

4.1 Standard mean-field approximation

The thermodynamic potential in vacuum given by equation (2.27) includes a divergent integral.
In order to handle this divergence we could regularize the integral or just omit it. The latter is
done in standard mean-field approximation (sMFA) and therefore the thermodynamic potential
in vacuum is just given by the meson potential

ΩsMFA
vac (σ, ~π) = U(σ, ~π) =

λ

4

�

σ2 + ~π2 − v 2
�2

. (4.1)

The gap equation solved for v 2 given by equation (2.33) simplifies to

v 2 =
M2

g2
. (4.2)

Using the Goldberger-Treiman relation [5]

M = gπ fπ (4.3)

and the fact that in sMFA the quark-meson coupling constant is equal to the bare Yukawa coup-
ling g, the parameter g is fixed by

g =
M
fπ

. (4.4)

Inserting the result for g into equation (4.2) yields

v 2 = f 2
π . (4.5)

The meson masses in sMFA are given by the tree-level masses and because the divergent integral
in the thermodynamic potential is omitted, the divergent integral L1 in the tree-level masses
given by equation (3.2) and (3.3) does not occur and we obtain

m2
σ,t = 2λ

M2

g2
(4.6)

m2
π,t = 0 . (4.7)

Hence the pion mass is vanishing which is in consistency with Goldstone’s theorem. Now the
parameter λ can be fixed by setting the sigma meson mass to 2M

λ=
2M2

f 2
π

. (4.8)

All parameters are now fixed and the phase diagram can be analysed by applying the results to
the thermodynamic potential. This will be done in chapter 5.
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4.2 First scheme of parameter fixing

The first scheme of parameter fixing uses the Goldberger Treiman relation [5]

M = gπ fπ , (4.9)

the renormalized quark-meson coupling constant in the vicinity of the pole

g2
π =

g2

1− 1
2 g2L2(0)

(4.10)

and the gap equation solved for v 2

v 2 =
M2

g2
−

g2L1

λ
. (4.11)

Furthermore the dressed pole mass of the sigma meson is set to 2M .
By using equation (4.9) and (4.10), the parameter g2 can be fixed to

g2 =
M2

f 2
π +

1
2 M2L2(0)

. (4.12)

Due to the fact that L2(0) depends on the cutoff parameter Λ the parameter g2 also depends on
Λ as shown in figure 4.1.
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Figure 4.1.: Dependence of the parameter g2 on Λ using the first scheme of parameter fixing.

As mentioned above, the pole mass of the sigma meson is set to 2M which is then inserted into
equation (3.15) and hence the parameter λ is given by

λ= 2g2 =
2M2

f 2
π +

1
2 M2L2(0)

. (4.13)
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Figure 4.2.: Dependence of the parameter λ on Λ using the first scheme of parameter fixing.

The results for g2 and λ are then inserted into equation (4.11) and we obtain

v 2 = f 2
π +

1
2

M2L2(0)−
1
2

L1 . (4.14)
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Figure 4.3.: Dependence of the parameter v 2 on Λ using the first scheme of parameter fixing.

4.3 Second scheme of parameter fixing

The second scheme of parameter fixing is quite similar to the first one which in particular means
that all relations in the first scheme are also used in this one but now the screening sigma meson
mass instead of the dressed pole mass is set to 2M .
Using again the Goldberger Treiman relation and the renormalized quark-meson coupling con-
stant in the vicinity of the pole yields once more

g2 =
M2

f 2
π +

1
2 M2L2(0)

. (4.15)
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The dependence of the parameter g2 on the cutoff parameter Λ is already depicted in figure 4.1.
As mentioned above now the sigma meson screening mass given by equation (3.25) is set to 2M
which is then solved for λ

λ= g2
�

2+ g2L2(0)
�

=
M2

f 2
π +

1
2 M2L2(0)

�

2+
M2L2(0)

f 2
π +

1
2 M2L2(0)

�

. (4.16)
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Figure 4.4.: Dependence of the parameter λ on Λ using the second scheme of parameter fixing.

