X, Y, and Z states

Relativistische Schwerionenphysik - Seminar

Jan Wagner

TECHNISCHE UNIVERSITÄT DARMSTADT

Content

- 1) Theoretical models beyond constituent quark model
- 2) Experiments and production channels
- 3) The X(3872) state
- 4) Other XYZ states
- 5) Conclusion

Charmonium spectroscopy

- Measurement of cc spectrum
- Theoretical calculations of cc states using potential model
- Models based on interactions described by the QCD
- (Confinement, gluon exchange)
- Successful description of low level charmonium states
- Models predict possible existance of exotic states

Constituent quark model

- So far only hadrons containing qq or qqq have been observed
- QCD does not forbid other configurations
- Many quark potential models predict existance of additional quark states
- Search for exotic states as gluonballs and pentaquarks still unsuccessful

Exotic quark models

- Molecular state
- Tetraquark
- Hybrid mesons

Molecular Charmonium: A New Spectroscopy?*

A. De Rújula, Howard Georgi, † and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 23 November 1976)

Recent data compel us to interpret several peaks in the cross section of e^-e^+ annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in e^-e^+ annihilation.

Properties of recently discovered charmed particles, ${}^{1}D^{0}$, D^{*} , D^{*0} , and D^{**} , are in good agreement with a simple picture of hadrons as bound states of quarks in a color gauge theory.² The model of mesons as quark-antiquark bound states (and baryons as three-quark bound states) with long-range spin-independent binding and short-range spin-dependent color gluon exchange adequately describes many features of normal hadron spectroscopy.^{2,3} Moreover, it has correctly predicted the qualitative behavior of the charmonium states and of charmed hadrons themselves.² This Letter is focused on one remaining striking and generally unexpected feature of charmed-meson production in e^-e^+ annihilation. Much data in which D mesons are seen are taken at a peak in the annihilation cross section, at \sqrt{s} = 4.028 GeV, where the yield of charmed mesons was expected to be, and indeed is, high. Analysis of the recoil-mass spectrum against detected D^{0^*} s indicates that $\sigma(\overline{D}^0D^0)$, $\sigma(\overline{D}^0D^{*0} + \overline{D}^{*0}D^0)$, and $\sigma(\overline{D}^{*0}D^{*0})$ are in the ratios 1: ~8: ~11 at this energy.⁴⁵ Estimates of charmed-meson masses reveal that the available decay energies are ~300, ~160, and ~18 MeV, respectively. It is remarkable that the $\overline{D}^{*0}D^{*0}$ mode, with so little phase arXiv:0801.3867v1 [hep-ph]

TECHNISCHE

UNIVERSITÄT DARMSTADT

2014-1-23 | Jan Wagner | TU Darmstadt | Relativistische Schwerionenphysik Seminar | 6

Molecular state

- Two (charmed) mesons bound to a molecular state
- Quark/color interaction at short ranges
- Pion exchange at long range

 $D^0 - \overline{D^{*0}}$ "molecule"

Tetraquark

- Tight bound state of diquark diantiquark configuration
 - Difference to normal charmonium:
- Existance of multiplets with nonzero charge or strangeness: [cucd], [cdcs]

Hybrid mesons

- Additional excited gluon described by flux tube model
- Possibility to form exotic quantum numbers which are not allowed in normal qq:
- J^{PC}= 0⁺⁻, 1⁻⁺, 2⁺⁻
- Predicted mass > 4.2 GeV/c²

Colliders types & experiments for spectroscopy

B-factories

- High luminosity e⁺e⁻ colliders at Y(4S) energy
- Designed to measure CP violation but because of high rates also excellent for spectroscopy

Hadron colliders

- High energy pp colliders
- Great phase space range of particle production

CLEO

Charmonium production in e⁺e⁻ colliders

- Weak B decays
- Initial state radiation
- Charmonium with J/Ψ
- Photon-photon collisions

