Electric dipole moment of the nucleon and light nuclei

Hirschegg | January 14, 2014 | Andreas Wirzba

Matter Excess in the Universe

1 End of inflation: $n_B = n_{\bar{B}}$

- 2 Cosmic Microwave Bkgr.
 - SM(s) prediction: $(n_B - n_{\bar{B}})/n_{\gamma}|_{CMB} \sim 10^{-18}$
 - WMAP+COBE (2012): *n_B/n_γ*|_{CMB}=(6.08±0.09)10⁻¹⁰

Sakaharov conditions ('67) for dyn. generation of net *B*:

- 1 B violation to depart from initial B=0
- 2 C & CP violation

to distinguish B and \overline{B} production rates

3 non-equilibrium

to escape $\langle B \rangle = 0$ if CPT holds

The Electric Dipole Moment (EDM)

EDM: $\vec{d} = \sum_i \vec{r}_i e_i \xrightarrow{\text{subatomic}}_{\text{particles}} d \cdot \vec{S} / \vec{S} $ (axial)
$ \mathcal{H} = -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} - d\frac{\vec{s}}{\vec{s}} \cdot \vec{E} $ P: $ \mathcal{H} = -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} + d\frac{\vec{s}}{\vec{s}} \cdot \vec{E} $
T: $\mathcal{H} = -\mu \frac{\vec{s}}{\vec{s}} \cdot \vec{B} + d\frac{\vec{s}}{\vec{s}} \cdot \vec{E}$

Any non-vanishing EDM of some subatomic particle violates P&T

- Assuming CPT to hold, CP is violated as well → subatomic EDMs: "rear window" to CP violation in early universe
- Strongly suppressed in SM (CKM-matrix): $d_n \sim 10^{-31} e \text{ cm}, d_e \sim 10^{-38} e \text{ cm}$
- Current bounds: $d_n < 3 \cdot 10^{-26} e \text{ cm}$, $d_p < 8 \cdot 10^{-25} e \text{ cm}$, $d_e < 1 \cdot 10^{-28} e \text{ cm}$

n: Baker et al.(2006), p prediction: Dimitriev & Sen'kov (2003)*, e: Baron et al.(2013)[†]

* input from ¹⁹⁹Hg atom EDM measurement of Griffith et al. (2009) [†] from ThO molecule measurement Andreas Wirzba

A naive estimate of the scale of the nucleon EDM

Khriplovich & Lamoreaux (1997); Kolya Nikolaev (2012)

CP & P conserving magnetic moment ~ nuclear magneton μ_N

$$\mu_N = \frac{e}{2m_p} \sim 10^{-14} e\,\mathrm{cm}\,.$$

A nonzero EDM requires

parity P violation: the price to pay is $\sim 10^{-7}$

 $(G_F \cdot m_{\pi}^2 \sim 10^{-7} \text{ with } G_F \approx 1.166 \cdot 10^{-5} \text{GeV}^{-2}),$

and CP violation: the price to pay is ~ 10^{-3} $(|\eta_{+-}| \equiv |\mathcal{A}(K_1^0 \to \pi^+\pi^-)|/|\mathcal{A}(K_2^0 \to \pi^+\pi^-)| = (2.232 \pm 0.011) \cdot 10^{-3}).$

- In summary: $d_N \sim 10^{-7} \times 10^{-3} \times \mu_N \sim 10^{-24} e \,\mathrm{cm}$
- In SM (without θ term): extra $G_F m_{\pi}^2$ factor to undo flavor change

 $\Rightarrow \quad d_N^{\rm SM} \sim 10^{-7} \times 10^{-24} e\,{\rm cm} \sim 10^{-31} e\,{\rm cm}$

→ The empirical window for search of physics BSM(θ =0) is $10^{-24}e \text{ cm} > d_N > 10^{-30}e \text{ cm}.$

Chronology of upper bounds on the neutron EDM

 \hookrightarrow 5 to 6 orders above SM predictions which are out of reach !

