

Heavy quark production in e⁺e⁻ & pp collisions

Seminar talk by Bernhard Maaß

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 1

- I. Introduction to heavy quark production
- II. Producing quarks in e⁺e⁻ collisions
- III. Hadronic structure and e⁻p collisions
- IV. Advanced experiments: pp collisions

I. Introduction	II. e⁺e⁻ collisions	III. hadronic strucure	IV. pp collisions

Introduction to heavy quark production

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 3

Heavy quarks

I. Introduction II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions
--	------------------------	-------------------

<u>charm</u>: SLAC and Brookhaven e⁺e⁻ annihiliation (1974)

bottom: Fermilab p-nucleus (1977)

<u>top</u>: Tevatron p⁺p⁻ annihilation (1995)

Source: wikipedia: quark

collider...

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | IV. pp collisions

<u>SLAC</u>: acceleration of e^+ and e^- up to 50 GeV

Tevatron:

acceleration of p⁺and p⁻ up to 900 GeV (when discovering top-quarks)

Source: wikipedia: SLAC, Tevatron

... and particle detectors

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 6

Source: http://www-cdf.fnal.gov/, [povh]

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions

Producing quarks in e⁺e⁻ collisions

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 7

e⁺e⁻ annihilation

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions
-----------------	--	------------------------	-------------------

all weak/em-interacting particles can be produced

Source: [povh]

the basic process

$$e^+ + e^- \rightarrow \overline{q} + q$$

muon production as reference

TECHNISCHE UNIVERSITÄT DARMSTADT

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | IV. pp collisions

Muon production

 $e^+ + e^- \rightarrow \mu^+ + \mu^-$

EM-process due to high Z^o mass – easy to calculate

μ-mass: 105.7 MeV τ-mass: 1.777GeV Z^o-mass: 91.2 GeV

Source: [povh]

lepton universality

<u>lepton universality</u> / leptons are point-masses (< 10⁻¹⁸m)

Resonances and quarks

maximum e⁺e⁻ collider cm-energy: ~ 172 GeV

Source: [povh]

between the resonance

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions

"free quarks" can be produced between the resonances.

 $e^+e^- \rightarrow q\overline{q} \rightarrow Hadrons$

Due to color confinement, the quark/antiquark-pair will immediatly hadronize ("fragmentation")

Source: [bethke]

Fragmentation

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | IV. pp collisions

The (pertubative) process is on a scale of d << 1fm

$$e^+e^- \xrightarrow{\downarrow} q\overline{q} \xrightarrow{} Hadrons$$

The fragmentation process occurs on much larger scales - d >> 1fm

Every quark/antiquark will hadronize and therefore:

 $\sigma(e^+e^- \rightarrow q\overline{q}) = \sigma(e^+e^- \rightarrow Hadrons)$ when $\sigma(q\overline{q} \rightarrow Hadrons) = 1$

Charm discovery

TECHNISCHE UNIVERSITÄT DARMSTADT

Discovery of the charm-quark:

The charm decays (mainly) into Pions and Kaons. These particles have to be detected and identified.

	Mass Region (GeV/ c^2)			
Decay mode	1.50-1.85	1.85-2.40	2.40-4.00	
$K^{-}\pi^{+}$ and $K^{+}\pi^{-}$	0.25	0.18	0.08	
$K_{s}^{0}\pi^{+}\pi^{-}$	0.57	0.40	0.29	
<i>π</i> + <i>π</i> ⁻	0.13	0.13	0.09	
K^+K^-	0.23	0.12	0.10	
$K^-\pi^+\pi^+$ and $K^+\pi^-\pi^-$	0.51	0.49	0.19	
$K_s^{0}\pi^+$ and $K_s^{0}\pi^-$	0.26	0.27	0.09	
$K_s^0 K^+$ and $K_s^0 K^-$	0.54	0.33	0.09	
$\pi^+\pi^-\pi^+$ and $\pi^+\pi^-\pi^-$	0.48	0.38	0.18	
$K^{\dagger}\pi^{\pm}$, $\overline{K}^{0}\pi^{+}\pi^{-}$, and $K^{0}\pi^{+}\pi^{-}$	1.16	0.90	0.58	
K^+K^- and $\pi^+\pi^-$	0.23	0.16	0.15	
$K^{\mp}\pi^{\pm}\pi^{\pm}$, $\overline{K}^{0}\pi^{\pm}$, and $K^{0}\pi^{\pm}$	0.64	0.51	0.30	
$\overline{K}^0 K^{\pm}$, $K^0 K^{\pm}$, and $\pi^+ \pi^- \pi^{\pm}$	1.10	0.76	0.29	

