Quark Model

History and current status

Manon Bischoff

Heavy-Ion Seminar 2013

Outline

Introduction

- Motivation and historical development

Group theory and the Quark Model

- Basics of group theory
- SU(2) and SU(3)
- Existence of Quarks

From Quark Model towards QCD Heavy Quarks in the Quark Model

Actual status

Historical background

-Particle zoo (bubble chambers, ...)
-1949: Fermi + Yang: Pion not elementary particle
-1950's: Isospin SU(2) symmetry of strong int.
-1953 Exp.: additional quantum number: strangeness
-1956: Sakata proposes that pion consists of three
 particles (n,p,^)
-1961: Gell-Mann: Eightfold way: SU(3) symmetry

Historical background

-1962: Prediction of Ω^{-}particle (measured 1964)
-1964: Gell-Mann, Zweig: Quark Model (u,d,s)
-1964: Greenberg: Color as quantum number
-1964: Zweig Rule

-1967-73: Measurements confirm substructure of nucleons
-1974: Discovery of charm Quark (Ψ / J)
-1977: Discovery of bottom Quark
-1978: Discovery of the Gluon

-1995: Discovery of the Top Quark

Group Theory and the Quark Model

TECHNISCHE
UNIVERSITAT DARMSTADT

Group Theory: Basic definitions

TECHNISCHE

Definition: Group
Set with assignment, satisfying
(I) $f, g \in G \quad \Rightarrow \quad f g \in G$
(II) $f, g, h \in G \quad \Rightarrow \quad(f g) h=f(g h)$
(III) neutral element
(IV) inverse element

Definition: Representation
Mapping D that projects elements of G on linear operators $G L(V)$, with following properties:
(I) $D(e)=1$
(II) $D\left(g_{1}\right) D\left(g_{2}\right)=D\left(g_{1} g_{2}\right)$

Definition: Invariant subspace
$D: G \longrightarrow G L(V)$. A subspace $U \subset V$ is called invariant, if
$D(g) U \subset U, \quad \forall g \in G$

Group Theory: Basic definitions

Definition: Reducible representation
A representation is reducible, if it has an invariant subspace.
It is then equiv. to: $\left(\begin{array}{ccc}D_{1}(g) & 0 & \ldots \\ 0 & D_{2}(g) & \\ \ldots & & D_{3}(g)\end{array}\right)$
$D=D_{1} \oplus D_{2} \oplus D_{3} \oplus \ldots$

SU(2)

- Well known group (Quantum mechanics,...)
-Special Unitary group: fundamental representation in 2 dimensions:

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \operatorname{det} M \stackrel{!}{=} 1 \quad M M^{\dagger}=M^{\dagger} M=1
$$

-Those matrices have following properties:

- Can be written as: $M=e^{-\frac{i}{2} \vec{\sigma} \vec{\alpha}}$
- Pauli matrices:

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

- Commutation relation: $\left[\sigma_{i}, \sigma_{j}\right]=i \epsilon_{i j k} \sigma_{k}$
- Define raising and lowering operators: $\sigma_{ \pm}=\sigma_{x} \pm i \sigma_{y}$

$$
\sigma_{+}\binom{0}{1} \propto\binom{1}{0}, \quad \sigma_{-}\binom{1}{0} \propto\binom{0}{1}
$$

Group Theory: Lie Groups

Definition: Lie Group

g depends on continuous parameter a.
Natural representation:
$D(\alpha)=e^{i \alpha_{a} X_{a}}$
with the generators: $X_{a}=-\left.i \frac{\partial}{\partial \alpha_{a}} D(\alpha)\right|_{\alpha=0}$

Lie Algebra: $\left[X_{a}, X_{b}\right]=i f_{a b c} X_{c} \quad$ Adjoint representation

Group Theory: SU(3)

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
\end{aligned}
$$

Gell-Mann matrices, analogous to Pauli matrices

Group Theory: SU(3)

Define raising and lowering operators for the eigenvalues of the diagonal matrices:

$$
\begin{aligned}
e_{ \pm}^{1} & =\frac{1}{2}\left(\lambda_{1} \pm i \lambda_{2}\right) \\
e_{ \pm}^{2} & =\frac{1}{2}\left(\lambda_{6} \pm i \lambda_{7}\right) \\
e_{ \pm}^{3} & =\frac{1}{2}\left(\lambda_{4} \pm i \lambda_{5}\right)
\end{aligned}
$$