6 25

Search for EDMs of charged particles in storage rings

General idea:

Andreas

Initially longitudinally polarized particles interact with radial \vec{E} field \Rightarrow build-up of vertical polarization (measured with a polarimeter)

The spin precession relative to the momentum direction is given by the Thomas-BMT equation (for $\vec{\beta} \cdot \vec{B} = 0$, $\vec{\beta} \cdot \vec{E} = 0$, $\vec{E} \cdot \vec{B} = 0$):

$$\frac{\mathrm{d}S^*}{\mathrm{d}t} = \vec{\Omega} \times \vec{S^*} \quad \text{with} \quad \vec{\Omega} = -\frac{e}{m} \left(a\vec{B} + \left(\beta^{-2} - 1 - a \right) \vec{\beta} \times \vec{E} + \eta (\vec{E} + \vec{\beta} \times \vec{B}) \right)$$

and $\vec{\mu} = (1 + a) \frac{e}{2m} \vec{S} / S$ and $\vec{d} = \eta \frac{e}{2m} \vec{S} / S$

Method 1: pure electrostatic ring

$$\vec{\Omega} = -\frac{e}{m} \left(\underbrace{\vec{A} \vec{B}}_{:=0, \text{"Frozen spin method"}}^{i} + \eta (\vec{E} + \vec{\beta} \times \vec{B}) \right) \longrightarrow -\frac{e}{m} \eta \vec{E}$$

only possible for a > 0, *i.e.* for p and ³H, but not for d or ³He

Advantages:

- no magnetic field
- counter rotating beams possible

Disadvantage:

- not possible for deuterons ($a_D < 0$)

BNL or Fermilab?

Method 2: combined electric & magnetic ring

$$\vec{\Omega} = -\frac{e}{m} \left(\underbrace{a\vec{B} + (\beta^{-2} - 1 - a)\vec{\beta} \times \vec{E}}_{:=0, \text{ "Frozen spin method"}} + \eta(\vec{E} + \vec{\beta} \times \vec{B}) \right) \rightarrow -\frac{e}{m}\eta(\vec{E} + \vec{\beta} \times \vec{B})$$

Advantage:

– works for p, deuterons and ³He

Disadvantages:

- requires also magnetic fields
- two beam pipes
- magnetic coils made of copper

Jülich ?

Method 3: pure magnetic ring

→ "rigged roulette route"

Advantage:

- existing COSY accelerator
- → precursor experiment:

First *direct* measurement of an EDM of a charged hadron

Disadvantage:

- low sensitivity $\gtrsim 10^{-25} e \, \mathrm{cm}$

JEDI@Jülich !

Road map from EDM Measurements to EDM Sources

EDMs of nucleons and light nuclei

 $\langle f(p') | J_{em}^{\mu} | f(p) \rangle = \bar{u}_{f}(p') \Gamma^{\mu}(q^{2}) u_{f}(p)$ $\Gamma^{\mu}(q^{2}) = \gamma^{\mu} F_{1}(q^{2}) - i\sigma^{\mu\nu} q_{\nu} \frac{F_{2}(q^{2})}{2m_{f}} + \sigma^{\mu\nu} q_{\nu} \gamma_{5} \frac{F_{3}(q^{2})}{2m_{f}}$ $+ (\not q \ q^{\mu} - q^{2} \gamma^{\mu}) \gamma_{5} F_{a}(q^{2}) / m_{f}^{2}$ Dirac $F_{1}(q^{2})$, Pauli $F_{2}(q^{2})$, electric dipole $F_{3}(q^{2})$, anapole $F_{a}(q^{2})$ FFs (here *s*=1/2 fermion) $\Rightarrow d := \lim_{q^{2} \to 0} \frac{F_{3}(q^{2})}{2m_{f}}, \qquad (q \equiv p - p', \text{ electron charge } e < 0)$

- Outline:
- CP-violation beyond CKM matrix of the SM: L_{QCD} θ-term (dim. 4):
 → testing the θ-term with EDMs of the nucleon, deuteron and He-3
- CP-violation from physics beyond SM: SUSY, multi-Higgs … (dim. 6):
 → disentangling GP sources

Jülich-Bonn Collaboration (JBC):

Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306]

J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, D. Minossi, A. Nogga, J. de Vries, A.W