Inserting those two parameters into equation (2.33) fixes the parameter v 2

v 2 = f 2
π +

1
2

M2L2(0)−
L1

4

2 f 2
π +M2L2(0)

f 2
π +M2L2(0)

. (4.17)
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Figure 4.5.: Dependence of the parameter v 2 onΛ using the second scheme of parameter fixing.
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4.4 Third scheme of parameter fixing

The third scheme of parameter fixing sets the expectation value of the sigma meson field to fπ

〈σ〉= fπ , (4.18)

which is then used to fix g with equation (2.21)

g =
M
fπ

. (4.19)

In this scheme g is independent of Λ.
The sigma meson screening mass is set to 2M which yields

λ= g2
�

2+ g2L2(0)
�

=
M2

f 2
π

�

2+
M2

f 2
π

L2(0)

�

. (4.20)
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Figure 4.6.: Dependence of λ on Λ using the third scheme of parameter fixing.

The parameter v 2 is fixed by using the gap equation and inserting the determined expressions
for g and λ gives

v 2 = f 2
π

�

1−
L1

2 f 2
π +M2L2(0)

�

. (4.21)
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Figure 4.7.: Dependence of v 2 on Λ using the third scheme of parameter fixing.
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5 Phase diagram
The phase diagram visualizes the boundary between different phases. In this case the two phases
are the spontaneously broken phase of the chiral symmetry and the chiral restored phase. In
the spontaneously broken phase the expectation value of the sigma meson field has a non-
vanishing value and hence the constituent quark mass M is finite while in the restored phase the
expectation value vanishes and so does the constituent quark mass. The expectation value of
the sigma meson field represents the physical ground state of the model which means its value is
determined by minimizing the thermodynamic potential with respect to the sigma meson field.
In order to find this minimum the numerically determined thermodynamic potential depending
on the sigma meson field is examined. Due to the linear relation between the sigma meson field
and the mass m, the potential can be expressed as a function of m which is already done in
equation (2.26).
The thermodynamic potential for Λ = 300 MeV, µ = 100 MeV and T = 50 MeV is depicted in
figure 5.1.

-400 -200 0 200 400

-40

-20

0

20

40

60

80

m HMeVL

W
ho

m
HMe

v�fm
3 L

Figure 5.1.: Thermodynamic potential for Λ= 300 MeV, µ= 100 MeV and T = 50 MeV.

Obviously the constituent quark mass M, given by the mass m in the minimum of the poten-
tial, has a finite value and hence the physical state for this combination of temperature T and
chemical potential µ is in the spontaneously broken phase. By increasing the temperature, the
chemical potential or both a phase transition to the chiral restored phase can emerge. This
phase transition can happen in two different ways.
A first-order phase transition is characterized by a jumping value of the constituent quark mass
M. This means that by increasing the temperature or the chemical potential, the position of the
global minimum in the thermodynamic potential is jumping.
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Figure 5.2.: Thermodynamic potential for Λ= 300 MeV, µ= 250 MeV and T= 68.3 MeV (left) and
T= 68.9 MeV (right). The local minimum at m= 0 MeV in the left diagram becomes
a global minimum on the right diagram by increasing the temperature which is then
the physical state. This illustrates a first-order phase transition.

In figure 5.2 the thermodynamic potential during a phase transition of first order is depicted.
The constituent quark mass M is jumping from a finite value to zero.

A second-order phase transition is characterized by a continuous transition of the constituent
quark mass M which means that the position of the global minimum changes continuously by
varying the temperature or chemical potential.
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Figure 5.3.: Thermodynamic potential for Λ = 300 MeV and µ = 100 MeV. From bottom to top
the temperature increases T = 137 MeV, T = 138 MeV, T = 139 MeV, T = 140 MeV.
For T = 140 MeV the constituent quark mass is zero and hence the system is in the
chiral restored phase. This illustrates a second-order phase transition.

In figure 5.3 the thermodynamic potential during a phase transition of second order is shown.
The so-called tricritical point in the phase diagram separates the first-order from second-order
phase transition.
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5.1 Phase diagram using the first scheme of parameter fixing

The results for the parameters of the first scheme are now used to determine the phase di-
agram by examining the thermodynamic potential given by equation (2.26) at non-vanishing
temperature and chemical potential.

