Quark Model History and current status

Manon Bischoff

Heavy-Ion Seminar 2013

Outline

Introduction

- Motivation and historical development
- Group theory and the Quark Model
 - Basics of group theory
 - SU(2) and SU(3)
 - Existence of Quarks

From Quark Model towards QCD Heavy Quarks in the Quark Model Actual status

Historical background

- Particle zoo (bubble chambers, …)
- 1949: Fermi + Yang: Pion not elementary particle
- 1950's: Isospin SU(2) symmetry of strong int.
- 1953 Exp.: additional quantum number: strangeness
- ▶1956: Sakata proposes that pion consists of three
 - particles (n,p,Λ)
- 1961: Gell-Mann: Eightfold way: SU(3) symmetry

Historical background

- ▶1962: Prediction of Ω^{-} particle (measured 1964)
- ▶1964: Gell-Mann, Zweig: Quark Model (u,d,s)
- 1964: Greenberg: Color as quantum number
- ▶1964: Zweig Rule
- 1967-73: Measurements confirm substructure of nucleons
- ►1974: Discovery of charm Quark (Ψ/J)
- ▶1977: Discovery of bottom Quark
- 1978: Discovery of the Gluon
- 1995: Discovery of the Top Quark October 31, 2013 | Manon Bischoff | Quark Model | 4

Group Theory: Basic definitions

Definition:GroupSet with assignment, satisfying(I) $f,g \in G \Rightarrow fg \in G$ (II) $f,g,h \in G \Rightarrow (fg)h = f(gh)$ (III) neutral element(IV) inverse element

Definition: Representation

Mapping D that projects elements of G on linear operators GL(V), with following properties:

(I)
$$D(e) = 1$$

(II) $D(g_1)D(g_2) = D(g_1g_2)$

Definition: Invariant subspace

 $D:G\longrightarrow GL(V)$. A subspace $U\subset V$ is called invariant, if $D(g)U\subset U, \ \ orall g\in G$

Group Theory: Basic definitions

Definition: Reducible representation

A representation is reducible, if it has an invariant subspace.

It is then equiv. to:
$$\begin{pmatrix} D_1(g) & 0 & \cdots \\ 0 & D_2(g) & \\ \cdots & D_3(g) \end{pmatrix}$$

 $D = D_1 \oplus D_2 \oplus D_3 \oplus \dots$

SU(2)

 $oldsymbol{\sigma_+} egin{pmatrix} 0 \ 1 \end{pmatrix} \propto egin{pmatrix} 1 \ 0 \end{pmatrix}, \ oldsymbol{\sigma_-} egin{pmatrix} 1 \ 0 \end{pmatrix} \propto egin{pmatrix} 0 \ 1 \end{pmatrix}$

Well known group (Quantum mechanics,...)

Special Unitary group: fundamental representation in 2 dimensions:

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \det M \stackrel{!}{=} 1 \qquad M M^{\dagger} = M^{\dagger} M = 1$$

Those matrices have following properties:

- Can be written as: $M = e^{-rac{i}{2}ec{\sigma}ec{lpha}}$
- Pauli matrices:

$$\sigma_1=egin{pmatrix} 0&1\ 1&0 \end{pmatrix}, \hspace{0.2cm} \sigma_2=egin{pmatrix} 0&-i\ i&0 \end{pmatrix}, \hspace{0.2cm} \sigma_3=egin{pmatrix} 1&0\ 0&-1 \end{pmatrix}$$

- Commutation relation: $[\sigma_i, \sigma_j] = i\epsilon_{ijk}\sigma_k$
- Define raising and lowering operators: $\sigma_{\pm}=\sigma_x\pm i\sigma_y$

Group Theory: Lie Groups

Definition: Lie Group

g depends on continuous parameter a.