Eigenvalues of $\lambda_{3} \quad$ Eigenvalues of λ_{8}

-1
0
$\left.\begin{array}{rl}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ -2 / \sqrt{3}\end{array}\right\}\left\{\begin{array}{l} \pm \\ e_{ \pm}^{2}\end{array}\right\} e_{ \pm}^{3}$
$\operatorname{Vector}\left(E V_{\lambda_{3}}, E V_{\lambda_{8}}\right)$ is called weight

Group Theory: SU(3) representations

Examples for irreducible representations:

1) Fundamental representation: (3-dimensional)

states	weight
$\mathrm{u}=(1,0,0)$	$(1,1 / \sqrt{3})$
$\mathrm{d}=(0,1,0)$	$(-1,1 / \sqrt{3})$
$\mathrm{s}=(0,0,1)$	$(0,-1 / \sqrt{3})$

To construct weight diagram, apply highest weight procedure:
I) Determine highest weight: $e_{+}^{i}|\psi\rangle=0$
II) Apply lowering operators on it

This representation is called the 3

Group Theory: SU(3) representations

2) Adjoint representation: (8 dimensional)

$$
a d_{x}(y)=[x, y]
$$

v	$\left[\lambda_{3}, v\right]$	$\left[\lambda_{8}, v\right]$	weight
λ_{3}	0	0	$(0,0)$
λ_{8}	0	0	$(0,0)$
e_{+}^{1}	e_{+}^{1}	0	$(1,0)$
e_{-}^{1}	$-e_{-}^{1}$	0	$(-1,0)$
e_{+}^{2}	$-1 / 2 e_{+}^{2}$	$\sqrt{3} / 2 e_{+}^{2}$	$(-1 / 2, \sqrt{3} / 2)$
e_{-}^{2}	$1 / 2 e_{-}^{2}$	$-\sqrt{3} / 2 e_{-}^{2}$	$(1 / 2,-\sqrt{3} / 2)$
e_{+}^{3}	$1 / 2 e_{+}^{3}$	$\sqrt{3} / 2 e_{+}^{3}$	$(1 / 2, \sqrt{3} / 2)$
e_{-}^{3}	$-1 / 2 e_{-}^{3}$	$-\sqrt{3} / 2 e_{-}^{3}$	$(-1 / 2,-\sqrt{3} / 2)$

Group Theory: SU(3) representations

TECHNISCHE

Weight diagram for adjoint representation:

This representation is called the 8

Group Theory and the Quark Model

-1961 Gell-Mann identifies Falvor- SU(3) as symmetry group of strong interaction
-1964 Gell-Mann and Zweig develop Quark Model

- Basis vectors of fundamental representations are Quark states
-Baryon: made of 3 Quarks
-Meson: made of 2 Quarks

Group Theory and the Quark Model

-Classification of Mesons by plotting Hypercharge Y against Isospin I_{z} :
Pseudoscalar meson octet:
$B=0 \quad J=0$

Imperial College London: workspace.imperial.ac.uk/
$+\mathrm{J}=0$ meson singlet $\eta^{\prime} \quad+\mathrm{J}=1$ meson singlet ϕ

October 31, 2013 | Manon Bischoff | Quark Model | 16

Group Theory and the Quark Model

-Mesons composed by 2 Quarks: $3 \otimes 3$
-Tensor product gives:

Quark content and weights for $\mathbf{3} \otimes \mathbf{3}$	
Quark Content	Weight
$u \otimes u$	$\left(1, \frac{1}{\sqrt{3}}\right)$
$d \otimes d$	$\left(-1, \frac{1}{\sqrt{3}}\right)$
$s \otimes s$	$\left(0,-\frac{2}{\sqrt{3}}\right)$
$u \otimes d, d \otimes u$	$\left(0, \frac{1}{\sqrt{3}}\right)$
$u \otimes s, s \otimes u$	$\left(\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$
$d \otimes s, s \otimes d$	$\left(-\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$

Imperial College London: workspace.imperial.ac.uk/
Not an irreducible representation of SU(3)!

