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Introduction

Handbag vs. nucleon (s- and u-channel) and meson (t-channel) resonances?

Baryon spectroscopy from three-body Faddeev equation
 GE, Alkofer, Krassnigg, Nicmorus,  PRL 104 (2010)

Tetraquark interpretation for 𝜎 meson
Heupel, GE, Fischer,  PLB 718 (2012)

Compton scattering
GE, Fischer,  PRD 85 (2012)  &  PRD 87 (2013)

Elastic & transition form factors for 𝑁 and 𝛥
 GE, PRD 84 (2011);    GE, Fischer,  EPJ A48 (2012);     GE, Nicmorus,  PRD 85 (2012);    Sanchis-Alepuz et al.,  PRD 87 (2013),   . . .

Electromagnetic gauge invariance at the quark-gluon level?

Models and phenomenology 35
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

QCD’s Green functions  ⟷   “Dyson-Schwinger approach”:
Nonperturbative, covariant, low and high energies, light and heavy quarks. But: truncations!

Goal: compute nucleon’s Compton scattering amplitude 
(and other things) from quark-gluon substructure in QCD.

Tensor decomposition for (on- and offshell) fermion two-photon vertex?

Quark core vs. pion cloud?  
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Dyson-Schwinger approach

QCD Lagrangian:
quarks, gluons (+ ghosts)

Quark propagator:

Gluon propagator:

Quark-gluon vertex:

Gluon self-
interactions,
ghosts, . . . 
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QCD & hadron properties are encoded in QCD’s Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):

a
µνFµν

aF4
1−)x(ψ)M−A/g+∂/i) (x(ψ̄=L

Dyson-Schwinger equations
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aF4
1−)x(ψ)M−A/g+∂/i) (x(ψ̄=L

Dyson-Schwinger equations

Truncation ⇒ closed system, solveable.
Ansätze for Green functions that are 
not solved (based on pQCD, lattice, FRG, ...)

Applications: 
Origin of confinement, 
QCD phase diagram,
Hadron physics
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Hadrons: poles in Green functions

Quark four-point function:

Quark-antiquark vertices: (Currents:                   )

Bethe-Salpeter WF: 

Decay constant:
〉H|µJ|0〈

𝑃�           −𝑚�

2.2 Hadrons, poles and decay constants 41

2.2 Hadrons, poles and decay constants

We have mentioned the implications of various symmetry relations for hadrons, but we
have not yet developed the tools to actually extract hadron properties from QCD. In
principle, hadrons are contained in the state space of QCD. A self-adjoint Hamiltonian
has a complete set of orthogonal eigenstates which we will call |λ〉; they carry momenta p
plus further quantum numbers that reflect the symmetries of QCD (angular momentum,
parity, flavor, etc.). Their completeness relation is

1 =
∑

λ

1

(2π)3

∫
d4p θ(p0) δ(p2 − m2

λ) |λ〉〈λ| =
∑

λ

1

(2π)3

∫
d3p

2Ep
|λ〉〈λ| , (2.70)

where the Lorentz-invariant integral weight implements the condition that each hadron
is on its mass shell (p2 = m2

λ, or E2
p = p2 + m2

λ). You might understandably feel a
bit uncomfortable with all this: in principle, the state space can contain (unphysical)
colored states, colorless ’one-particle’ bound states like mesons and baryons, but also
glueballs, multiquark and multi-hadron states – also the C14 nucleus should be some-
where buried in the QCD state space. We will only be interested in qq̄ and qqq color
singlets, but whenever you encounter a sum over λ, keep in mind that the actual Fock
space of QCD is enormous.

Hadrons generate poles. A useful way to extract hadron properties, which is also
closely related to the experimental situation, is based on the fact that hadrons produce
poles in QCD’s Green functions, and hence in scattering amplitudes and cross sections.
The starting point is the Källén-Lehmann spectral representation which is usually de-
rived for the propagator of a theory. Inserting the completeness relation (2.70) between
the two field operators that appear in the propagator’s time-ordered vacuum expecta-
tion value yields a single-particle pole at p2 = m2

λ, and in principle also a multi-particle
continuum with branch cuts that start at p2 = 4m2

λ and extend to infinity. This prop-
erty will, however, not hold in QCD because such states would carry color. Since quarks
transform under the fundamental triplet representation of SU(3)C , a single quark field
operator cannot create colorless states, and one has to make sure somehow that those
are indeed absent from the physical state space. In fact, the absence of a Källén-
Lehmann representation can be used as a criterion for confinement: the elementary
quark and gluon propagators should not have timelike particle poles.

