Hadron polarizabilities: new results and future plans

R. Miskimen

University of Massachusetts, Amherst

Hirschegg 2014

Proton electric polarizability

Electric polarizability: proton between charged parallel plates

Proton electric polarizability

Electric polarizability: proton between charged parallel plates

Proton magnetic polarizability

Magnetic polarizability: proton between poles of a magnetic

Proton magnetic polarizability

Magnetic polarizability: proton between poles of a magnetic

Why measure polarizabilities?

- Polarizabilities are intrinsic properties of hadrons, as fundamental as magnetic moments and masses
- Test theories for nucleon and meson structure
- Input for corrections to μ H and μ D Lamb shift (see MVdh's talk)
- Knowledge of $\beta_p \beta_n$ limits calculations of E.M. part of $M_n M_p$
- Pion polarizability should be included in calculations of hadronic light-by-light scattering for (g-2)_{\!\mu}
- . . .

Outline

- Measurements of the scalar polarizabilities of the proton, α and β , in real and virtual Compton scattering. Preliminary results with linearly polarized photons
- Measurements of the vector polarizabilities, the spinpolarizabilities, in double-polarized Compton scattering. New results
- Experimental status for the pion polarizability, new measurement at Jefferson Lab

Compton Scattering and the electric and magnetic polarizabilties of the proton

~100 MeV
$$\vec{E} \approx 10^{23} volts / m$$

$$H = H_{Born}(e, \vec{\mu}) - 4\pi \left(\frac{1}{2}\alpha \vec{E}^{2} + \frac{1}{2}\beta \vec{H}^{2}\right)$$

$$\swarrow$$

$$\approx 10\%$$

Theory:

BChPT - Lensky & V.P., EPJC(2010) HBChPT - Griesshammer, McGovern, Phillips, EPJA (2013)

BChPT - Lensky & V.P., EPJC(2010) HBChPT - Griesshammer, McGovern, Phillips, EPJA (2013)

† Mainz proposal MAMI-A2/06-2012, Spokespersons <u>E. Downie</u>, J. Annand, D. Hornidge, R. Miskimen

Crystal Ball and TAPS

 $\approx 4\pi\,$ photon detection, $\,4^{\circ}$ < θ < 160°

CB: 672 NaI crystals, $\Delta E \sim 3\%$, $\Delta \theta \sim 2.5^{\circ}$

TAPS: 366 BaF₂ and 72 PbWO₄ crystals $\Delta E \sim 5\%$, $\Delta \theta \sim 0.7^{\circ}$

See Bernd Krusche's talk for details of the Mainz facility

Compton scattering kinematics

- (Ey=120 -140 MeV) Data: σ = 7.83 MeV, Monte Carlo: σ = 6.77 MeV
- Low background contribution above 120 MeV
- → Background below 120 MeV under investigation

Preliminary results

From Vahe Sokhoyan

Virtual Compton scattering: mapping out the polarizability distributions in the proton at MAMI-A1

Measurements of the vector polarizabilities of the proton: the spin-polarizabilities

• At $O(\omega^3)$ four nucleon structure terms involving nucleon spin-flip operators enter the Real Compton Scattering expansion.

$$H_{eff}^{(3),spin} = -\frac{1}{2} 4\pi \left(\frac{\gamma_{E1E1}}{\sigma} \vec{\sigma} \cdot \vec{E} \times \vec{E} + \frac{\gamma_{M1M1}}{\gamma_{M1M1}} \vec{\sigma} \cdot \vec{B} \times \vec{B} - 2\frac{\gamma_{M1E2}}{\gamma_{M1E2}} E_{ij} \sigma_{j} H_{j} + 2\frac{\gamma_{E1M2}}{\gamma_{E1M2}} H_{ij} \sigma_{j} E_{j} \right)$$

Where the scalar polarizabilities describe the response of nucleon charge and magnetization distributions to an external electromagnetic field, *spin-polarizabilities describe the response* of the nucleon spin to an incident polarized photon.