TECHNISCHE UNIVERSITÄT

DARMSTADT

Roman Mizuk, ITEP Seminar, 18 Nov 2009

2014-1-23 | Jan Wagner | TU Darmstadt | Relativistische Schwerionenphysik Seminar | 11

Weak B decays

- Beauty decays weak to charm
- B -> K + X(cc) with branching ratio 10⁻³
- At Belle η_c(2S) was discovered using this decay channel (Phys. Rev. Lett. 89:102001)

2014-1-23 | Jan Wagner | TU Darmstadt | Relativistische Schwerionenphysik Seminar | 12

Initial state radiation

- Gamma ray radiated from e⁺ or e⁻ before interaction
- Can reduce cm energy of the e+e- system to be in charmonium mass range
- Because of photon, charmonium has to be 1⁻⁻ state

www. mm J/ψ,ψ(2S)

Charmonium with J/Ψ

- Production of J/Ψ and other X(cc) state
- C-parity conservation implies positive C-parity for X

J/ψ,ψ(2S)

= + states

Photon-photon collisions

- Interaction of photons radiated by the e⁺ and the e⁻
- Final state measured with e⁺ and e
- η_c(2S) confirmation via photon-photon collisions at CLEO

(Phys. Rev. Lett. 92:142001)

X (3872) – The beginning

- Belle studied the decay $B^{_+} \rightarrow K^{_+} \pi^{_-} \pi^{_-} J/\psi$ and found a new narrow resonance at 3872 MeV/c² (10.3 σ)
- Confimation by other experiments (CDF, D0, BaBar, CMS, LHCb)

^{2014-1-23 |} Jan Wagner | TU Darmstadt | Relativistische Schwerionenphysik Seminar | 15

X (3872) – different decay channels

- $p\overline{p}/pp \rightarrow (\pi^{+} \pi^{-} J/\psi)$
- $^{\bullet} B \to K \; (\omega \; J/\psi)$
- B \rightarrow K (γ J/ ψ)
- $B \rightarrow K (\gamma \psi(2S))$

- Belle, BaBar
- CDF, D0 / LHCb, CMS

TECHNISCHE UNIVERSITÄT

DARMSTADT

- Belle, BaBar
- Belle, BaBar
- Belle, BaBar

X (3872) – mass measurements

TECHNISCHE

UNIVERSITÄT DARMSTADT

2014-1-23 | Jan Wagner | TU Darmstadt | Relativistische Schwerionenphysik Seminar | 17

X (3872) – quantum numbers

- The decay X(3872)->γ J/ψ indicates C=+ for X(3872)
- Dipion spectrum shows resemblance with ρ meson in CDF II 360 pb⁻¹ CDF (arXiv:hepex/0512074v1) 250 \vdash **X(3872)** → **J**/ψπ⁺π⁻ X(3872) yield per 20 MeV/c² - J/ψ ρ (L=0) - - J/ψ ρ (L=1) 200 Multipole Expansions for cc: 150 100 50 -50 0.4 0.6 0.8 $\pi\pi$ Mass [GeV/c²]

X (3872) – quantum numbers

Extensive angular measurement from CDF lead to:

 $J^{PC} = 1^{++} \text{ or } 2^{-+} \text{ (arXiv:hep-ex/0612053v2)}$

- Confirmation by Belle and BaBar
- LHCb recently published 5D angular correlation measurement excluding 2⁺⁺ by 8.4σ (arXiv:1302.6269v1 [hep-ex])

X (3872) possible interpretation

- Decay to $\rho J/\psi$ would violate isospin if X(3872) is charmonium
- Tetraquark hypothesis predict charged isospin partner states, not observed so far
- Close to the D⁰D^{0*} theshold (3871.81 +/- 0.36 MeV/c²) hints to molecule hypothesis

Y (4260) vector state 1⁻⁻

Discovered by BaBar via InitialStateRadiation:

 $e^+e^- \rightarrow \gamma_{_{ISR}} \left(\pi^+ \pi^- J/\psi\right)$

- Confirmed by Belle and CLEO
- Mass does not fit predictions for regular charmonium state
- Recently substructure found in the Y(4260) resonance

Z_c(3900)[±] charged exotic

TECHNISCHE UNIVERSITÄT DARMSTADT

- BESIII measured at cm energy Y(4260)
- Peak in the projection in the mass of $J/\psi + \pi^-$ and $J/\psi + \pi^+$
- Combined spectrum gives peak at 3900 MeV/c² (>8σ) (Reflection at ~3500 MeV/c²)

arXiv:1303.5949v2 [hep-ex]

Z_c(3900)[±] charged exotic

TECHNISCHE UNIVERSITÄT DARMSTADT

 Also peak around 3900 MeV visible at Belle (5.2σ) (arXiv:1304.0121v2 [hep-ex])

Possible interpretation:

Tetraquark or molecule structure because of nonzero charge

Hint of beauty exotics

- Anomalous $Y(2S)\pi^+\pi^-$ and $Y(1S)\pi^+\pi^-$ production from Y(5S) transition
- Much larger partial width than expected:
- $\Gamma("Y(5S)" \rightarrow \pi + \pi Y(1S)) = (590 \pm 100) \text{ keV/c2}$
- $\Gamma("Y(5S)" \rightarrow n + n Y(2S)) = (850 \pm 175) \text{ keV/c2}$
- $\Gamma("Y(5S)" \rightarrow \pi + \pi Y(3S)) = (520 \pm 220) \text{ keV/c2}$
- $Y(4S) \rightarrow \pi + \pi Y(2S)$ (1.8 ± 0.4) keV
- $Y(4S) \rightarrow \pi + \pi Y(1S) (1.7 \pm 0.5) \text{ keV}$

```
Possible Y_{h}(10888) next to Y(5S)?
```


