Search for the QCD Critical Point in High-Energy Nuclear Collisions at RHIC

Nu Xu

⁽¹⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA
 ⁽²⁾ College of Physical Science & Technology, Central China Normal University, China

Many Thanks to the Organizers!

QCD in Twenty-One Century

The QCD Phase Diagram and High-Energy Nuclear Collisions

Phase Diagram: Water

Phase diagram: A map shows

that, at given degrees of freedom, how matter organize itself under external conditions.

Water: H₂O

The QCD phase diagram:

structure of matter with quarkand gluon-degrees (color degrees) of freedom.

QCD Phase Diagram (1953)

QCD Phase Diagram (2009)

Larry McLerran

<u>nucl-th: 0907.4489, NPA830,709(09)</u> L. McLerran nucl-th 0911.4806, <u>NPA837,65(10)</u>: A. Andronic, D. Blaschke, P. Braun-Munzinger, J. Cleymans, K. Fukushima, L.D. McLerran, H. Oeschler, R.D. Pisarski, K. Redlich, C. Sasaki, H. Satz, and J. Stachel

Experiments: Systematic measurements (E_{beam} , A_{size}) : extract **numbers** that are related to the **phase diagram**

(1) Introduction

(2) Recent Results and Beam Energy Scan at RHIC

(3) Summary and Outlook

Particle Identification at STAR

PID: (*π*[±], *K*[±], *p*) from Au+Au Collisions at 7.7, 39, 200 GeV

STAR Physics Focus

1) At 200 GeV at RHIC

- Study medium properties, EoS
- pQCD in hot and dense medium
- 2) RHIC beam energy scan (BES) - Search for the QCD critical point
 - Chiral symmetry restoration

Bulk-penetrating probe

Anisotropy Parameter v₂

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low $p_T (\leq 2 \text{ GeV/c})$: hydrodynamic mass ordering High $p_T (> 2 \text{ GeV/c})$: *number of quarks scaling*

Partonic Collectivity, necessary for QGP! De-confinement in Au+Au collisions at RHIC!

Small value of specific viscosity over entropy η/s
 Model uncertainty dominated by *initial eccentricity* ε

Model: Song et al. arXiv:1011.2783

η/s ≥ 1/4π η/s(QCD matter) < η/s(QED matter)

Antimatter Discoveries at RHIC

Facets of Strong-Interaction Physics, Hirschegg, January 16-20, 2012

Beam Energy Scan at RHIC

Study QCD Phase Structure

- Signals of phase boundary
- Signals for critical point

Observations:

- (1) Azimuthally HBT 1st order phase transition
- (2) Directed flow v₁ 1st order phase transition
- (3) Dynamical correlations partonic vs. hadronic dof
- (4) v₂ NCQ scaling partonic vs. hadronic dof
- (5) Fluctuations Critical point, correl. length

- http://drupal.star.bnl.gov/STAR/starnotes /public/sn0493

- arXiv:1007.2613

Bulk Properties at Freeze-out

- (1) The sign change occurs between $\sqrt{s_{NN}}$ = 7.7 and 11.5 GeV indicating the change in the EOS around these beam energies
- (2) Transport models can NOT reproduced the trend and change properly

in High Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

Strong external EM field
 De-confinement and Chiral symmetry restoration

 $\left\langle \cos\left(\phi_{\alpha}+\phi_{\beta}-2\Psi_{RP}\right)\right\rangle$

Parity even observable Voloshin, PR <u>C62</u>, 044901(00).

STAR; PRL103, 251601(09); 0909.1717 (PRC).

Future tests with Beam Energy dependence & U+U collisions

Observable*: NCQ Scaling in v₂

of quark scaling and the value of v_2 of ϕ will be small.

^{*} Thermalization is assumed!

Particle and Anti-particle v_2 vs. $\sqrt{s_{NN}}$

STAR: Quark Matter 2011

Hadronic interactions are dominant

The φ v₂ falls off trend from other hadrons at 11.5 GeV
The v₂-scaling holds for hadrons with same charge (?) *"Effects of Hadronic Potential"* by Xu, Chen, Ko, Lin, 1201.3391

Thermodynamic function ⇔ Susceptibility ⇔ Moments Model calculations, e.g. LGT, HRG ⇔ Measurements

First Results on High Moments

Energy Scan in Au+Au collisions:

Run 10: 7.7, 11.5, 39 GeV Run 11: 19.6, 27 GeV

- Centrality averaged events. In this analysis, effects of volume and detecting efficiencies are all canceled out.
- Most transport model results values are higher than unity, except the Theminator result at 200GeV. LGT predicted values around 0.8-0.9.
- 3) Test of thermalization with higher moments.
- 4) Critical point effect: nonmonotonic dependence on collision energy.

• STAR: PRL105, 22302(2010)

• F. Karsch and K. Redlich, PLB695, 136(2011)

- (a) Freeze-out temperature is close to LGT T_{C}
- (b) Thermal equilibrium reached in central collisions
- (c) Taylor expansions, at $\mu_B \neq 0$, on LGT results are valid
 - → Lattice results are consistent with data for 20 < $\sqrt{s_{NN}}$ < 200 GeV
 - → T_c = 175⁺¹₋₇ (MeV)

Lattice: Phase Transition Temperature

Action	Temperature
Polyakov Loop	T _C ^{conf} ~ 170 MeV
Chiral Operator	T _C ^{Chiral} ∼ 155 MeV
RHIC Data	T _C ^{Exp} ∼ 175 ⁺¹ -7 MeV
	$(T_{CH}^{Exp} \sim 160\pm 5 \text{ MeV})$

- (1) In $\sqrt{s_{NN}}$ = 200GeV Au+Au collisions, hot and dense *matter, with partonic degrees of* freedom and collectivity, has been formed
- (2) The matter behavior like a *quantum liquid* with small η/s
- (3) Partonic matter \rightarrow antimatter: ${}^{3}_{\Lambda}\overline{H}$, ${}^{4}\overline{H}e$
- (4) [partonic] < $\mu_B \sim 110-320$ (MeV) < [hadronic]
- (5) Within errors, the net-proton distributions are consistent with LGT results.

Outlock: (7.7, 11.5, 15.5, 19.6, 27, 39,62, 200 GeV)

Facets of Strong-Interaction Physics, Hirschegg, January 16-20, 2012

Many Thanks to the Organizers!

Nu Xu