Split into sums of irred. Rep.:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Group Theory and the Quark Model

- Mesons composed by 2 Quarks: $3 \otimes 3$
-Tensor product gives:

Quark content and weights for $\mathbf{3} \otimes \mathbf{3}$	
Quark Content	Weight
$u \otimes u$	$\left(1, \frac{1}{\sqrt{3}}\right)$
$d \otimes d$	$\left(-1, \frac{1}{\sqrt{3}}\right)$
$s \otimes s$	$\left(0,-\frac{2}{\sqrt{3}}\right)$
$u \otimes d, d \otimes u$	$\left(0, \frac{1}{\sqrt{3}}\right)$
$u \otimes s, s \otimes u$	$\left(\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$
$d \otimes s, s \otimes d$	$\left(-\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$

Imperial' Collège Lond́on: workspace.imperial.ac.uk/
Not an irreducible representation of SU(3)!

Split into sums of irred. Rep.:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Group Theory and the Quark Model

-Mesons composed by 2 Quarks: $3 \otimes 3$
-Tensor product gives:

Quark content and weights for $\mathbf{3} \otimes \mathbf{3}$	
Quark Content	Weight
$u \otimes u$	$\left(1, \frac{1}{\sqrt{3}}\right)$
$d \otimes d$	$\left(-1, \frac{1}{\sqrt{3}}\right)$
$s \otimes s$	$\left(0,-\frac{2}{\sqrt{3}}\right)$
$u \otimes d, d \otimes u$	$\left(0, \frac{1}{\sqrt{3}}\right)$
$u \otimes s, s \otimes u$	$\left(\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$
$d \otimes s, s \otimes d$	$\left(-\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$

Imperial' College London: workspace.imperial.ac.uk/
Not an irreducible representation of SU(3)!

Split into sums of irred. Rep.:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Group Theory and the Quark Model

-Mesons composed by 2 Quarks: $3 \otimes 3$
-Tensor product gives:

Quark content and weights for $\mathbf{3} \otimes \mathbf{3}$	
Quark Content	Weight
$u \otimes u$	$\left(1, \frac{1}{\sqrt{3}}\right)$
$d \otimes d$	$\left(-1, \frac{1}{\sqrt{3}}\right)$
$s \otimes s$	$\left(0,-\frac{2}{\sqrt{3}}\right)$
$u \otimes d, d \otimes u$	$\left(0, \frac{1}{\sqrt{3}}\right)$
$u \otimes s, s \otimes u$	$\left(\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$
$d \otimes s, s \otimes d$	$\left(-\frac{1}{2},-\frac{1}{2 \sqrt{3}}\right)$

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Group Theory and the Quark Model

-Now we know that: $3 \otimes 3=6 \oplus 3$
-Obviously not describing mesons, which are categorized by octet states

- Solution: Quark + Antiquark: $3 \otimes \overline{3}$
$\overline{3}$ Representation:

Quark content and weights for $\mathbf{3} \otimes \overline{\mathbf{3}}$	
Quark Content	Weight
$u \otimes \bar{s}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{d}$	$(1,0)$
$d \otimes \bar{s}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{u}, d \otimes \bar{d}, s \otimes \bar{s}$	$(0,0)$
$d \otimes \bar{u}$	$(-1,0)$
$s \otimes \bar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$s \otimes \bar{d}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

Imperial College London: workspace.imperial.ac.uk/

Group Theory and the Quark Model

Apply highest weight procedure:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Quark content and weights for $\mathbf{3} \otimes \overline{\mathbf{3}}$	
Quark Content	Weight
$u \otimes \bar{s}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{d}$	$(1,0)$
$d \otimes \bar{s}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{u}, d \otimes \bar{d}, s \otimes \bar{s}$	$(0,0)$
$d \otimes \bar{u}$	$(-1,0)$
$s \otimes \bar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$s \otimes \bar{d}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

Imperial College London: workspace.imperial.ac.uk/

Group Theory and the Quark Model

Apply highest weight procedure:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Quark content and weights for $\mathbf{3} \otimes \overline{\mathbf{3}}$	
Quark Content	Weight
$u \otimes \bar{s}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{d}$	$(1,0)$
$d \otimes \bar{s}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{u}, d \otimes \bar{d}, s \otimes \bar{s}$	$(0,0)$
$d \otimes \bar{u}$	$(-1,0)$
$s \otimes \bar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$s \otimes \bar{d}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