àà

àà
àà

àààà

0 50 100 150 200 250 300 350
0

50

100

150

200

Μ HMeVL

T
HMe

VL

Figure 5.4.: The black line indicates the phase diagram in sMFA while the coloured lines include
the Dirac sea using Pauli-Villars regularization with different values of the cutoff:
Λ = 300 MeV, 600 MeV, 1 GeV, 2 GeV, 5 GeV (from bottom to top). The squares
mark the tricritical points which separate second-order (to the left) from first-order
(to the right) phase transitions. In sMFA it is always a first-order transition.

As shown in figure 5.4 there exists no trictritical point in sMFA. The phase transition along the
entire phase boundary exhibits a first-order phase transition. This behaviour in the chiral limit
and without the Dirac sea contribution, even at vanishing chemical potential [8, 9], is well
known. This problem was carefully analyzed in Ref. [10] and was identified as an artifact of
the standard mean-field approximation. For all other phase diagrams shown in figure 5.4 a
trictritical point exists, separating the second-order from first-order phase transition.
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The phase diagrams converge to one diagram by increasing the cutoff parameter Λ and also the
tricritical points are approaching each other and finally they basically overlap. This behaviour
reflects the renormalizable character of the model. The phase diagram for Λ = 5 GeV can be
interpreted as “renormalized”.
Though the phase diagrams show a renormalizable character, the thermodynamic potential is
getting unstable if the parameter λ changes its sign which is expected according to equation
(2.26). As a result the thermodynamic potential for Λ = 757 MeV or higher is not bounded
from below and hence there is no physical ground state.
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Figure 5.5.: Unstable thermodynamic potential for Λ = 1000 MeV, µ = 150 MeV and
T = 50 MeV.

5.2 Phase diagram using the second scheme of parameter fixing

Following, the parameters from the second scheme of parameter fixing are applied to determine
the phase diagram.
As shown in figure 5.6 the phase diagrams for increasing cutoff parameter Λ collapse into the
origin and for Λ = 1330 MeV and higher there are no phase diagrams because only the chiral
restored phase is present.
Moreover for Λ = 494 MeV the parameter λ gets negative and hence the thermodynamic po-
tential is getting unstable.

22



àà

àà

àà

0 50 100 150 200 250 300 350
0

50

100

150

200

Μ HMeVL

T
HMe

VL

Figure 5.6.: The black line indicates the phase diagram in sMFA while the coloured lines include
the Dirac sea using Pauli-Villars regularization with different values of the cutoff:
Λ=300 Mev, 600 MeV, 1 GeV (blue, green, orange). The squares mark the tricritical
points which separate second-order (to the left) from first-order (to the right) phase
transitions. In sMFA it is always a first-order transition.

5.3 Phase diagram using the third scheme of parameter fixing

Again the phase diagrams are determined, in this case using the parameters resulting from the
third scheme.
Remarkably, all phase diagrams using the third scheme are completely identical to the phase
diagrams based on the first scheme although the parameters in both schemes differ from one
another.
On closer examination of the thermodynamic potential by inserting the parameters of each
scheme, it is found that the analytic expressions are indeed the same which explains the same
results. The only term in the thermodynamic potential given by equation (2.26) which is de-
pending on the parameters is the meson potential. Therefore it is sufficient to compare the
results of the meson potential using the parameters of each scheme.
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Applying the first scheme in the meson potential and exploiting that the pion field in the mini-
mum vanishes, which means that terms with ~π can be omitted, yields

U(m) =
λ

4

�

m2

g2
− v 2

�2

=
M2

�

2 f 2
π +M2L2(0)

�

�m2
�

f 2
π +

1
2 M2L2(0)

�

M2
− f 2

π −
1
2

M2L2(0) +
L1

2

�2

=
M2

�

2 f 2
π +M2L2(0)

�

�

f 2
π

�

m2

M2
− 1

�

+
�

m2 −M2

2

�

L2(0) +
L1

2

�2

. (5.1)