Measurements of spin-polarizabilities

The GDH experiments at Mainz and ELSA used the Gell-Mann, Goldberger, and Thirring sum rule to evaluate γ_0

$$\begin{split} \gamma_{0} &= -\gamma_{\text{E1E1}} - \gamma_{\text{E1M2}} - \gamma_{\text{M1M1}} - \gamma_{\text{M1E2}} \\ \gamma_{0} &= \lim_{Q^{2} \to 0} \frac{16\alpha M^{2}}{Q^{6}} \int_{0}^{1} x^{2} \left[g_{1}(x,Q^{2}) - \frac{4M^{2}}{Q^{2}} x^{2} g_{2}(x,Q^{2}) \right] dx \\ \gamma_{0} &= \frac{1}{4\pi^{2}} \int_{m_{\pi}}^{\infty} \frac{\sigma_{1/2} - \sigma_{3/2}}{\omega^{3}} d\omega \\ \gamma_{0} &= (-1.01 \pm 0.08 \pm 0.10) \times 10^{-4} \, \text{fm}^{4} \end{split}$$

Backward spin polarizability from analysis of backward angle Compton scattering

$$\gamma_{\pi} = -\gamma_{\text{E1E1}} - \gamma_{\text{E1M2}} + \gamma_{\text{M1M1}} + \gamma_{\text{M1E2}}$$
$$\gamma_{\pi} = (-8.0 \pm 1.8) \times 10^{-4} \, \text{fm}^4$$

The pion-pole contribution has been subtracted from γ_{π}

Proton spin-polarizability measurements and predictions in units of 10⁻⁴ fm⁴

	O(p³)	O(p ⁴)	O(p ⁴)	LC3	LC4	SSE	BGLMN	HDPV	KS	DPV	L _x	Lattice	Experiment
γ_{E1E1}	-5.7	-1.4	-1.8	-3.2	-2.8	-5.7	-3.4	-4.3	-5.0	-3.8	-3.7	?	No data
γ _{M1M1}	-1.1	3.3	2.9	-1.4	-3.1	3.1	2.7	2.9	3.4	2.9	2.5		No data
γ_{E1M2}	1.1	0.2	.7	.7	.8	.98	0.3	-0.01	-1.8	.5	1.2		No data
γ _{M1E2}	1.1	1.8	1.8	.7	.3	.98	1.9	2.1	1.1	1.6	1.2		No data
γ ₀	4.6	-3.9	-3.6	3.1	4.8	.64	-1.5	7	2.3	-1.1	-1.2		-1.01 ±0.08 ±0.10
γ_{π}	4.6	6.3	5.8	1.8	8	8.8	7.7	9.3	11.3	7.8	6.1		8.0±1.8

O(pⁿ) = ChPT, Hemmert, Holstein, McGovern

LC3 and LC4 = $O(p^3)$ and $O(p^4)$ Lorentz invariant ChPT calculations, Scherer

SSE = small scale expansion, Hemmert, Holstein

Dispersion theory calculations, Dreschel, Holstein, Pasquini, VDH, and others

 $L\chi$ = Chiral lagrangian calculation, Gasparyan, Lutz

Measurements of double-polarized Compton scattering with transverse polarized target at MAMI-Mainz[†]

† Mainz proposal MAMI-A2/05-2012, Spokespersons <u>D. Hornidge</u>, J. Annand, E. Downie, R. Miskimen

Frozen spin target

- 2 cm butanol •
- target polarized at 25 mK > 1000 hours relaxation time •
- 0.6 Tholding field •

- P ~ 90%

Preliminary results

Analysis of polarized Compton scattering data

Parameters to fit: the 2 scalar and 4 vector polarizabilities

Theoretical models we use:

- a. Dispersion model, (Drechsel, Pasquini, Vanderhaeghen)
- b. Baryon chiral perturbation theory, with pion, nucleon and Δ degrees of freedom, (Lensky, Pascalutsa)

The data we fit:

4 double-spin asymmetry points, Σ_{2x} , Mainz

- $\alpha \beta = 7.6 \pm 1.7$ Grießhammer, McGovern, Phillips, Feldman analysis
- $\alpha + \beta = 13.8 \pm .4$ Baldin sum rule
- $\gamma_0 = -1.01 \pm .18$ GGT sum rule
- γ_{π} = 8.0 ± 1.8 Compton scattering

79 linear polarization asymmetry points, $\boldsymbol{\Sigma}_3$, LEGS collaboration at BNL