On the other hand, bound states are color singlets and can appear as poles in higher
n−point functions, which allows us to derive a spectral representation for those. Take
for example the quark four-point function

Gαβγδ(x1, x2, x3, x4) = 〈0|Tψα(x1) ψβ(x2) ψγ(x3) ψδ(x4)|0〉 . (2.71)

Inserting a complete set of states will produce bound-state poles because a composite
operator ψψ can produce color singlet quantum numbers (3 ⊗ 3̄ = 1 ⊕ 8). Instead of
working with the four-point function directly, we can simplify the problem by setting
x1 = x2 and x3 = x4 and contracting the resulting quark pairs with Dirac and flavor
matrices ta Γβα Γ′

δγ tb from Eq. (2.12). Then we obtain current correlators of the form

〈0|TPa(x)Pb(y)|0〉 , 〈0|TV µ
a (x) V ν

b (y)|0〉 , 〈0|TAµ
a(x) Aν

b (y)|0〉 , etc. (2.72)

〉0|)4x(ψ̄)3x(ψ)2x(ψ̄)1x(ψT|0〈

Current correlators:

𝑃�           −𝑚�

〉0|)y(νJ)x(µJT|0〈

〉0|)2x(ψ̄)1x(ψ)x(µJT|0〈

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

Quark six-point function:
Faddeev WF

𝑃�           −𝑚�

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

Quark-photon vertex
has 𝜌-meson poles:
‘vector-meson dominance’
  

ψµΓψ̄=µJ

𝜒𝜒𝐺
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Bethe-Salpeter equations

Inhomogeneous BSE
for quark four-point function: Analogy: geometric series

What’s the kernel K?

Homogeneous BSE 
for bound-state wave function:

Inhomogeneous BSE 
for quark-antiquark vertices:

𝐺 𝐾 𝐺

𝜒 𝜒𝐾

x−1
1) =x(f⇒)x(xf) = 1 +x(f

. . .+2x+x) = 1 +x(f1<|x| ⇒

𝐾

Related to Green functions
via symmetries: CVC, PCAC 
⟹  vector, axialvector WTIs

Relate K with quark propagator
and quark-gluon vertex

=

+

+

=

=
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Structure of the kernel

Rainbow-ladder: tree-level vertex + effective coupling �  DCSB, CVC, PCAC

⍨  No pion cloud, 
    no flavor dependence, 
    no 𝑈�(1) anomaly, no 
    dynamical decay widths

Ansatz for effective coupling:

Adjust infrared scale 𝛬 to 
physical observable, 
keep width 𝜂 as parameter

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

𝐾 𝛼 (𝑘  )2=
𝛼 (𝑘  )2

-1 -1 +

Maris,  Roberts, Tandy,  PRC 56 (1997), PRC 60 (1999)

𝛼 (𝑘  ) = 𝛼���        , 𝜂� + 𝛼��(𝑘²)  2 𝑘²
𝛬²
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Pseudoscalar & vector mesons:
rainbow-ladder is good.
Masses, form factors, decays,
𝜋𝜋 scattering lengths, PDFs 

Mesons

200

0
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𝑚� [𝑀𝑒𝑉]

Pion is Goldstone boson, 
satisfies GMOR:  𝑚�� ~ 𝑚�

Need to go beyond rainbow-ladder for 
excited, scalar, axialvector mesons, 𝜂-𝜂’, etc.

Heavy mesons 

Bottomonium
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calc
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Maris, Roberts, Tandy,  PRC 56 (1997), PRC 60 (1999); 
Bashir et al.,  Commun. Theor.  Phys. 58 (2012)

Fischer,
J Phys G 32 (2006)

Blank,  Krassnigg, PRD 84 (2011)

Fischer,  Williams   &   Chang, Roberts,  PRL 103 (2009)
Alkofer et al.,  EPJ A38 (2008),    Bhagwat et al.,  PRC 76 (2007)
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Baryons

)
− −

χ
µ)1−Gχ̄=〉H|µJ|H〈

++= +

+ ++

Covariant Faddeev equation:  kernel contains 2PI and 3PI parts

Current matrix element:

Truncation:

Impulse approximation + gauged kernel µ
K−µ

)0
1−G= (

µ)1−G

Quark-quark correlations only (dominant structure in baryons?)
Rainbow-ladder gluon exchange 
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Baryon masses
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GE, Alkofer, Krassnigg,
Nicmorus,  PRL 104 (2010);         , GE, Alkofer, Krassnigg, Nicmorus,  PRL 104 (2010)et al.,  

GE,  PRD 84 (2011)

Nucleon mass:

Maris &  Tandy,  
PRC 60 (1999)

𝜌–meson mass:

Sanchis-Alepuz et al., 
PRD 84 (2011)

Delta mass:

Diquark clustering in baryons: 
similar results in quark-diquark approach
Oettel,  Alkofer,  von Smekal,  EPJ A8 (2000)
GE, Cloet, Alkofer, Krassnigg, Roberts,  PRC 79 (2009)

Excited baryons (e.g. Roper): also 
quark-diquark structure?