Now applying the third scheme in the meson potential yields

U(m) =
λ

4

�

m2

g2
− v 2

�2

=

M2

f 2
π

�

2+ M2

f 2
π

L2(0)
�

4

�m2 f 2
π

M2
− f 2

π +
L1 f 2

π
�

2 f 2
π +M2L2(0)

�

�2

=

M2

f 2
π

�

2+ M2

f 2
π

L2(0)
�

4

� 2 f 2
π

�

2 f 2
π +M2L2(0)

�

�

m2

M2 − 1
��

2 f 2
π +M2L2(0)

�

+ L1

2

�2

=
1
4

M2

f 2
π

�

2+
M2

f 2
π

L2(0)
� 4 f 4

π
�

2 f 2
π +M2L2(0)

�2

�

f 2
π

�

m2

M2
− 1

�

+
�

m2 −M2

2

�

L2(0) +
L1

2

�2

=
M2

�

2 f 2
π +M2L2(0)

�

�

f 2
π

�

m2

M2
− 1

�

+
�

m2 −M2

2

�

L2(0) +
L1

2

�2

. (5.2)

Comparing equation (5.1) with (5.2) shows that the meson potential applying the first and third
scheme is indeed identical and hence the thermodynamic potential is identical which results in
equal phase diagrams.

The thermodynamic potential is again getting unstable if the parameter λ changes its sign.
Although the parameter λ differs from the one based on the first scheme, the change of sign
takes place for Λ = 757 MeV and hence the thermodynamic potential is also not bounded from
below for Λ= 757 MeV or higher.
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6 Conclusion and outlook
In this thesis the phase diagram of the quark-meson model was determined for different schemes
of parameter fixing by examining the thermodynamic potential.
First we just omitted the divergent term in the vacuum thermodynamic potential which corre-
sponds to the so-called standard mean-field approximation. Due to the fact that no regulariza-
tion including a cutoff parameter is needed, there is no dependence of the parameters on such
a cutoff parameter. The phase transition in standard mean-field approximation exhibits a first-
order transition along the entire phase boundary which is an artifact of the standard mean-field
approximation.
The next step was to take the Dirac sea into account to receive more precise results. Therefore
the divergent term in the vacuum thermodynamic potential is not omitted and hence the di-
vergence has to be handled in a proper way. For this reason a regularization including a cutoff
parameter Λ, in particular the Pauli-Villars regularization scheme, was used. In contrast to the
parameters in standard mean-field approximation, the parameters now depend on such a cutoff
parameter Λ. Since it is not clear without ambiguity how the parameters have to be fixed, three
different schemes of parameter fixing are introduced.
The phase diagrams using the first and third scheme converge to one diagram for increasing cut-
off parameter Λwhich reflects the renormalizability of the model. This means that for arbitrarily
high cutoff parameter, the phase diagrams will differ insignificantly from the one calculated for
Λ= 5 GeV.
This behaviour does not occur in the phase diagrams by applying the second scheme of para-
meter fixing. Those diagrams collapse into the origin by increasing the cutoff parameter and for
higher cutoff parameter than Λ = 1330 MeV only the chiral restored phase exists. Since it is
well known that quarks in nature have a constituent quark mass of about 300 MeV in vacuum,
they have to exist in the spontaneously broken phase in vacuum. This fact is in contradiction to
the results for Λ= 1330 MeV or higher.
Though the phase diagram by applying the first and third scheme of parameter fixing converge
to one diagram by increasing the cutoff parameter, the thermodynamic potential is not stable
for arbitrary values of Λ. In particular for a cutoff parameter of Λ = 757 MeV or higher the
parameter λ is negative. The thermodynamic potential is not bounded from below any more
and hence there is no physical ground state for Λ= 757 MeV or higher.
Analogously the thermodynamic potential using the second scheme of parameter fixing is get-
ting unstable for Λ= 494 MeV due to the change of sign of the parameter λ.
In contrast to the phase diagrams applying the first and third scheme of parameter fixing, the
phase diagrams using the second scheme are not converging to a non-trivial diagram. The rea-
son for this non-renormalizable character could be the fact that the sigma meson screening mass
is used within this scheme, which in comparison to the pole mass is no good observable. This is
a prerequisite for renormalization.
Altogether the second scheme of parameter fixing is not very physical since it is only applicable
until Λ = 494 MeV and because the phase diagrams do not show a renormalizable character
which means that the phase diagrams do not converge to one diagram.
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The first and third scheme of parameter fixing are applicable until Λ= 757 MeV and in contrast
to the second scheme the phase diagrams show a renormalizable character. Both schemes lead
to the same homogeneous phase diagram but since the third scheme is using the sigma meson
screening mass instead of the observable pole mass, the first scheme seems to be the more phy-
sical one. In order to extract visible differences between both schemes, we should examine the
phase diagrams in inhomogeneous phases.
To remove instabilities in the thermodynamic potential based on each scheme of parameter
fixing, we can study the phase diagram beyond mean-field approximation.
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A Quark-antiquark polarization loops
The expressions for the quark-antiquark polarization loops are given by