Proton spin-polarizability measurements and predictions in units of 10⁻⁴ fm⁴

	O(p³)	O(p ⁴)	O(p ⁴)	LC3	LC4	SSE	BGLMN	HDPV	KS	DPV	Lχ	Lattic	Experiment
γ_{E1E1}	-5.7	-1.4	-1.8	-3.2	-2.8	-5.7	-3.4	-4.3	-5.0	-3.8	-3.7	?	-3.2±1.1
γ _{m1m1}	-1.1	3.3	2.9	-1.4	-3.1	3.1	2.7	2.9	3.4	2.9	2.5		3.2±.8
γ_{E1M2}	1.1	0.2	.7	.7	.8	.98	0.3	-0.01	-1.8	.5	1.2		9± 1.1
γ _{M1E2}	1.1	1.8	1.8	.7	.3	.98	1.9	2.1	1.1	1.6	1.2		2.0±.2
γ ₀	4.6	-3.9	-3.6	3.1	4.8	.64	-1.5	7	2.3	-1.1	-1.2		$-1.01 \pm 0.08 \pm 0.10$
γ_{π}	4.6	6.3	5.8	1.8	8	8.8	7.7	9.3	11.3	7.8	6.1		$8.0 \pm 1.8^{\dagger}$

O(pⁿ) = ChPT, Hemmert, Holstein, McGovern

LC3 and LC4 = $O(p^3)$ and $O(p^4)$ Lorentz invariant ChPT calculations, Scherer

SSE = small scale expansion, Hemmert, Holstein

Dispersion theory calculations, Dreschel, Holstein, Pasquini, Vdh, and others

 $L\chi$ = Chiral lagrangian calculation, Gasparyan, Lutz

Low energy QCD and charged pion polarizability

$$L_{QCD}(p^4) = L^{chiral-even}(p^4) + L^{chiral-odd}(p^4)$$

Charged pion polarizability $\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha}{m_{\pi}F_{\pi}^2} \left(L_9^r - L_{10}^r \right)$

P⁶ corrections are small $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$ $\alpha_{\pi} + \beta_{\pi} = (0.16 \pm 1.0) \times 10^{-4} \text{ fm}^3$ $\pi^{0} \rightarrow \gamma \gamma$ $A_{\gamma\gamma} = \frac{\alpha N_{C}}{3\pi F_{\pi}}$

Primex result $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.80 \text{ eV} \pm 2.8\%$

See Stephan Paul for details

Hadronic light-by-light scattering correction to $(g-2)_{\mu}$ and the charged pion polarizability

 $\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}^{TH} = 287(83) \times 10^{-11}$ (W. Marciano, arXiv: 1001.4528/hep-ph)

Model calculation by Ramsey-Musolf shows that including the pion polarizability in the HLBL *increases the discrepancy between experiment and the standard model* by as much as \approx 60 × 10⁻¹¹, depending on the value of α_{π} - β_{π} , and the choice of QCD model

Projected error on the Fermi Lab (g-2)_{μ} measurement is $\Delta a_{\mu} = \pm 16 \times 10^{-11}$

Engel, Patel, Ramsey-Musolf, Phys. Rev. D 86, 037502 (2012) Engel, Ramsey-Musolf, arXiv:1309.2225v1 [hep-ph] 2013

Compton Scattering on the pion

29

Crossing symmetry (x \leftrightarrow t): Compton scattering $\longleftrightarrow \gamma\gamma \rightarrow \pi^+\pi^-$

$$\frac{d^2\sigma_{\text{Primakoff}}}{d\Omega dM} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{M} \frac{\sin^2 \theta}{Q^4} \left| F(Q^2) \right|^2 \left(1 + P_{\gamma} \cos 2\varphi_{\pi\pi} \right) \sigma(\gamma\gamma \to \pi\pi)$$

30

Proposed experimental setup at JLab/GlueX

$$\gamma + \gamma \rightarrow \pi^+ + \pi^-$$

Summary

- New data on the linear-polarization asymmetry Σ_3 has been taken at Mainz.
- Presented first results for a double-polarized Compton scattering asymmetry on the proton below 2π threshold
- Analysis using dispersion and BChPT calculations
- Results obtained for γ_{E1E1} , γ_{M1M1} , γ_{E1M2} , γ_{M1E2} are in good agreement with dispersion theory calculations

Thank you!

and special thanks to P. Martel, V. Sokhoyan, and the Mainz A2 collaboration

Advertisement

- Data on the double-polarized asymmetry with longitudinal target Σ_{2z} will be taken this spring, will constrain γ_{π}
- A precision measurement of the charged pion polarizability is being prepared for JLab/GlueX

Blanpied et al., PRC 64, 25203 (2001)