Role of pion cloud:

Same kernel as for mesons, scale set by 𝑓� .  
Full covariant wave functions, no further 
parameters or approximations.

Masses not sensitive to effective interaction.

Good agreement with experiment & lattice. 
Pion mass is also calculated.

Chen, Chang, Roberts, Wan, Wilson,  FBS 53 (2012)

Role of three-gluon vertex?
Williams, Vujinovic, GE, Alkofer,  in preparation

see talk by C. Fischer
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Electromagnetic form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

[𝜇�]

[𝜇�]

!!
But: pion-cloud cancels in 𝜅�  ⟺ quark core 

       Exp:    𝜅� = –0.12   
Calc:   𝜅� = –0.12(1)
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agreement with lattice at 
larger quark masses.
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Nucleon-𝛥-𝛾 transition  

*

Electric & Coulomb quadrupole transitions  
small & negative, encode deformation. 

Magnetic dipole transition (𝐺� ) dominant: 
quark spin flip (s wave).  “Core + 25% pion cloud”

Ratios reproduced without pion cloud:
OAM from relativistic p waves in the quark core!
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Quark model: need d waves or pion cloud.
Perturbative QCD: 𝑅�� → 1, 𝑅�� → const.
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Quark-photon vertex

determines vertex up to transverse parts:

Ball-Chiu vertex, completely specified by 
dressed fermion propagator:

Transverse part: free of kinematic singularities, 
tensor structures                    , contains meson poles

Anomalous
magnetic moment

Dominant

Curtis, Pennington,  PRD 42 (1990)

Vector WTI

Ball, Chiu,  PRD 22 (1980)

Kizilersu, Reenders, Pennington,  PRD 92 (1995);      GE, Fischer,  PRD 87 (2013)  

3, Q2Q, Q∼

 

𝑘

𝑄
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) −

f4 − mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Current matrix element: + ++χ
µ)1−Gχ̄=〉H|µJ|H〈
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
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+ kµ
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(
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)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
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T + f6 Q2 kµ
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+ f7 k ·Q (k ·Q γµ − kµ /Q)
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We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]
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(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
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Tµν
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jector (78) one could equally apply Q2 Tµν

Q which has
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2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,
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A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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T = g1γ

µ
T + g2 k ·Q i

2 [γµ
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where
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T = Tµν
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since
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agator and free of kinematic singularities.
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commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)
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where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
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Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
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to the remaining elements from the first two columns of
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functions gi(k
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k2 > 0, Q2 ∈ R. However, since the projector (78) con-
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dressing functions are kinematically dependent: the four
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Q which has
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.
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and a transverse piece that is not constrained by the
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totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)
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larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ
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T + g2 k ·Q i

2 [γµ
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+ g3
i
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1
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i
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,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since
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f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
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,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
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B(k2

+) − B(k2
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(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8
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2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
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+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
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2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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momenta. The inverse dressed quark propagator reads
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and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
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must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν
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are completely determined by the dressed fermion prop-
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and a transverse piece that is not constrained by the
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It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
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T + f2 k ·Q Q2 i
2 [γµ
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+ f3
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1
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Hadron scattering

Compton scattering, 
DVCS, 2𝛾 physics

Meson photo- and
electroproduction 

Nucleon-pion
scattering 

Meson production Pion Compton 
scattering

𝑝𝑝 → 𝛾𝛾*
annihilation 

⇒  Nonperturbative description of hadron-photon and hadron-meson scattering

Can we extend this to four-body scattering processes?
GE, Fischer,  PRD 85 (2012)
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Nucleon Compton scattering

Polarizabilities
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Nucleon Compton scattering Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0
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+1-1
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s=0 u=0

s>0 u>0

Figure 2: Left panel: {Q2,Q′2} plane in the variables X and Z. The abbreviations RCS, VCS, VVCS and
TCS denote real, virtual, doubly virtual and timelike Compton scattering. The colored area describes the
spacelike region. Right panel: Mandelstam plane for real Compton scattering in the variables t and Y . The
physical s−channel region corresponds to Y ≥ 1. The inserted lines visualize the resonance locations: the
t−channel scalar and pion poles (dashed), s− and u−channel nucleon poles from the Born terms (solid),
and nucleon resonances (dotted). Our Mandelstam variables s and u are shifted by −M2 compared to their
usual definition, so that s = 0 and u = 0 correspond to the nucleon pole locations.