Natural representation:

$$egin{aligned} D(lpha) &= e^{ilpha_a X_a} \ \end{aligned}$$
 with the generators: $X_a = -irac{\partial}{\partiallpha_a} D(lpha)|_{lpha=0}$

Lie Algebra:
$$[X_a, X_b] = i f_{abc} X_c$$
 Adjoint representation

Group Theory: SU(3)

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Gell-Mann matrices, analogous to Pauli matrices

Group Theory: SU(3)

Define raising and lowering operators for the eigenvalues of the diagonal matrices:

$e^1_{\pm}=rac{1}{2}(\lambda_1\pm i\lambda_2)$	Eigenvalues of λ_3	Eigenvalues of λ_8	
2	1	$1/\sqrt{3}$	
$e_{\pm}^2 = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$	-1	$1/\sqrt{3}$	$\int_{1}^{e} d$
-2	0	$-2/\sqrt{3}$	e_{\pm}^2
$e_{\pm}^3=rac{1}{2}(\lambda_4\pm i\lambda_5)$			

Vector $(EV_{\lambda_3}, EV_{\lambda_8})$ is called weight

Group Theory: SU(3) representations

Examples for irreducible representations:

1) Fundamental representation: (3-dimensional)

To construct weight diagram, apply highest weight procedure:

- I) Determine highest weight: $e^i_+ |\psi
 angle = 0$
- II) Apply lowering operators on it

This representation is called the **3**

Group Theory: SU(3) representations

2) Adjoint representation: (8 dimensional) $ad_x(y) = [x, y]$

$oldsymbol{v}$	$[\lambda_3,v]$	$[\lambda_8,v]$	weight	
λ_3	0	0	(0,0)	
λ_8	0	0	(0,0)	
e^1_+	e^1_+	0	(1,0)	
e^1	$-e^1$	0	(-1,0)	
e_+^2	$-1/2e_+^2$	$\sqrt{3}/2e_+^2$	$(-1/2,\sqrt{3}/2)$	
e_{-}^2	$1/2e_{\perp}^2$	$-\sqrt{3}/2e^{2}$	$(1/2,-\sqrt{3}/2)$	
e^3_+	$1/2e_+^3$	$\sqrt{3}/2e_+^3$	$(1/2,\sqrt{3}/2)$	Highest weight
e_{-}^{3}	$-1/2e_{\perp}^{3}$	$-\sqrt{3}/2e^{3}$ _	$(-1/2,-\sqrt{3}/2)$)

Group Theory: SU(3) representations

Weight diagram for adjoint representation:

This representation is called the **8**

Imperial College London: workspace.imperial.ac.uk/

- 1961 Gell-Mann identifies Falvor- SU(3) as symmetry group of strong interaction
- 1964 Gell-Mann and Zweig develop Quark Model
- Basis vectors of fundamental representations are Quark states

Classification of Mesons by plotting Hypercharge Y against Isospin Iz:

+ J=0 meson singlet η'

+ J=1 meson singlet ϕ

Mesons composed by 2 Quarks: $3 \otimes 3$

Tensor product gives:

Quark content and weights for $3\otimes3$		
Quark Content	W eight	
$u\otimes u$	$(1, \frac{1}{\sqrt{3}})$	
$d\otimes d$	$(-1, \frac{1}{\sqrt{3}})$	
$s\otimes s$	$(0, -\frac{2}{\sqrt{3}})$	
$u\otimes d,d\otimes u$	$(0, \frac{1}{\sqrt{3}})$	
$u\otimes s,s\otimes u$	$\overline{\left(\frac{1}{2},-\frac{1}{2\sqrt{3}}\right)}$	
$d\otimes s,s\otimes d$	$(\overline{-\frac{1}{2},-\frac{1}{2\sqrt{3}}})$	

Not an irreducible representation of SU(3)!

Split into sums of irred. Rep.:

1) Find highest weight

- 2) Apply lowering operators
- 3) Erase those points of the diagram

Mesons composed by 2 Quarks: $3\otimes 3$

► Tensor product gives:

Quark content ar	nd weights for $3\otimes3$	
Quark Content	W eight	
$u\otimes u$	$(1, \frac{1}{\sqrt{3}})$]•
$d\otimes d$	$(-1, \frac{1}{\sqrt{3}})$	
$s\otimes s$	$(0, -\frac{2}{\sqrt{3}})$	
$u\otimes d,d\otimes u$	$(0, \frac{1}{\sqrt{3}})$	
$u\otimes s,s\otimes u$	$\left(\frac{1}{2}, -\frac{1}{2\sqrt{3}}\right)$	
$d\otimes s,s\otimes d$	$(-\frac{1}{2},-\frac{1}{2\sqrt{3}})$	