Source: [charm], [charm2]

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 14

Production ratio

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | IV. pp collisions

Cross section ratio:

$$R = \frac{\sigma(e^+e^- \to H)}{\sigma(e^+e^- \to \mu^+\mu^-)} = \frac{\Sigma_f \sigma(e^+e^- \to q_f q_{\bar{f}})}{\sigma(\mu^+\mu^-)}$$

The cross sections of the different quark flavours are summed up:

$$R = 3 \cdot \sum_{f} z_{f}^{2} = 3 \cdot \left\{ \begin{array}{ccc} (\frac{2}{3})^{2} & + & (-\frac{1}{3})^{2} & + & (-\frac{1}{3})^{2} & + & (-\frac{1}{3})^{2} \\ u & d & s & c & b \end{array} \right\} \\ \underbrace{ \begin{array}{c} & & \\ &$$

Source: [berger], [povh]

Stepwise quark production

TECHNISCHE UNIVERSITÄT DARMSTADT

Source: [berger]

Gluons and QCD corrections

Jets

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | IV. pp collisions

Hadronen Hadronen Hadronen Hadronen Hadronen Source: [povh]

After fragmentation of the quarks, the hadrons can be detected as jets.

The ratio 2-jet/3-jet events allows the determination of the strong coupling α_s

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions

Hadronic structure and e⁻p collisions

12. Dezember 2013 | IKP TU Darmstadt | Bernhard Maaß | 19

Parton modell

Source: [povh]

Deep inelastic scattering

TECHNISCHE UNIVERSITÄT DARMSTADT

	I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions
<u>inelastic scattering</u> : e + p → e + X		~r`	~*`	
at higher (virtual) photon er the proton sub-structure is	nergies, revealed:	5		$\overline{2}$
it contains three quarks.			7)	T

(a) Low Q^2 (b) Medium Q^2 < 1 GeV >1 GeV

1 GeV ~ 1.24fm

Source: [bethke]

Scaling and scaling violation

TECHNISCHE UNIVERSITÄT DARMSTADT

Source: [povh],[berger]

sea quarks and gluons

I. Introduction | II. e⁺e⁻ collisions | **III. hadronic strucure** | IV. pp collisions

Sea quarks and gluons contribute to the proton structure function. They are revealed at higher scattering energies.

Structure function

I. Introduction II. e⁺e⁻ collisions | **III. hadronic strucure** | IV. pp collisions F₂(x,Q²) $Q^2 = 3.5 \text{ GeV}^2$ $Q^2 = 90 \text{ GeV}^2$ The parton distribution function 1.2 can be calculated via DGLAPequations. MRST2002 1 0.8 0.6 0.4 H1 ZEUS BCDMS NMC 0.2 SLAC E665 **10**⁻² **10**⁻⁴ 10 -3 **10**⁻¹ 1 x

Source: [strucfunrpp]

I. Introduction	II. e⁺e⁻ collisions	III. hadronic strucure	IV. pp collisions

Advanced experiments: pp collisions

proton-proton collisions

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions

hard process: scattering of pointlike proton constituents.

Source: [beck]

Hard and soft processes

	I. Introduction	II. e⁺e⁻ collisions	III. hadronic strucure	IV. pp collisions
<u>hard process</u> : the proton stru does not change in the time of scattering process. It can be calculated pertubative.	cture of the	q q q q q q q q q q q q q q q q q q q	eccessoo ecce	onization

<u>soft process</u>: in the soft reaction, the quarks fragmentize and form hadrons. This takes place in an infinite time frame.

ಡ eeeee L

Source: [bethke]

(

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | **IV. pp collisions**

<u>Factorization</u> describes the total scattering cross section, which links the parton densities and the cross section of the hard process.

$$egin{aligned} &\sigma(H_1+H_2
ightarrow Q\overline{Q}+X) &= \ &\sum_{ij}\int \mathrm{d}x_1 f_i^{H_1}(x_1,\mu)\int \mathrm{d}x_2 f_j^{H_2}(x_2,\mu) \ \hat{\sigma}(ij
ightarrow Q\overline{Q}+X)) \end{aligned}$$

The independence of these elements are a great simplification of the model.