Direct experimental information is available in the kinematic limits of real (RCS), virtual
(VCS) and doubly-virtual forward Compton scattering (VVCS), where one or several Lorentz-
invariant combinations of the photon momenta vanish, cf. Fig. 2. The structure of the scattering
amplitude in these limits is closely tied to electromagnetic gauge invariance which entails that
J̃µν = Jµν

B + Jµν is transverse with respect to the incoming and outgoing photon momenta. In
general, Jµν

B and Jµν are not individually transverse since the intermediate nucleon in Eq. (2.1)
is offshell, and the separation into a Born term and a structure part is in principle arbitrary as the
former contains also an offshell nucleon-photon vertex. In that respect it is useful to employ the
onshell Dirac form for the vertex with Dirac and Pauli form factors F1 and F2,

−iΓµ
N(Q) = F1(Q2)γµ +

iF2(Q2)

4M
[γµ , /Q] , (2.2)

since it guarantees that the Born term, and hence also the structure part, are transverse on their own
even in offshell kinematics. This is usually not true for other onshell-equivalent forms of Eq. (2.2).
Transversality and analyticity then imply that Jµν is at least linear in both photon four-momenta Q
and Q′, whereas the Born term and its irregular low-energy limit is determined by experimentally
known nucleon properties. This is the essence of the low-energy theorem for Compton scattering,
see Ref. [16] for a detailed discussion.

The structure part can now be decomposed in terms of 18 transverse tensor structures:

Jµν(P,Σ,∆) =
18

∑
i=1

Fi(t,X ,Y,Z)T
µν
i (P,Σ,∆), (2.3)
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Forward limit: structure functions in DIS    
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to nucleon form factors, proton radius puzzle? 
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RCS, VCS: nucleon polarizabilities    

DVCS: handbag dominance, GPDs 
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Krupina & Pascalutsa,
PRL 110 (2013)
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Two-photon corrections
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Proton radius extracted from Lamb shift in μH 4% smaller than that from eH, 
would need additional ∆E ~ 300 μeV to agree  Pohl et al.,  Nature 466, 213 (2010)

Can two-photon offshell corrections explain discrepancy? Controversy... 
Miller, Thomas, Carroll, Rafelski,  PRA 84 (2011)
Carlson, Vanderhaeghen, PRA 84 (2011)
Birse,  McGovern, EPJ A48 (2012)
Miller,  1209.4667 [nucl-th]

Proton form factor ratio: 

 

Arrington et al.,  Prog. Part. Nucl. Phys. 66 (2011)Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in

scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable

Difference likely due to two-photon corrections 
Blunden, Melnitchouk, Tjon  &   Guichon, Vanderhaeghen, PRL 91 (2003) 

Rosenbluth extraction suggested /  = const., 
in agreement with perturbative scaling

Polarization data from JLAB showed falloff 
in /   with possible zero crossing

Modified pQCD predictions: OAM 

Proton radius puzzle: 

Miller, Thomas, Carroll, Rafelski;    Carlson, Vanderhaeghen;   Birse,  McGovern;   . . .
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pp annihilation at PANDA@FAIR

Handbag dominance in DVCS

large 𝑄� & 𝑠, small 𝑡: factorization, 
extract GPDs from handbag diagram

factorization

 

PANDA Physics Book 

p

𝛾* 𝛾
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GPD

Are the concepts developed for lepton scattering 
(factorization, handbag dominance, GPDs) applicable?

p γ

p γ

G
D

A

Is it possible to calculate these processes
directly within nonperturbative QCD? Wishlist:

Em. gauge invariance
Crossing symmetry
Poincare invariance
Recover parton picture (handbag, ...)
Recover hadronic structure (s, u, t-channel resonances)
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Compton scattering

All direct measurements in kinematic limits 
(RCS, VCS, forward limit).

Em. gauge invariance ⟹ Compton amplitude is fully transverse. 
Analyticity constrains 1PI part in these limits (low-energy theorem).

Need tensor basis free of kinematic singularities (18 elements). Complicated...

Nucleon Compton scattering Gernot Eichmann
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VCS
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Scalar
vertex
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Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)

Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Tensor basis?