The $\mathcal{L}_{QCD} \theta$ -term in the SM

0

topologically non-trivial vacuum \rightarrow *CP* term in \mathcal{L}_{QCD} :

$$\mathcal{L} = \mathcal{L}_{\text{QCD}}^{\text{CP}} + \theta \frac{g_{S}^{2}}{32\pi^{2}} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu}$$

$$\dots + \theta \frac{g_S^2}{32\pi^2} G_{\mu\nu}^a \tilde{G}^{a,\mu\nu} \xrightarrow{U_A(1)} \dots - \bar{\theta} m_q^* \sum_{f=u,d} \bar{q}_f i \gamma_5 q_f$$

with $\overline{\theta} = \theta + \arg \operatorname{Det} \mathcal{M}$, \mathcal{M} : quark mass matrix, $m_q^* \equiv \frac{m_u m_d}{m_u + m_d}$

$$d_n^{\bar{\theta}} \sim \bar{\theta} \cdot \frac{m_q^*}{\Lambda_{QCD}} \cdot \frac{e}{2m_n} \sim \bar{\theta} \cdot 10^{-2} \cdot 10^{-14} e \, \mathrm{cm} \sim \bar{\theta} \cdot 10^{-16} e \, \mathrm{cm} \quad \text{with} \ \bar{\theta} \stackrel{\text{NDA}}{\sim} \mathcal{O}(1).$$

 $d_n^{emp} < 2.9 \cdot 10^{-26} e \, \mathrm{cm} \rightsquigarrow |\bar{\theta}| \lesssim 10^{-10}$ strong CP problem

New Physics Beyond Standard Model (BSM) SUSY, multi-Higgs, Left-Right-Symmetric models, ... Effective field theory approach:

- All degrees of freedom beyond specified scale are integrated out:
 - \hookrightarrow Only SM degrees of freedom remain: $q, g, H, W^{\pm},...$
- Write down *all* interactions among these degrees of freedom that respect the SM + Lorentz symmetries: here dim. 6 or higher order
- Relics of eliminated BSM physics 'remembered' by the values of the low-energy constants (LECs) of the CP-violating contact terms, e.g.

Need a power-counting scheme to order these infinite # interactions

Andreas Wirzba

SM plus all possible T- and P-odd contact interactions

Removal of Higgs & W^{\pm} bosons, then transition to hadronic fields (+ mixing):

EDM Translator from 'quarkish/machine' to 'hadronic/human' language?

Symmetries (esp. chiral one) and Goldstone Theorem Low-Energy Effective Field Theory with External Sources *i.e.* Chiral Perturbation Theory (suitably extended)

Andreas Wirzba

 \rightarrow

Scalings of GP hadronic vertices (from θ and BSM sources)

In BSM case: reliance on Naive Dimensional Analysis (NDA), lattice, ...

*: Goldstone theorem \rightarrow relative $\mathcal{O}(M_{\pi}^2/m_n^2)$ suppression of $N\pi$ interactions

θ -Term on the Hadronic Level

hadronic level: non perturbative techniques required: e.g. 2-flavor ChPT

Symmetries of QCD preserved by the effective field theory (EFT)

Lebedev et al. (2004), Mereghetti et al. (2010), Bsaisou et al. (2013)

θ-Term Induced Nucleon EDM

single nucleon EDM:

"controlled"

$$d_n|_{\text{loop}}^{\text{isovector}} = e \frac{g_{\pi NN} g_0^{\theta}}{4\pi^2} \frac{\ln(M_N^2/m_{\pi}^2)}{2M_N} \sim \bar{\theta} r$$

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

$$g_0^{\theta} = \frac{(m_n - m_p)^{\text{strong}} (1 - \epsilon^2)}{4F_{\pi}\epsilon} \bar{\theta} \approx (-0.018 \pm 0.007) \bar{\theta} \quad (\text{where } \epsilon \equiv \frac{m_u - m_d}{m_u + m_d})$$

 $\hookrightarrow d_n |_{loop}^{isovector} \sim -(2.1 \pm 0.9) \cdot 10^{-16} \,\overline{\theta} \, \mathrm{e\, cm} \qquad \text{Ottnad et al. (2010); Bsaisou et al. (2013)}$

But what about the two "unknown" coefficients of the contact terms?