Imperial College London: workspace.imperial.ac.uk/

Group Theory and the Quark Model

Apply highest weight procedure:

1) Find highest weight
2) Apply lowering operators
3) Erase those points of the diagram

Quark content and weights for $\mathbf{3} \otimes \overline{\mathbf{3}}$	
Quark Content	Weight
$u \otimes \bar{s}$	$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{d}$	$(1,0)$
$d \otimes \bar{s}$	$\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
$u \otimes \bar{u}, d \otimes \bar{d}, s \otimes \bar{s}$	$(0,0)$
$d \otimes \bar{u}$	$(-1,0)$
$s \otimes \bar{u}$	$\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
$s \otimes \bar{d}$	$\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

So, that shows that:

$$
\mathbf{3} \otimes \overline{3}=8 \oplus 1
$$

Mesons are made of a Quark and Antiquark

Group Theory and the Quark Model

-Same procedure can be done for Baryons: $3 \otimes 3 \otimes 3=10 \oplus 8 \oplus 8 \oplus 1$
-The weight diagrams then look like:

Baryon decuplet: $B=1, J=3 / 2$

Particle data group pdg.lbl.gov/

Baryon octet: $\mathrm{B}=1 \mathrm{~J}=1 / 2$

+ Baryon singlet: $B=1, J=1 / 2 \quad \Lambda^{0 \star}$

Gell-Mann-Okubo Mass formula

-Calculate masses of nucleons
-Assumptions:

- Binding energy independent of Flavor
- Quark mass difference is responsible for mass difference in SU(3) representations
- Exact SU(2): $m_{u}=m_{d}$
-Quark content of the pseudoscalar mesons:

$$
\begin{aligned}
& \pi^{+} \sim \bar{d} u, \pi^{0} \sim \frac{1}{\sqrt{2}}(\bar{u} u-\bar{d} d), \pi^{-} \sim \bar{u} d \\
& K^{+} \sim \bar{s} u, K^{0} \sim \bar{s} d, \quad \bar{K}^{0} \sim \bar{d} s, \quad K^{-} \sim \bar{u} d s \\
& \eta^{0} \sim \frac{1}{\sqrt{6}}(\bar{u} u+\bar{d} d-2 \bar{s} s)
\end{aligned}
$$

Mass formula:

$$
4 m_{K}^{2}=m_{\pi}^{2}+3 m_{\eta}^{2}
$$

Gell-Mann-Okubo Mass formula

-For vector mesons: problems with experimental data

- Quark content the same as before $(\pi, K, \eta) \leftrightarrow\left(\rho, K^{*}, \omega\right)$
- Problem: ω mixes with singlet state ϕ
-Almost ideal mixing: $\omega=\frac{1}{\sqrt{2}}(\bar{u} u+\bar{d} d)$

$$
\phi=\bar{s} s
$$

-Decay: $\omega \longrightarrow 3 \pi$ $\phi \longrightarrow \overline{\boldsymbol{K}} K$

Are Quarks physical entities?

-Quark model describes and predicts particles correctly
-Properties of Quarks:
Point-like particles
Spin $1 / 2$
Fractional charges: $u=2 / 3, d=-1 / 3, s=-1 / 3$
Strange Quark: S=-1
-Do they exist?

Pro Quark	Contra Quark
Why no mesons with $\mathrm{S}=2$	Fractional charge
Anomalous magnetic moments of baryons	Can't measure 1 Quark
Mass split	Violate Pauli principle $\longrightarrow \Delta^{++}=(u, u, u)$

Quark Model

-Solution to that problem:
additional quantum number: Color
-Need at least 3 Colors: $|r\rangle,|g\rangle,|b\rangle$
-Explains why mesons are only built of 1 Quark and 1 Antiquark
-Quantum numbers of Quarks:

	d	u	s
Q - electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$
$1-$ isospin	$\frac{1}{2}$	$\frac{1}{2}$	0
$\Delta z-$ isospin z čomponent	$-\frac{1}{2}$	$+\frac{1}{2}$	0
$S-$ strangeness	0	0	-1