Transversality, analyticity and Bose symmetry
makes the construction extremely difficult...
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analytic in all limits

manifest crossing and 
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scalar & pion pole only
in a few Compton form factors

Tarrach‘s basis can be cast
in a similar form
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They encode the nucleon structure functions...
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
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with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Generalize transverse projectors: 

(exhausts all possibilities) 

Apply Bose-(anti-)symmetric combinations 

νaµb−µνb δ·a:=ab
µνt

βbαaµναβε5γ:=ab
µνε

}′p, Q,Q∈ {a, b

obtain
16 quadratic,
40 cubic
16 quartic terms
⟹ 72 in total � 

no kinematic 
singularities � 

16

with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-

µνΓ

to structures
independent
of Q, Q  :  ′
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with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
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[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have
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i τν
i (p, Q) + H ′
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(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have
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(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
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i
ν
τµ
i (p,−Q′)
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]

+ 2kα [Hi τ
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(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-

16

with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
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i (p,−Q′)
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]

+ 2kα [Hi τ
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(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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Since the τµ
i are already transverse in their arguments,

we can simply add both contributions to obtain a Bose-
symmetric solution of both equations (up to fully trans-
verse terms):

−iΓµν
T,i = Hµ

i τν
i (Q) + H ′

i
ν
τµ
i (−Q′). (141)

For the elements i = 4, 5 we obtain similarly

−iΓµν
T,i = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

+ Hi τ
νµ
i (Q) + H ′

i τµν
i (−Q′),

(142)

and for the elements i = 2, 6, 7, 8 we have

−iΓµν
T,i = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(143)

Note that for a scalar Compton vertex only Γµν
T,5 con-

tributes.
The final result for the WTI-preserving 1PI fermion

Compton vertex is the sum of Eq. (126), which is com-
pletely fixed by the dressed fermion propagator, plus the
eight Γµν

T,i that constitute Γµν
T in Eq. (132). The latter are

fixed by the transverse part of the fermion-photon ver-
tex. The full Compton vertex including the Born term is
then given by

Γ̃µν = Γµν
B + Γµν

BC + Γµν
T + Γµν

TT . (144)

The first three terms on the r.h.s. are necessary to sat-
isfy the WTI of Eq. (101). The above construction can
also be useful in view of the nucleon Compton ampli-

tude J̃µν : since the r.h.s. of the WTI vanishes onshell,
Eq. (144) provides a gauge-invariant decomposition into a
fully transverse ’generalized Born part’ Jµν

B + Jµν
BC + Jµν

T
that depends on the (offshell) nucleon propagator and
nucleon-photon vertex, and another fully transverse re-
mainder Jµν

TT which must be determined dynamically.

E. Fully transverse part of the Compton vertex

The remaining part Γµν
TT of the fermion Compton ver-

tex in the representation (144) is transverse with respect
to both Q′µ and Qν . Its structure is of particular impor-
tance for the onshell nucleon Compton amplitude: since
the r.h.s. of the onshell Compton WTI (105) vanishes,

both the full amplitude J̃µν and the residual part Jµν (if
a suitable gauge-invariant Born term is subtracted) are
fully transverse and therefore subject to possible kine-
matic constraints.

We recall from the analysis in Sec. (IV) that there are
9 × 8 = 72 independent transverse basis elements in the
general offshell case and 9 × 2 = 18 transverse basis el-
ements on the mass shell. In order to study real or vir-
tual Compton scattering, we must find the analogue to
Eqs. (89–90). The tensor structures in the resulting basis

should be free of kinematic singularities in the relevant
kinematic limits so that the respective dressing functions
are kinematically independent. For the onshell Compton
scattering amplitude, such a basis has been constructed
by Tarrach [62], with a later modification in Refs. [49, 50].
In the following we attempt to build such a basis from a
systematic point of view.

Construction of the basis. One can generalize the
construction of Eqs. (84–89) to the Compton case in the
following way. We start with the ten basis elements that
are independent of the photon momenta:

ραβ1 = δαβ ,

ραβ3 = 1
2

[
γα, γβ

]
,

ραβ5 = pαγβ + γαpβ ,

ραβ7 = pαγβ − γαpβ ,

ραβ9 = pαpβ ,

ραβ2 = δαβ /p ,

ραβ4 = 1
6

[
γα, γβ , /p

]
,

ραβ6 = 1
2

[
pαγβ + γαpβ , /p

]
,

ραβ8 = 1
2

[
pαγβ − γαpβ , /p

]
,

ραβ10 = pαpβ /p ,

(145)
where the generalized commutator [ · , · , · ] has been de-
fined in Eq. (76). Second, we want to contract them with
all possible tensor structures that are transverse with re-
spect to both photons and free of kinematic singularities.
To this end, we use the definitions from Eq. (84),

tµνab = a · b δµν − bµaν ,

εµνab = γ5 εµναβaαbβ ,
(146)

to define the quantities:

Eµα,βν
± (a, b) := 1

2

(
εµαQ′a′ εβνbQ ± εµαQ′b′ εβνaQ

)
,

Fµα,βν
± (a, b) := 1

2

(
tµαQ′a′ tβνbQ ± tµαQ′b′ tβνaQ

)
,

Gµα,βν
± (a, b) := 1

2

(
εµαQ′a′ tβνbQ ± tµαQ′b′ εβνaQ

)
,

(147)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from

a = p, Q, Q′ ↔ a′ = p, Q′, Q . (148)

These tensors are symmetric or antisymmetric under
Bose and charge conjugation, transverse with respect to
Q′µ and Qν , linear in all momenta Q, Q′, a and b, and
free of kinematic singularities. They are not all linearly
independent; for example, E−(a, b) and F−(a, b) vanish if
a = b.

In the last step we contract Eq. (147) with the ραβi and
collect the resulting elements in subsets with increasing
powers in the photon momenta, in order to avoid kine-
matic relations between the dressing functions. Since
there are only 72 independent transverse elements, one
will encounter linear dependencies between the possible
combinations

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(149)

(p, Q,Q΄)
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Compton amplitude at quark level

(b) (c)(a)

cat‘s ears
diagrams

�   crossing symmetry 
�   em. gauge invariance
�   perturbative processes 
     included
�   s, t, u channel poles 
    generated in QCD

GE, Fischer,  PRD 85 (2012)
Baryon’s Compton scattering amplitude, consistent with Faddeev equation:
 

 

In rainbow-ladder (+ crossing & permutation):

χ
)

µν)1−G(−µ1−G G
ν1−G+

ν1−G G
µ1−Gχ= ¯〉H|νJµJ|H〈

all s- and u-channel
nucleon resonances:

Born (handbag) 
diagrams: G = 1 + T

all t-channel
meson poles

, , , . . .

1PI quark
2-photon vertex:
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Compton amplitude at quark level

(b) (c)(a)

  

  

’’

’

= + +
(b) (c)(a)

‚

Collect all (nonperturbative!) ‘handbag’ diagrams: no nucleon resonances, no cat’s ears

 

 

reduces to perturbative handbag at large photon momenta,
but also all t-channel poles included! (scalar, pion, ... )

represented by full quark Compton vertex, including Born terms.
Satisfies inhomogeneous BSE, solved in RL (128 tensor structures)

not electromagnetically gauge invariant, but 
comparable to 1PI ‚structure part‘ at nucleon level?

0.0
0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

/
0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

/

( ’ ) ( ’ )
 
 
 
 
 

   0.04
  0.07
  0.11
  0.16
  0.22
  0.28
  0.36
  0.44
  0.54

 
 
 

   0.11
  0.20
  0.31
  0.44
  0.60
  0.79

, , , . . .

Residues at pion pole recover
𝜋𝛾𝛾 transition form factor �

(extracted from 
 quark Compton vertex)

(extracted from 
 nucleon Compton amplitude)

 

Rainbow-ladder result:  
Maris & Tandy,  PRC 65 (2002)

GE & Fischer,  PRD 87 (2013)
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Compton amplitude at quark level

Born WTI WTI-T Transverse

All these will contribute to Compton form factors (⇒ polarizabilities, structure functions, GPDs, etc.)
Dominant contributions?

TT
µνΓ+T

µνΓ+BC
µνΓ+B

µνΓ=µνΓ not constrained by WTI, 
calculated from BSE

no kinematic singularities

contains t-channel poles

72 elements offshell
(18 elements onshell)

Nucleon Compton scattering Gernot Eichmann
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VCS
VVCS

Scalar
vertex

Short Title for header Gernot Eichmann
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s
channel
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'  0
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+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)

Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)

Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...
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RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.
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are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
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RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.

5

    ⇒  Born (pure handbag)?

    ⇒  WTI, WTI-T (em. gauge invariance) ?

    ⇒  Fully transverse part (t-channel poles) ?

2-photon equivalent of Ball-Chiu vertex, 
fixed by quark propagator & quark-photon vertex   

no kinematic singularities

Quark Compton vertex has extremely rich structure:

Exploit em. gauge invariance:  general offshell quark Compton vertex can be written as

)′p, Q,Q(i
µντ)′Q·Q, p·, p′Q·, Q

2′, Q2, Q2p(if
∑

) =′p, Q,Q(µνΓ
= 1i
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .
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Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.
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They encode the nucleon structure functions...
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...