1) Find highest weight

- 2) Apply lowering operators
- 3) Erase those points of the diagram

Mesons composed by 2 Quarks: $3 \otimes 3$ Tensor product gives:

Quark content and weights for $3\otimes3$		
Quark Content	W eight	
$u\otimes u$	$(1, \frac{1}{\sqrt{3}})$	
$d\otimes d$	$(-1, \frac{1}{\sqrt{3}})$	
$s\otimes s$	$(0, -\frac{2}{\sqrt{3}})$	
$u\otimes d,d\otimes u$	$(0, \frac{1}{\sqrt{3}})$	
$u\otimes s,s\otimes u$	$(\tfrac{1}{2},-\tfrac{1}{2\sqrt{3}})$	
$d\otimes s,s\otimes \overline{d}$	$(-\frac{1}{2},-\frac{1}{2\sqrt{3}})$	

Not an irreducible representation of SU(3)!

Split into sums of irred. Rep.:

1) Find highest weight

- 2) Apply lowering operators
- 3) Erase those points of the diagram

Mesons composed by 2 Quarks: $3\otimes 3$

► Tensor product gives:

Quark content and weights for $3\otimes3$		
Quark Content	Weight	
$u\otimes u$	$(1, \frac{1}{\sqrt{3}})$	
$d\otimes d$	$(-1, \frac{1}{\sqrt{3}})$	
$s\otimes s$	$(0, -\frac{2}{\sqrt{3}})$	
$u\otimes d,d\otimes u$	$(0, \frac{1}{\sqrt{3}})$	
$u\otimes s,s\otimes u$	$\left(\frac{1}{2}, -\frac{1}{2\sqrt{3}}\right)$	
$d\otimes s,s\otimes d$	$(\overline{-\frac{1}{2},-\frac{1}{2\sqrt{3}}})$	

1) Find highest weight

2) Apply lowering operators

3) Erase those points of the diagram

Now we know that: $3\otimes 3 = 6\oplus 3$

Obviously not describing mesons, which are categorized by octet states

 \blacktriangleright Solution: Quark + Antiquark: $3\otimes ar{3}$

Quark content and weights for $3\otimes ar{3}$		
Quark Content	Weight	
$u\otimes ar{s}$	$(\frac{1}{2},\frac{\sqrt{3}}{2})$	
$u\otimes ar{d}$	(1, 0)	
$d\otimes ar{s}$	$\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$	
$u\otimes ar{u}, d\otimes ar{d}, s\otimes ar{s}$	(0, 0)	
$d\otimes ar{u}$	(-1, 0)	
$s\otimes ar{u}$	$(-\frac{1}{2},-\frac{\sqrt{3}}{2})$	
$s\otimes ar{d}$	$(\frac{1}{2},-\frac{\sqrt{3}}{2})$	

October 31, 2013 | Manon Bischoff | Quark Model | 21

Imperial College London: workspace.imperial.ac.uk/

Apply highest weight procedure: 1) Find highest weight

- 2) Apply lowering operators
- 3) Erase those points of the diagram

Quark content and weights for $3\otimes \bar{3}$			
Quark Content	Weight		
$u\otimes ar{s}$	$\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$		
$u\otimes ar{d}$	(1, 0)		
$d\otimes ar{s}$	$\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$		
$u\otimes ar{u}, d\otimes ar{d}, s\otimes ar{s}$	(0, 0)		
$d\otimes ar{u}$	(-1,0)		
$s\otimes ar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$		
$s\otimes ar{d}$	$(\frac{1}{2}, -\frac{\sqrt{3}}{2})$		

Imperial College London: workspace.imperial.ac.uk/

Apply highest weight procedure:

- 1) Find highest weight
- 2) Apply lowering operators
- 3) Erase those points of the diagram