−iΠ j(q
2) = −

∫

d4p
(2π)4

tr
�

Γ j iSF(p+ q)Γ j iSF(p)
�

(A.1)

with

Γσ = 1Dirac ⊗ 1Colour ⊗ 1Flavour , (A.2)

Γπa = iγ5 ⊗ 1Colour ⊗τa (A.3)

and

SF(p) =
1

/p−M + iε
=

(/p+M)

p2 −M2 + iε′
. (A.4)

For the sigma meson we obtain [11]

−iΠσ(q
2) = −

∫

d4p
(2π)4

tr
�

1Dirac ⊗ 1Colour ⊗ 1FlavouriSF(p+ q)1Dirac ⊗ 1Colour ⊗ 1FlavouriSF(p)
�

=

∫

d4p
(2π)4

tr
�

1Dirac ⊗ 1Colour ⊗ 1FlavourSF(p+ q)SF(p)
�

= N f Nc

∫

d4p
(2π)4

tr
�

1DiracSF(p+ q)SF(p)
�

= N f Nc

∫

d4p
(2π)4

tr

�

(/p+ /q+M)
�

(p+ q)2 −M2 + iε
�

(/p+M)
�

p2 −M2 + iε
�

�

. (A.5)

Since the trace is vanishing for arbitrary /a we get

−iΠσ(q
2) = N f Nc

∫

d4p
(2π)4

tr

�

/p2 + /q/p+M2

�

(p+ q)2 −M2 + iε
��

p2 −M2 + iε
�

�

. (A.6)

Making use of the relation tr(/a/b) = 4ab yields

−iΠσ = 4N f Nc

∫

d4p
(2π)4

�

p2 + pq+M2

�

(p+ q)2 −M2 + iε
��

p2 −M2 + iε
�

�

= 4N f Nc

∫

d4p
(2π)4

�

1
�

p2 −M2 + iε
� −

pq+ q2 − 2M2

�

(p+ q)2 −M2 + iε
��

p2 −M2 + iε
�

�

. (A.7)
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Now consider the following integral
∫

d4p
(2π)4

2pq+ q2

�
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Comparing equation (A.8) with equation (A.9) yields
∫
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(2π)4
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Multiplying equation (A.7) with i and then inserting equation (A.10) yields
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For the pion we obtain
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Using now {γ5,γµ}= 0 and (γ5)2 = 1Dirac gives

−iΠab
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Now using again the relations tr(/a) = 0 and tr(/a/b) = 4ab lead to
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Multiplying equation (A.14) with i and applying equation (A.10) yields
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p2 −M2 + iε
� −

q2

2
�

p2 −M2 + iε
��

(p+ q)2 −M2 + iε
�

�

= δab

�

4iN f Nc

∫

d4p
(2π)4

1
�

p2 −M2 + iε
� − 2iN f Nc

∫

d4p
(2π)4

q2

�

p2 −M2 + iε
��

(p+ q)2 −M2 + iε
�

�

= δab

�

L1 −
1
2

L2(q
2)q2

�

. (A.15)
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