5

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions
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with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F
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+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Gauge invariance ⇔  transversality:
when inserted in nucleon Compton amplitude,
non-transverse terms in quark Compton vertex (in Born, WTI, WTI-T)   
must be cancelled by those in remaining diagrams (cat‘s ears, 6pt function)

But handbag alone is not gauge-invariant,
incomplete calculation can produce singularities in

16

with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-

16

with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-

Q·, P′Q·, Q
2′, Q2 Q

Handbag

Kinematic 
rest

Handbag

2Q 2Q

2Q)2Q(α) =2Q(F )2Q(α : Polarizability

⇒

Handbag

Kinematic 
rest

Handbag

2Q 2Q

2Q)2Q(α) =2Q(F )2Q(α : Polarizability

⇒

Gernot Eichmann (Uni Giessen) Jan 17, 2014 23 / 25



Here be dragons

Nucleon Compton scattering Gernot Eichmann

RCS

VCS
VVCS

Scalar
vertex

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)

Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .
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G+(p, p),
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Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.
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They encode the nucleon structure functions...
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are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
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functions must vanish). The remaining six structures can be related to those of Prange [?] or
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.
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are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.
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are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
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L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions
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with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.

5

Gauge invariance ⇔  transversality:
when inserted in nucleon Compton amplitude,
non-transverse terms in quark Compton vertex (in Born, WTI, WTI-T)   
must be cancelled by those in remaining diagrams (cat‘s ears, 6pt function)

But handbag alone is not gauge-invariant,
incomplete calculation can produce singularities in

16

with the scalar functions Hi defined in (125), and for the
elements i = 2, 4, 5, 6 we have

Γ̃µν
i=2,4,5,6 = Hµ

i τν
i (p, Q) + H ′

i
ν
τµ
i (p,−Q′)

− 1
4

[
Hµ

i τν
i (−Q′, Q) + H ′

i
ν
τµ
i (Q,−Q′)

]

+ 2kα [Hi τ
νµα
i (Q) + H ′

i τµνα
i (−Q′)] .

(132)

The full result for the WTI-preserving fermion-
Compton vertex is therefore the sum of Eq. (111), which
is completely fixed by the dressed fermion propagator,

plus the eight Γ̃µν
i that contribute to Γ̃µν

T in Eq.(120).
These are fixed by the transverse part of the fermion-
photon vertex.

D. Fully transverse part of the Compton vertex

Having determined the WTI-preserving part of the
fermion-Compton vertex, the remainder in the represen-
tation (??) is transverse with respect to Q′µ or Qν . In the
case of the nucleon, this is actually the only part of the
full Compton amplitude Jµν — with Born terms included
— that survives since the r.h.s. of the onshell Compton
WTI vanishes: the nucleon’s Compton amplitude is fully
transverse and must vanish at Q = 0, Q′ = 0.

In order to determine nucleon polarizabilities we would
ideally have to find an analogue to Eq. (??): from
Sec. (??) we know that there are 9 × 8 = 72 indepen-
dent transverse basis elements in the general case and
9 × 2 = 18 transverse basis elements on the mass shell.
Ideally we would like to classify them according to the
same principles as in the one-photon case: they should be
symmetric (or antisymmetric) under charge-conjugation
and Bose exchange; free of kinematic singularities in any
of the limits u, u′, w → 0 and u, u′ → ±w so that the
dressing functions are regular in those limits.

Such bases have been constructed in the literature [2,
3, 5, 6] but it would be nice to find a simple and sys-
tematic construction principle. One can generalize the
construction of Eqs (??–??) to the Compton case. To
that end we start from the ten combinations that are
independent of the photon momenta:

ραβ1 = δαβ

ραβ2 = δαβ /p

ραβ3 =
[
γα, γβ

]

ραβ4 =
[
γα, γβ , /p

]

ραβ5 = pαγβ + γαpβ

ραβ6 =
[
pαγβ + γαpβ , /p

]

ραβ7 = pαγβ − γαpβ

ραβ8 =
[
pαγβ − γαpβ , /p

]

ραβ9 = pαpβ

ραβ10 = pαpβ /p

(133)

In the fourth row we have used the traceless and anti-
symmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B . (134)

The transverse Compton vertex can be reconstructed
from the ρi by contracting with suitable tensor structures
that are transverse with respect to Q′µ and Qν and free of
kinematic singularities. The ρi have manifest Bose- and
charge-conjugation symmetry properties, and we want
to retain this feature for the projection operators. The
possible generalizations of Eq. (116) from the one-photon
case to the two-photon vertex are given by