Source: [kraemer]

Event detection

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | **IV. pp collisions**

Detectable are the particle jets which emerge from the hard scattering process.

Source: wikipedia: top antitop quark event, www-cdf.fnal.gov

top-quark detection

I. Introduction II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions
--	------------------------	-------------------

TABLE I. Decay modes for a $t\overline{t}$ pair and their approximate branching ratios (to lowest order) assuming charged-current decays. The symbol q stands for a light quark: u,d,c,s.

Decay mode	Branching ratio	ratio	
$t\overline{t} \rightarrow (q\overline{q}'b)(q\overline{q}'\overline{b})$	36/81		
$t\bar{t} \rightarrow (q\bar{q}'b)(e\nu\bar{b})$	12/81		
$t\bar{t} \rightarrow (\bar{q}\bar{q}'b)(\mu\nu\bar{b})$	12/81		
$t\bar{t} \rightarrow (q\bar{q}'b)(\tau v\bar{b})$	12/81		
$t\bar{t} \rightarrow (e\nu b)(\mu\nu\bar{b})$	2/81		
$t\bar{t} \rightarrow (e\nu b)(\tau \nu \bar{b})$	2/81		
$t\overline{t} \rightarrow (\mu\nu b)(\tau\nu\overline{b})$	2/81		
$t\overline{t} \rightarrow (evb)(ev\overline{b})$	1/81		
$t\overline{t} \rightarrow (\mu\nu b)(\mu\nu\overline{b})$	1/81		
$t\bar{t} \rightarrow (\tau v b)(\tau v \bar{b})$	1/81		

The decay channels can be reconstructed and their cross sections and branching ratios be determined.

The top quark decays in bottom quarks before hadronization because of their big mass. A significant signal is a six-jet-event.

Source: [abe],[beck]

top-quark detection

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | **IV. pp collisions**

The invariant mass of different decay modes can be combined to the top-quark resonance

Source: www-cdf.fnal.gov, [abe]

I. Introduction | II. e⁺e⁻ collisions | III. hadronic strucure | **IV. pp collisions**

Depending on the c.m. energy, <u>all quarks can be produced in e⁺e⁻ collisions</u>. This is easy in theory because of the point-like leptons, but it is difficult to reach sufficient energies.

pp-collisions have higher energies, but the proton sub-structure causes difficulties when extracting reaction cross sections.

This can be avoided because the <u>hard process</u> in which the quarks are produced occurs to be on a <u>much smaller length and time scale</u> than the <u>soft hadronization</u> (fragmentation) process – the soft and the hard process <u>factorize</u>. The <u>other</u> <u>partons do not participate</u> in the process as well.

I. Introduction	II. e ⁺ e ⁻ collisions	III. hadronic strucure	IV. pp collisions
-----------------	--	------------------------	-------------------

Thank you for your attention.

Also, thanks a lot to Professor Friman for the mentoring and support!

References

TECHNISCHE UNIVERSITÄT DARMSTADT

Image sources:

[abe]: F. Abe, M. G. Albrow et al. **Evidence for top quark production in pp collisions at s=1.8 TeV** Physical Review D, Volume 50, Nr. 5, 01.09.1994

[beck]: Beck, Douglas H. et al. **Top quark physics at hadron colliders** Springer-Verlag, Advances in the Physics of Particles and Nuclei, Volume 28, 2006

[berger]: Berger, C. Elementarteilchenphysik Springer-Verlag, 2. Auflage, 2006

[bethke]: Bethke, S. QCD, Jets, Strukturfunktionen Vorlesungspräsentation des Max-Planck-Instituts, 2003

[charm]: Q. S. Abrams, J.-E. Augustin et al. **Discovery of a Narrow Resonance in e+e- Annihilation** Physical Review Letters, Volume 33, Nr. 23, 02.12.1974

[charm2]: J. Kogut, L. Susskindt Electron-Positron Annihilation at and above the Threshold for Production of Charmed Hadrons Physical Review Letters, Volume 34, Nr. 12, 24.03.1975

[kraemer]: M. Krämer Heavy Quark Production at High Energy Colliders Presentation at Zeus Collaboration Meeting, University of Edinburgh, October 2001

[berger]: B. Povh Teilchen und Kerne Springer-Verlag, 8. Auflage, 2009