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

θ-Term Induced Nucleon EDM:

Crewther, di Vecchia, Veneziano & Witten (1979); Pich & de Rafael (1991); Ottnad et al. (2010)

single nucleon EDM:

EDM of the Deuteron at LO: quantitative θ -term results

in units of $g_1^{\theta} e \cdot fm \cdot (g_A m_N / F_{\pi})$

Ref.	potential	no ³ P ₁ -int	with ³ P ₁ -int	total
JBC (2013)*	A <i>v</i> 18	-1.93×10^{-2}	$+0.48 \times 10^{-2}$	-1.45×10^{-2}
JBC (2013)	CD Bonn	-1.95×10^{-2}	$+0.51 \times 10^{-2}$	-1.45×10^{-2}
JBC (2013)*	ChPT (N ² LO) [†]	-1.94×10^{-2}	$+0.65 \times 10^{-2}$	-1.29×10^{-2}
Song (2013)	A <i>v</i> 18	-	-	-1.45×10^{-2}
Liu (2004)	A <i>v</i> ₁₈	-	-	-1.43×10^{-2}
Afnan (2010)	Reid 93	-1.93×10^{-2}	$+0.40 \times 10^{-2}$	$-1.43 imes 10^{-2}$

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR)

BSM \mathcal{P} sources: $g_1 \pi NN$ term is the *LO vertex* in qCEDM or 4qLR case

³He EDM: quantitative results for g₀ exchange

 $g_0 N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ (*CP*, I) θ -term, qCEDM \rightarrow LO 4qLR \rightarrow N²LO

units: $g_0(g_A m_N/F_{\pi})e$ fm

author	potential	no int.	with int.	total
JBC (2013)*	Av ₁₈ UIX	-0.45×10^{-2}	-0.12×10^{-2}	-0.57×10^{-2}
JBC (2013)*	CD BONN TM	-0.56×10^{-2}	-0.12×10^{-2}	-0.68×10^{-2}
JBC (2013)*	ChPT (<i>N²LO</i>) [†]	-0.56×10^{-2}	-0.19×10^{-2}	$-0.76 imes 10^{-2}$
Song (2013)	Av ₁₈ UIX	-	-	-0.55×10^{-2}
Stetcu (2008)	Av ₁₈ UIX	-	-	-1.20×10^{-2}

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR)

Results for ${}^{3}H$ also available (not shown)

Note: calculation finally under control !

Quantitative EDM results in the θ -term scenario

Single Nucleon (with adjusted signs for consistency; note here e < 0):

$$-d_{1}^{\text{loop}} \equiv \frac{1}{2}(d_{n} - d_{p})^{\text{loop}}$$

= $(2.1 \pm 0.9) \cdot 10^{-16} \bar{\theta} e \text{ cm}$ (Bsaisou et al. (2013))
$$d_{n} = +(2.9 \pm 0.9?) \cdot 10^{-16} \bar{\theta} e \text{ cm}$$
 (Guo & Meißner (2012))
$$d_{p} = -(1.1 \pm 1.1?) \cdot 10^{-16} \bar{\theta} e \text{ cm}$$
 (Guo & Meißner (2012))

Deuteron:

$$d_D = d_n + d_p - \left[(0.59 \pm 0.39) - (0.05 \pm 0.02) \right] \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$$

= $d_n + d_p - (0.54 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm}$ (Bsaisou et al. (2013))

Helium-3:

$$d_{^{3}He} = \tilde{d}_{n} + \left[(1.78 \pm 0.83) - (0.43 \pm 0.30) \right] \cdot 10^{-16} \,\bar{\theta} \,e\,\text{cm}$$

= $\tilde{d}_{n} + (1.35 \pm 0.88) \cdot 10^{-16} \,\bar{\theta} \,e\,\text{cm}$ (JBC (2013))
with $\tilde{d}_{n} = 0.88d_{n} - 0.047d_{p}$ (de Vries et al. (2011))

Testing Strategies in the θ EDM scenario

Remember:

$$d_D = d_n + d_p - (0.54 \pm 0.39) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm} \quad (\text{Bsaisou et al. (2013)})$$

$$d_{^3\text{He}} = \widetilde{d}_n + (1.35 \pm 0.88) \cdot 10^{-16} \,\overline{\theta} \, e \, \text{cm} \quad (\text{JBC (2013)})$$