XYZ states

TECHNISCHE UNIVERSITÄT DARMSTADT

State	$m ({ m MeV})$	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status	
X(3872)	$3871.68 {\pm} 0.17$	< 1.2	$1^{++}/2^{-+}$	$B \to K \left(\pi^+ \pi^- J/\psi \right)$	Belle [36,37] (12.8), BABAR [38] (8.6)	2003	OK	
				$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$	CDF [39-41] (np), D0 [42] (5.2)			
				$B \to K \left(\omega J/\psi \right)$	Belle $[43]$ (4.3), BABAR $[23]$ (4.0)			
				$B \to K(D^{*0}\overline{D}^0)$	Belle $[44,45]$ (6.4), BABAR $[46]$ (4.9)			
				$B \to K \left(\gamma J / \psi \right)$	Belle $[47]$ (4.0), BABAR $[48,49]$ (3.6)			
				$B \to K\left(\gamma \psi(2S)\right)$	BABAR $[49]$ (3.5), Belle $[47]$ (0.4)			
				$pp \rightarrow (\pi^+\pi^- J/\psi) + \dots$	LHCb $[50]$ (np)			
X(3915)	3917.4 ± 2.7	28^{+10}_{-9}	$0/2^{?+}$	$B \to K \left(\omega J/\psi \right)$	Belle [51] (8.1), BABAR [52] (19)	2004	OK	
		0		$e^+e^- \rightarrow e^+e^- \left(\omega J/\psi\right)$	Belle [53] (7.7), BABAR [23] (np)			
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$e^+e^- \to J/\psi (D\overline{D}^*)$	Belle $[54]$ (6.0)	2007	NC!	
				$e^+e^- \to J/\psi ()$	Belle $[20]$ (5.0)			
G(3900)	3943 ± 21	52 ± 11	$1^{}$	$e^+e^- \to \gamma \left(D\overline{D} \right)$	BABAR $[55]$ (np), Belle $[56]$ (np)	2007	OK	
Y(4008)	4008^{+121}_{-49}	226 ± 97	$1^{}$	$e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$	Belle $[57]$ (7.4)	2007	NC!	
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K \left(\pi^+ \chi_{c1}(1P) \right)$	Belle $[58]$ (5.0), BABAR $[59]$ (1.1)	2008	NC!	
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	$?^{?+}$	$B \to K \left(\phi J / \psi \right)$	CDF [60,61] (5.0)	2009	NC!	
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{?+}$	$e^+e^- \to J/\psi (D\overline{D}^*)$	Belle $[54]$ (5.5)	2007	NC!	
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle $[58]$ (5.0), BABAR $[59]$ (2.0)	2008	NC!	
Y(4260)	4263_{-9}^{+8}	95 ± 14	$1^{}$	$e^+e^- \to \gamma \left(\pi^+\pi^- J/\psi\right)$	BABAR $[62, 63]$ (8.0)	2005	OK	
					CLEO $[64]$ (5.4), Belle $[57]$ (15)			
				$e^+e^- \to (\pi^+\pi^- J/\psi)$	CLEO [65] (11)			
				$e^+e^- \to (\pi^0\pi^0 J/\psi)$	CLEO $[65]$ (5.1)			
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	??+	$B \to K \left(\phi J / \psi \right)$	CDF [61] (3.1)	2010	NC!	
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	$0/2^{++}$	$e^+e^- \rightarrow e^+e^- \left(\phi J/\psi\right)$	Belle $[66]$ (3.2)	2009	NC!	
Y(4360)	4361 ± 13	$74{\pm}18$	$1^{}$	$e^+e^- \to \gamma \left(\pi^+\pi^-\psi(2S)\right)$	BABAR $[67]$ (np), Belle $[68]$ (8.0)	2007	OK	
$Z(4430)^{+}$	4443^{+24}_{-18}	107^{+113}_{-71}	?	$B \to K(\pi^+\psi(2S))$	Belle $[69,70]$ (6.4), BABAR $[71]$ (2.4)	2007	NC!	
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	$1^{}$	$e^+e^- \to \gamma \left(\Lambda_c^+ \Lambda_c^-\right)$	Belle $[72]$ (8.2)	2007	NC!	
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma \left(\pi^+\pi^-\psi(2S)\right)$	Belle $[68]$ (5.8)	2007	NC!	
$Z_b(10610)^+$	10607.2 ± 2.0	$18.4 {\pm} 2.4$	1^{+}	$\Upsilon(5S) \to \pi^-(\pi^+ [b\bar{b}])$	Belle $[73,74]$ (16)	2011	NC!	
$Z_b(10650)^+$	$10652.2{\pm}1.5$	$11.5{\pm}2.2$	1^{+}	$\Upsilon(5S) \to \pi^-(\pi^+ [b\bar{b}])$	Belle $[73,74]$ (16)	2011	NC!	
$Y_b(10888)$	$10888.4{\pm}3.0$	$30.7^{+8.9}_{-7.7}$	$1^{}$	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle $[75,76]$ (2.0)	2010	NC!	
					J. Be	erin	ger e	18

2014-1-23 | Jan Wagner | IU Darmstadt | Relativistische Schwerionenphysik Seminar | 25

PR D86, 010001 (2012)

The grain of salt: Pentaquark

- LEPS, Japan measured narrow state in the nK+ decay channel at 1540 MeV in 2003 with 4.6 sigma
- Interpretation: Pentaquark $\Theta^+(uudds)$
- Pentaquark with similar mass (1530 MeV) and width predicted by Diakonov et al. in 1997
- "confirmed" by other experiments although with questionable results (mass variation, cut optimization)
- Big experiments with great statistics measure NULL (CLAS, BELLE)
- Pentaquark(s) discarded for now

Summary & Conclusion

- Different theoretical approaches predict exotic quark states, which have not been identified until now
- Spectroscopic measurement in the heavy quarkonium range reveal new states
- High statistics and independent experiments needed to identify new states and exotic quark structures