Quark Model

-Solution to that problem: additional quantum number: Color
-Need at least 3 Colors: $|r\rangle,|g\rangle,|b\rangle \quad \longrightarrow \quad$ QCD
-Explains why mesons are only built of 1 Quark and 1 Antiquark
-Quantum numbers of Quarks:

	d	u	s	c	b	t
Q - electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
I - isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
I_{z} - isospin $z_{\text {-component }}$	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$\mathrm{~S}-$ strangeness	0	0	-1	0	0	0
C - charm	0	0	0	+1	0	0
B - bottomness	0	0	0	0	-1	0
$\mathrm{~T}-$ topness	0	0	0	0	0	+1

Excited states and exotic hadrons

-Categorization of (excited) mesons: $J^{P C}$

$$
\begin{aligned}
& |l-s| \leq J \leq l+s \\
& P=(-1)^{l+1} \quad C=(-1)^{l+s} \quad \text {,for non-flavoured mesons }
\end{aligned}
$$

-Allowed states and forbidden states:

$0--$	$0+-$	$0-+$	$0++$
$1--$	$1+-$	$1-+$	$1++$
$2--$	$2+-$	$2-+$	$2--$
$3--$	$3+-$	$3-+$	$3++$

-Forbidden states called exotic states, could exist!

$$
\pi_{1}(1400) \pi_{1}(1600)
$$

From the Quark Model to QCD

-Discovery of Color: Color SU(3) (Gauge degree of freedom)
-Flavor SU(3) not fundamental
-Color SU(3) implies gauge bosons: Gluons
-Quantum field theory of strong interactions: QCD

-Quarks not free in Hadrons
Candidates for tetraquarks:
-Parton model, Gluons, See-Quarks, ...
-Exotic states could exist: Hybrids, Glueballs, etc. (Lattice QCD)

Wikipedia

Heavy Quarks in the Quark Model

-Include charm quark in the Quark Model:

- Not a SU(4) symmetry, due to mass difference!

Light Quark, heavy Antiquark:

$$
3 \otimes 1=3
$$

Light Antiquark, heavy Quark:

$$
\overline{3} \otimes 1=\overline{3}
$$

Heavy Antiquark, heavy Quark:

$$
\overline{1} \otimes 1=1
$$

Vector mesons
(analogous for bottom Quark)

Heavy Quarks in the Quark Model

-Include charm quark in the Quark Model:

- Not a SU(4) symmetry, due to mass difference!

2 Light Quarks, heavy Quark:

$$
3 \otimes 3 \otimes 1=\overline{3} \oplus 6
$$

J=3/2 baryons
(analogous for bottom Quark)

Heavy Quarks in the Quark Model

-Six Quarks don't form SU(6) Flavor symmetry (mass)
-Top Quark doesn't form Hadrons (lifetime)

Quark	Mass in MeV
Up	$1.7-3.1$
Down	$4.1-5.7$
Strange	$80-130$
Charm	$1120-1340$
Bottom	$4130-4370$
Top	$172000-174000$

Wikipedia

Actual status

- Ground states of Hadrons well known
-Quark model for excited states is investigated
- Introduce dynamics for Quarks
> Relativistic / Nonrelativistic Potentials
-Heavy Quark expansion (effective field theory)
-QCD:
, Confinement problem
> Asymptotic freedom of QCD

- Nonperturbative QCD: Lattice QCD, DSE, ...

Thanks for your attention!!!

References

-Georgi, Howard: Lie Algebras in Particle Physics
-University of Maryland:

http://www.physics.umd.edu/courses/Phys741/xji/chapter3.pdf

-STFC Particle Physics Department:
http://hepwww.rl.ac.uk/Haywood/Group_Theory_Lectures/Lecture_4.pdf
-Zweig, George: Memories of Murray and the Quark model:
http://arxiv.org/abs/1007.0494

- Particle Data Group: nonq-qbar mesons:
http://pdg.Ibl.gov/2007/reviews/nonqqbar_mxxx050.pdf
-Particle Data Group: The Quark model:
http://pdg.Ibl.gov/2013/reviews/rpp2012-rev-quark-model.pdf
-Imperial College London: Notes on SU(3):
https://workspace.imperial.ac.uk/theoreticalphysics/public/MSc/PartSymm/SU\(3\)Notes.pdf