Quark content and weights for $3\otimes ar{3}$		
Quark Content	W eight	
$u\otimes ar{s}$	$(\frac{1}{2},\frac{\sqrt{3}}{2})$	
$u\otimes ar{d}$	(1, 0)	
$d\otimes ar{s}$	$\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$	
$igg[u\otimes ar{u}, d\otimes ar{d}, s\otimes ar{s}$	(0, 0)	
$d\otimes ar{u}$	(-1, 0)	
$s\otimes ar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	
$s\otimes ar{d}$	$(\frac{1}{2},-\frac{\sqrt{3}}{2})$	

Imperial College London: workspace.imperial.ac.uk/

Apply highest weight procedure:

- 1) Find highest weight
- 2) Apply lowering operators
- 3) Erase those points of the diagram

Quark content and weights for $3\otimes ar{3}$		
Quark Content	Weight	
$u\otimes ar{s}$	$(\frac{1}{2},\frac{\sqrt{3}}{2})$	
$u\otimes ar{d}$	(1, 0)	
$d\otimes ar{s}$	$\left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)$	
$igg[u\otimes ar{u}, d\otimes ar{d}, s\otimes ar{s}$	(0, 0)	
$d\otimes ar{u}$	(-1, 0)	
$s\otimes ar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$	
$s\otimes ar{d}$	$\overline{\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)}$	

Imperial College London: workspace.imperial.ac.uk/

So, that shows that:

 $3\otimes ar{3}=8\oplus 1$

Mesons are made of a Quark and Antiquark

Same procedure can be done for Baryons: $3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus 8 \oplus 1$ The weight diagrams then look like:

Gell-Mann-Okubo Mass formula

► Calculate masses of nucleons

Assumptions:

- Binding energy independent of Flavor
- Quark mass difference is responsible for mass difference in SU(3) representations
- Exact SU(2): $m_u = m_d$

Quark content of the pseudoscalar mesons:

$$\pi^+ \sim ar{d}u, \ \pi^0 \sim rac{1}{\sqrt{2}}(ar{u}u - ar{d}d), \ \pi^- \sim ar{u}d$$
 $K^+ \sim ar{s}u, \ K^0 \sim ar{s}d, \ ar{K}^0 \sim ar{d}s, \ K^- \sim ar{u}ds$
 $\eta^0 \sim rac{1}{\sqrt{6}}(ar{u}u + ar{d}d - 2ar{s}s)$

Mass formula:

$$4m_K^2=m_\pi^2+3m_\eta^2$$

$$m_{\pi}^{2} = B(m_{0} + 2m_{u})$$
$$m_{K}^{2} = B(m_{0} + m_{u} + m_{s})$$
$$m_{\eta}^{2} = B(m_{0} + \frac{2}{3}(m_{u} + 2m_{s}))$$
$$B, m_{0} = \text{const.}$$

Gell-Mann-Okubo Mass formula

For vector mesons: problems with experimental data

▶Quark content the same as before $(\pi, K, \eta) \leftrightarrow (\rho, K^*, \omega)$

Problem: ω mixes with singlet state ϕ

Are Quarks physical entities?

Quark model describes and predicts particles correctly

Properties of Quarks:

Point-like particles Spin ½ Fractional charges: u=2/3, d=-1/3, s=-1/3 Strange Quark: S=-1

Do they exist?

Pro Quark	Contra Quark	
Why no mesons with S=2	Fractional charge	
Anomalous magnetic moments of baryons	Can't measure 1 Quark	
Mass split	Violate Pauli principle	$\implies \Delta^{++} = (u, u, u)$

Quark Model

Solution to that problem:

additional quantum number: Color

Need at least 3 Colors: $|r\rangle$, $|g\rangle$, $|b\rangle$

Explains why mesons are only built of 1 Quark and 1 Antiquark

Quantum numbers of Quarks:

	d	u	s
$Q- ext{electric charge}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$
I – isospin	$\frac{1}{2}$	$\frac{1}{2}$	0
I_z – isospin <i>z</i> -component	$-\frac{1}{2}$	$+\frac{1}{2}$	0
S - strangeness	0	0	-1