Eµα,βν
± (a, b) :=

1

2

(
εµαQ′a εβνbQ ± εµαQ′b′ εβνa′Q

)
,

Fµα,βν
± (a, b) :=

1

2

(
tµαQ′a tβνbQ ± tµαQ′b′ tβνa′Q

)
,

Gµα,βν
± (a, b) :=

1

2

(
εµαQ′a tβνbQ ± tµαQ′b′ εβνa′Q

)
,

(135)

where aµ, bµ ∈ {pµ, Qµ, Q′µ}, and primed quantities are
obtained from photon crossing Q ↔ −Q′. These tensors
are free of kinematic singularities, symmetric or antisym-
metric under Bose or charge conjugation, and linear in all
momenta Q, Q′, a and b. The transverse basis elements
of the Compton vertex are then contained in the set

Eµα,βν
± (a, b) ραβi (p) ,

Fµα,βν
± (a, b) ραβi (p) ,

Gµα,βν
± (a, b) ραβi (p) .

(136)

Since there are only 72 independent transverse ele-
ments, it is clear that there will be linear dependencies
between the possible combinations in Eq. (??). The de-
tailed analysis yields a maximum set of 16 linearly inde-
pendent elements which carry two powers of the photon
momenta; they can be chosen as





Eµα,βν
+ (p, p)

Fµα,βν
+ (p, p)

Gµα,βν
± (p, p)



× ραβ1...4(p) . (137)

There are 40 further cubic elements

{
Fµα,βν
± (p, Q)

Gµα,βν
± (p, Q)

}
× ραβ1...6(p),

{
Fµα,βν
± (p, Q′)

Gµα,βν
± (p, Q′)

}
× ραβ3...6(p)

(138)

and 16 that come with four powers of Q, Q′:

Fµα,βν
+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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and 16 that come with four powers of Q, Q′:
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+ (Q′, Q) ραβ1...8(p),

Gµα,βν
± (Q, Q) ραβ3...6(p).

(139)

Note that five spin-independent combinations are encap-
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.

5

Nucleon Compton scattering Gernot Eichmann

RCS

VCS
VVCS

Scalar
vertex

Short Title for header Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)
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Ẽ+(p, p),

F+(p, p),

F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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F̃+(p, p),

G+(p, p),

G̃−(p, p).
(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),

Ẽ+(p, p),

F+(p, p),

F̃+(p, p).
(1.13)

They encode the nucleon structure functions...
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Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)
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F̃+(P,Q) (++)
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Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
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to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),
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Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi

+ ,
(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B, C] := [A, B] C +[B, C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.
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𝛼 � 𝛽:   dominated by quark Born terms (pure handbag) 
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Summary  

Next:

So far:

Structure analysis of Compton scattering
Nonperturbative calculation of handbag part (Born + t-channel)

Extract polarizabilities
Two-photon exchange contribution to form factors

GPDs & nucleon PDFs

Nucleon resonances
Timelike form factors & processes

Pion electroproduction at quark level

Need to improve:

Go beyond rainbow-ladder! (Pion cloud, decay channels, higher n-point functions, ...)
Deal with quark singularities ⇒ access high      , timelike region etc.     )2 Q
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Scaling variable: ξ = −Σ2 + ∆2/4

2P · Σ =
σ + t

2ν

=
1

Y

√
t

1 + t

1√
Z2 − 1

σ + t

2
√

σt
= η

σ + t

2
√

σt Z
= η

τ + τ ′

τ − τ ′

Skewness: η = − ∆ · Σ
2P · Σ =

δ

2ν

=
1

Y

√
t

1 + t

Z√
Z2 − 1

• ξ represents Y ∼ ν, η represents Z.

• For virtual Compton scattering: τ ′ = 0 ⇒ ξ = η; for timelike Compton scattering (=
reversed VCS): τ = 0 ⇒ ξ = −η.

• ξ ∈ [−η, η]; in the lower limit: τ ′ � τ , in the upper limit: τ ′ � τ . Erm... NO. but in the
limit τ = τ ′: η = 0, ξ is finite.

• ξ, η are for a Euclidean description inconvenient since, in the spacelike region, they become
imaginary.

RCS:
Mandelstam line

Polarizabilities

VCS:
Generalized
polarizabilities

TCS

Z = +1

Z = -1
Forward plane

Bjorken
regime

Spacelike 
region

∆2

4M2
= t

Σ2

M2
= σ

P 2

M2
= −(1 + t) P̂ · ∆̂ = 0 P̂ · Σ̂T = Y Σ̂ · ∆̂ = Z
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Thanks for your attention.

Cheers to my collaborators:

R. Alkofer, M. Blank, C. S. Fischer, W. Heupel, 
A. Krassnigg, S. Kubrak, V. Mader, D. Nicmorus, 
H. Sanchis-Alepuz, S. Villalba-Chávez, R. Williams
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