New Applications of Renormalization Group Methods in Nuclear Physics

Kai Hebeler (OSU)

In collaboration with: E.Anderson(OSU), S. Bogner (MSU), R. Furnstahl (OSU), J. Lattimer (Stony Brook), A. Nogga (Juelich), C. Pethick (Nordita), A. Schwenk (Darmstadt)

Facets of Strong-Interaction Physics

Hirschegg, January 18, 2012

Nuclear equation of state and astrophysical applications

Light and neutron-rich nuclei

Correlations in nuclear systems

Chiral EFT for nuclear forces, leading order 3N forces

Changing the resolution: The (Similarity) Renormalization Group

- elimination of coupling between low- and high momentum components, calculations much easier
- observables unaffected by resolution change (for exact calculations)
- residual resolution dependences can be used as tool to test calculations

Not the full story:

RG transformation also changes three-body (and higher-body) interactions.

Equation of state: Many-body perturbation theory

central quantity of interest: energy per particle E/N $H(\lambda) = T + V_{NN}(\lambda) + V_{3N}(\lambda) + ...$

- "hard" interactions require non-perturbative summation of diagrams
- with low-resolution interactions much more perturbative
- inclusion of 3N interaction contributions crucial
- use chiral interactions as initial input for RG evolution

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence

Equation of state of pure neutron matter

- significantly reduced cutoff dependence at 2nd order perturbation theory
- small resolution dependence indicates converged calculation
- energy sensitive to uncertainties in 3N interaction
- variation due to 3N input uncertainty much larger than resolution dependence
- good agreement with other approaches (different NN interactions)

Constraints on the nuclear equation of state (EOS)

nature

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Credit: NASA/Dana Berry

 $M_{\rm max} = 1.65 M_{\odot} \rightarrow 1.97 \pm 0.04 M_{\odot}$

Calculation of neutron star properties requires EOS up to high densities.

Strategy:

Use observations to constrain the high-density part of the nuclear EOS.

Neutron star radius constraints

incorporation of beta-equilibrium: neutron matter \longrightarrow neutron star matter

parametrize piecewise high-density extensions of EOS:

- use polytropic ansatz $\,p\sim
 ho^{\Gamma}\,$
- range of parameters $\ \Gamma_1, \rho_{12}, \Gamma_2, \rho_{23}, \Gamma_3$ limited by physics!

see also KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

Constraints on the nuclear equation of state

significant reduction of possible equations of state

Constraints on the nuclear equation of state

increased $M_{\rm max}$ systematically leads to stronger constraints

Neutron star radii

see also KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

- low-density part of EOS sets scale for allowed high-density extensions
- radius constraint for typical $1.4 M_{\odot}$ neutron star: $9.8 13.4 \,\mathrm{km}$

Equation of state of symmetric nuclear matter, nuclear saturation

"Very soft potentials must be excluded because they do not give saturation; they give too much binding and too high density. In particular, a substantial tensor force is required."

Hans Bethe (1971)

KH, Bogner, Furnstahl, Nogga, PRC(R) 83, 031301 (2011)

empirical nuclear saturation properties $n_S \sim 0.16 \,\mathrm{fm}^{-3}$ $E_{\mathrm{binding}}/N \sim -16 \,\mathrm{MeV}$ $\bar{l}_S \sim 1.8 \,\mathrm{fm}$

Equation of state of symmetric nuclear matter, Nuclear saturation

- nuclear saturation delicate due to cancellations of large kinetic and potential energy contributions
- 3N forces are essential! 3N interactions fitted to $^{3}\mathrm{H}$ and $^{4}\mathrm{He}$ properties

Equation of state of symmetric nuclear matter, Nuclear saturation

- saturation point consistent with experiment, without free parameters
- cutoff dependence at 2nd order significantly reduced
- 3rd order contributions small
- cutoff dependence consistent with expected size of 4N force contributions

Hierarchy of many-body contributions

 binding energy results from cancellations of much larger kinetic and potential energy contributions

- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

Hierarchy of many-body contributions

- binding energy results from cancellations of much larger kinetic and potential energy contributions
- chiral hierarchy of many-body terms preserved for considered density range
- ullet cutoff dependence of natural size, consistent with chiral exp. parameter $\sim 1/3$

RG evolution of 3N interactions

• So far:

intermediate (c_D) and short-range (c_E) 3NF couplings fitted to few-body systems at different resolution scales:

 $E_{^{3}\text{H}} = -8.482 \,\text{MeV}$ and $r_{^{4}\text{He}} = 1.95 - 1.96 \,\text{fm}$

→ coupling constants of natural size!