Quark Model

Solution to that problem:

additional quantum number: Color

- Need at least 3 Colors: $|r\rangle$, $|g\rangle$, $|b\rangle$ \implies QCD
- Explains why mesons are only built of 1 Quark and 1 Antiquark
- Quantum numbers of Quarks:

	d	u	S	с	b	t
Q - electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
I – isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
I_z – isospin <i>z</i> -component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
S - strangeness	0	0	-1	0	0	0
C - charm	0	0	0	+1	0	0
B-bottomness	0	0	0	0	-1	0
T – topness	0	0	0	0	0	+1

Excited states and exotic hadrons

•Categorization of (excited) mesons: J^{PC}

$$egin{aligned} |l-s| \leq J \leq l+s \ P = (-1)^{l+1} & C = (-1)^{l+s} \end{aligned}$$
 , for non-flavoured mesons

Allowed states and forbidden states:

0	0+-	0-+	0++
1	1+-	1-+	1++
2	2+-	2-+	2
3	3+-	3-+	3++

Forbidden states called exotic states, could exist! $\pi_1(1400) \ \pi_1(1600)$

October 31, 2013 | Manon Bischoff | Quark Model | 32

From the Quark Model to QCD

Discovery of Color: Color SU(3) (Gauge degree of freedom)

Flavor SU(3) not fundamental

- Color SU(3) implies gauge bosons: Gluons
- Quantum field theory of strong interactions: QCD
- Quarks not free in Hadrons
- ▶ Parton model, Gluons, See-Quarks, ...
- Exotic states could exist: Hybrids, Glueballs, etc.

(Lattice QCD)

Wikipedia

udud $|f_0(600)|$

 $= 0 \frac{1}{2} 1$

Heavy Quarks in the Quark Model

Include charm quark in the Quark Model:

Not a SU(4) symmetry, due to mass difference!

du

 $3\otimes 1=3$ Light Antiquark, heavy Quark:

Light Quark, heavy Antiquark:

 $ar{3}\otimes 1=ar{3}$

Heavy Antiquark, heavy Quark:

 $\overline{1}\otimes 1=1$

 $d\bar{s} \pi^0$

 $\pi \ll_{du}$

Vector mesons

 D^*_{\circ}

(analogous for bottom Quark)

October 31, 2013 | Manon Bischoff | Quark Model | 33

Particle data group pdg.lbl.gov/

ud

Heavy Quarks in the Quark Model

Include charm quark in the Quark Model:

►Not a SU(4) symmetry, due to mass difference!

J=1/2 baryons

J=3/2 baryons

(analogous for bottom Quark)

Heavy Quarks in the Quark Model

Six Quarks don't form SU(6) Flavor symmetry (mass)

Top Quark doesn't form Hadrons (lifetime)

Quark	Mass in MeV
Up	1.7 - 3.1
Down	4.1 - 5.7
Strange	80 - 130
Charm	1120 - 1340
Bottom	4130 - 4370
Тор	172 000 – 174 000

Wikipedia

Actual status

Ground states of Hadrons well known

Quark model for excited states is investigated

- > Introduce dynamics for Quarks
- > Relativistic / Nonrelativistic Potentials

Heavy Quark expansion (effective field theory)

►QCD:

- Confinement problem
- > Asymptotic freedom of QCD
- Nonperturbative QCD: Lattice QCD, DSE, ...

Collider detector Fermilab: cdf.fnal.gov/

probing small distance scales (x) \rightarrow

Thanks for your attention!!!

References

- ►Georgi, Howard: Lie Algebras in Particle Physics
- University of Maryland:

http://www.physics.umd.edu/courses/Phys741/xji/chapter3.pdf

STFC Particle Physics Department:

http://hepwww.rl.ac.uk/Haywood/Group_Theory_Lectures/Lecture_4.pdf

- Zweig, George: Memories of Murray and the Quark model: http://arxiv.org/abs/1007.0494
- Particle Data Group: nonq-qbar mesons: http://pdg.lbl.gov/2007/reviews/nonqqbar_mxxx050.pdf
- ► Particle Data Group: The Quark model:

http://pdg.lbl.gov/2013/reviews/rpp2012-rev-quark-model.pdf

Imperial College London: Notes on SU(3):

https://workspace.imperial.ac.uk/theoreticalphysics/public/MSc/PartSymm/SU%283%29Notes.pdf