Testing strategies:

- plan A: measure d_n , d_p , and $d_D \xrightarrow{d_D(2N)} \overline{\theta} \xrightarrow{\text{test}} d_{^3He}$
- plan A': measure d_n , (d_p) , and $d_{^{3}He} \xrightarrow{d_{^{3}He}(2N)} \overline{\theta} \xrightarrow{\text{test}} d_D$
- plan B: measure d_n (or d_p) + Lattice QCD $\rightarrow \bar{\theta} \xrightarrow{\text{test}} d_D$

■ plan B': measure d_n (or d_p) + Lattice QCD $\sim \bar{\theta} \xrightarrow{\text{test}} d_p$ (or d_n)

here: only absolute values considered

here: only absolute values considered

here: only absolute values considered

Conclusions

- First non-vanishing EDM might be observed in charge-neutral systems: neutrons or dia-/ paramagnetic atoms or molecules ····
- However, measurements of light ion EDMs will play a key role in disentangling the sources of GP
- EDM measurements are characteristically of *low-energy nature*:
 - → Predictions have to be in the empirical language of hadrons
 - → only reliable methods: ChPT/EFT and (ultimately) Lattice QCD
 because the pertinent uncertainty estimates are inherent
- EDMs of light nuclei provide independent information to nucleon EDMs and may be even larger and, moreover, even simpler
- Deuteron & He-3 nuclei work as independent isospin filters of EDMs

At least the EDMs of p, n, d, and ³He are needed to disentangle the underlying physics

Many thanks to my colleagues

in Jülich: Jan Bsaisou, Christoph Hanhart, Susanna Liebig, Ulf-G. Meißner, David Minossi, Andreas Nogga, and Jordy de Vries

in Bonn: Feng-Kun Guo, Bastian Kubis, Ulf-G. Meißner

- and: Werner Bernreuther, Bira van Kolck, and Kolya Nikolaev
- J. Bsaisou, C. Hanhart, S. Liebig, U.-G. Meißner, A. Nogga and A. Wirzba, *The electric dipole moment of the deuteron from the QCD θ-term,* Eur. Phys. J. A 49 (2013) 31 [arXiv:1209.6306 [hep-ph]].
- K. Ottnad, B. Kubis, U.-G. Meißner and F.-K. Guo, New insights into the neutron electric dipole moment, Phys. Lett. B 687 (2010) 42 [arXiv:0911.3981 [hep-ph]].
- F.-K. Guo and U.-G. Meißner, Baryon electric dipole moments from strong CP violation, JHEP 1212 (2012) 097 [arXiv:1210.5887 [hep-ph]].
- W. Dekens and J. de Vries, *Renormalization Group Running of Dimension-Six Sources ...,* JHEP **1305** (2013) 149 [arXiv:1303.3156 [hep-ph]].
- J. de Vries, R. Higa, C.-P. Liu, E. Mereghetti, I. Stetcu, R. Timmermans, U. van Kolck, *Electric Dipole Moments of Light Nuclei From Chiral Effective Field Theory*, Phys. Rev. C 84 (2011) 065501 [arXiv:1109.3604 [hep-ph]].

Backup slides

³He EDM: quantitative results for g₁ exchange

 $\begin{array}{ll} g_1 N^{\dagger} \pi_3 N & (CP, \cline I) \\ \theta \mbox{-term} & \rightarrow & \mbox{NLO} \\ qCEDM, \mbox{4qLR} & \rightarrow & \mbox{LO} \end{tabular} \end{array}$

units: $g_1(g_A m_N/F_{\pi})e$ fm Ref. potential no int. with int. total -0.02×10^{-2} -1.09×10^{-2} -1.11×10^{-2} JBC (2013)* Av18UIX CD BONN TM -1.11×10^{-2} -0.03×10^{-2} -1.14×10^{-2} JBC(2013)* -1.09×10^{-2} $+0.14 \times 10^{-2}$ -0.96×10^{-2} JBC (2013)* ChPT (N²LO)[†] Song (2013) Av18UIX -1.06×10^{-2} -2.20×10^{-2} Stetcu (2008) AV18 UIX --

*: in preparation [†]: cutoffs at 600 MeV (LS) and 700 MeV (SFR) Results for ³H also available (not shown)

In the pipeline: \mathcal{QP} 3π -vertex contribution (4qLR: LO)

θ -term: **CP** π **NN** vertices determined from LECs Leading g_0^{θ} coupling (from c_5) Crewther et al.