- Ideal case: evolve 3NF consistently with NN to lower resolution using the RG
- has been achieved in oscillator basis (Jurgenson, Roth)
- promising results in very light nuclei
- problems in heavier nuclei (see talk by R. Roth)
- not suitable for infinite systems

RG evolution of 3N interactions in momentum space

SRG flow equations for NN and 3N interactions:

$$\frac{dH_s}{ds} = [\eta_s, H_s] \qquad \qquad \eta_s = [T_{\rm rel}, H_s]$$

$$\rightarrow \frac{dV_{ij}}{ds} = [[T_{ij}, V_{ij}], T_{ij} + V_{ij}], \\ \frac{dV_{123}}{ds} = [[T_{12}, V_{12}], V_{13} + V_{23} + V_{123} \\ + [[T_{13}, V_{13}], V_{12} + V_{23} + V_{123}] \\ + [[T_{23}, V_{23}], V_{12} + V_{13} + V_{123}] \\ + [[T_{rel}, V_{123}], H_s]$$

RG evolution of 3N interactions in momentum space

first study:

Invariance of $E_{gs}^{^{3}\!H}$ within $16\,\mathrm{keV}$ for consistent chiral interactions at $\mathrm{N}^{2}\mathrm{LO}$

RG evolution of 3N interactions in momentum space

same decoupling patterns like in NN interactions

Universality in 3N inte

To what extent are 3N interactions constrained at low resolution?

- only two low-energy constants c_D and c_E
- 3N interactions give only subleading contributions to observables

Universality in 3N interactions at low resolution

- remarkably reduced model dependence for typical momenta $\sim 1 \, {\rm fm}^{-1}$, matrix elements with significant phase space well constrained at low resolution
- new momentum structures induced at low resolution
- \bullet study based on $\rm N^2LO$ chiral interactions, improved universality at $\rm N^3LO$?

Applications

- application to infinite systems
 - equation of state, systematic study of induced many-body contributions
- transformation of evolved interactions to oscillator basis

 application to finite nuclei, complimentary to HO evolution (no core shell model, coupled cluster)

- study of alternative generators
 - different decoupling patterns (e.g. V_{low k})
 - improved efficiency of evolution
 - suppression of many-body forces

Correlations in nuclear systems

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

Explanation in terms of low-momentum interactions?

Correlations in nuclear systems

Higinbotham, arXiv:1010.4433

- detection of knocked out pairs with large relative momenta
- excess of np pairs over pp pairs

Subedi et al., Science 320, 1476 (2008)

Explanation in terms of low-momentum interactions?

Vertex depends on the resolution! RG provides systematic way to calculate such processes at low resolution.

Scaling in nuclear systems

- scaling behavior of momentum distribution function: $\rho_{\rm NN}(q, Q = 0) \approx C_A \times \rho_{\rm NN, Deuteron}(q, Q = 0)$ at large q
- dominance of np pairs over pp pairs
- "hard" (high resolution) interaction used, calculations hard!
- dominance explained by short-range tensor forces

Nuclear scaling at low resolution

 $\langle \psi_{\lambda} | O_{\lambda} | \psi_{\lambda} \rangle$ factorizes into a low-momentum structure and a **universal** high momentum part if the initial operator only weakly couples low and high momenta \longrightarrow explains scaling!

RG transformation of pair density operator (induced many-body terms neglected):

"simple" calculation of pair density at low resolution in nuclear matter:

Nuclear scaling at low resolution

- pair-densities approximately resolution independent
- significant enhancement of np pairs over nn pairs due to tensor force
- reproduction of previous results using a "simple" calculation at low resolution!

High-resolution experiments can be explained by low-resolution methods! Opens door to study other electro-weak processes and higher-body correlations.

Summary

- low-resolution interactions allow simpler calculations for nuclear systems
- observables invariant under resolution changes, interpretation of results can change!
- chiral EFT provides systematic framework for constructing nuclear Hamiltonians
- 3N interactions are essential at low resolution
- nucleonic matter equation of state based on low-resolution interactions consistent with empirical constraints
- constraints for the nuclear equation of state and structure of neutron stars

Outlook

- RG evolution of three-nucleon interactions: microscopic study of light nuclei and nucleonic matter using chiral nuclear interactions at low resolution
- RG evolution of operators: nuclear scaling and correlations in nuclear systems