Crewther et al. (1979); Ottnad et al. (2010); Mereghetti et al. (2011); de Vries et al. (2011); Bsaisou et al. (2013)

 g_0^{θ} : $N^{\dagger} \vec{\pi} \cdot \vec{\tau} N$ -vertex

$$\mathcal{L}_{\pi N} = \dots + c_5 2B N^{\dagger} \left((m_u - m_d) \tau_3 + \frac{2m^* \bar{\theta}}{F_{\pi}} \vec{\pi} \cdot \vec{\tau} \right) N + \dots$$
$$\delta M_{np}^{str} = 4B(m_u - m_d) c_5 \quad \rightarrow \quad g_0^{\theta} = \bar{\theta} \, \delta M_{np}^{str} \, (1 - \epsilon^2) \frac{1}{4F_{\pi} \epsilon}$$

 $\delta M_{np}^{em} \rightarrow \delta M_{np}^{str} = (2.6 \pm 0.5) \text{MeV} \qquad \text{Walker-Loud et al. (2012)}$ $\longrightarrow \boxed{g_0^{\theta} = (-0.018 \pm 0.007)\overline{\theta}}$

$$\epsilon = (m_u - m_d) / (m_u + m_d), \quad 4Bm^* = M_{\pi}^2 (1 - \epsilon^2), \quad m^* = \frac{m_u m_d}{m_u + m_d}$$

θ -term: subleading g_1^{θ} coupling (from c_1 LEC)

EDM of the Deuteron:

Deuteron (D) as Isospin Filter

note: $\underline{} = \frac{ie}{2}(1 + \tau_3)$

total current

I = 0 I = 0

irred. potential

J_{PT}

 $I=0 \rightarrow I=1 \rightarrow I=0$ I=0 I=0

isospin selection rules!

 $g_0^{\theta} N^{\dagger} \pi \cdot \tau N$ at leading order (LO)

subleading (NLO) $g_1^{\theta} N^{\dagger} \pi_3 N$ acts as *'new'* leading order (LO) for D

EDM of the Deuteron: NLO- and N²LO-Potentials

EDM of the Deuteron: NLO- and N²LO-Potentials

X: vanishing by selection rules, X: sum of diagrams vanishes
 X: vertex correction

EDM of the Deuteron: NLO- and N²LO-Currents

EDM of the Deuteron: NLO- and N²LO-Currents

×: vanishing by selection rules, ×: sum of diagrams vanishes

Summary and Outlook

θEDM: relevant low-energy couplings quantifiable

strategy A: measure d_n , d_p , $d_D \xrightarrow{d_D(2N)} \overline{\theta} \xrightarrow{\text{test}} d_{^3He}$ strategy A': measure d_n , (d_p) , $d_{^3He} \xrightarrow{d_{^3He}(2N)} \overline{\theta} \xrightarrow{\text{test}} d_D$ strategy B: measure d_n (or d_p) + Lattice QCD $\sim \overline{\theta} \xrightarrow{\text{test}} d_D$ strategy B': measure d_n (or d_p) + Lattice QCD $\sim \overline{\theta} \xrightarrow{\text{test}} d_p$ (or d_n)

- qEDM, qCEDM, 4QLR:
 - NDA required to asses sizes of low-energy couplings
 - disentanglement possible by measurements of d_n, d_p, d_D & d_{3He}
- gCEDM, 4quark chiral singlet:

controlled calculation/disentanglement difficult (lattice ?)

- Ultimate progress may eventually come from Lattice QCD
 - \hookrightarrow the GP NN π couplings may be accessible even for dim-6 sources

 \Rightarrow then *quantifiable d_D* (*d*_{3*He*}) EFT predictions feasible in BSM case