

FRG approach to QCD phase diagram with isospin chemical potential

Kazuhiko Kamikado

(Yukawa Institute for Theoretical Physics, Kyoto Univ)

working with

Nils Strodthoff, Lorenz von Smekal and Jochen Wambach (TU Darmstadt)

QCD phase diagram (2-flavor)

Three-dimensional phase diagram
 Temperature [T]
 Quark chemical potential [μ]
 μ_u = μ + μ_f
 Isospin chemical potential [μ_f]
 μ_d = μ - μ_f

- Isospin chemical potential is associated by the charge of subgroup of flavor rotation (τ_3).
- charged pion condensation occur for large μ_f .

Sign problem

$$D = U^{-1}D^{\dagger}U \qquad U = \begin{pmatrix} 0 & \gamma_5 \\ \gamma_5 & 0 \end{pmatrix}$$
$$\det[D] = \det[D^{\dagger}]$$

• Quark determinant is real (μ =0, $\mu_f \neq 0$).

M. Alford, A. Kapustin and F. Wilczek, Phys. Rev. D59, 054502 (1999).

- Lattice Monte Carlo simulation is available.
- We can check the reliability of effective models.

• Silver blaze Critical isospin chemical potential corresponds to 1/2 of lowest meson mass (pion).

"Silver blaze" Arthur Conan Doyle

T. D. Cohen, Phys. Rev. Lett. 91, 222001 (2003); arXiv:hep-ph/0405043.

$$\mu_{\mathrm{c}f} = \frac{1}{2}M_{\pi}$$

• Any effective model must realize this property.

L. He, M. Jin, and P. Zhuang, Phys. Rev. D 71 (2005) 116001.

- Pion condensation occur.
- Another models satisfy SB relation.

The aim

- \bullet Describing QCD phase diagram on T and μ_f plane by using functional renormalization group equation on Quark Meson (QM) model
- Reproducing Silver blaze property

How to find mass

conventional way $\frac{\partial U(\sigma)}{\partial \sigma}\Big|_{\sigma=\sigma_{\min}} = 0$ $m_{\sigma}^{2} = 2U' + 4\sigma^{2}U''$ $m_{\pi}^{2} = 2U'$ Our way $\frac{\partial U(\sigma)}{\partial \sigma}\Big|_{\sigma=\sigma_{\min}} = 0$ $\Gamma_{\sigma}^{(0,2)}(p_{0} = m_{\sigma}, \sigma_{\min}) = 0$ $\Gamma_{\pi}^{(0,2)}(p_{0} = m_{\pi_{0}}, \sigma_{\min}) = 0$

- Masses are determined by zero of 2 point function instead of curvature of potential.
- We need to calculate 2 point function.

Functional Renormalization Group (FRG)

$$k\partial_k\Gamma_k[\varphi] = \frac{1}{2}\operatorname{Tr}\left[\frac{k\partial_k R_{kB}}{R_{kB} + \Gamma_k^{(0,2)}[\varphi]}\right] - \operatorname{Tr}\left[\frac{k\partial_k R_{kF}}{R_{kF} + \Gamma_k^{(2,0)}[\varphi]}\right]$$

C. Wetterich, Phys. Lett. B301, 90 (1993)

• Γ_k is effective action at scale k.

$$\Gamma_{k=\Lambda} = S$$
 \longrightarrow $\Gamma_{k=0} = \Gamma$
classical quantum

Diagramatic representation

- Equations never close.
- We need some truncation.

Local Potential approximation (LPA)

$$\begin{split} \Gamma_{k}[\phi] &= \bar{\psi} \left[i \partial \!\!\!/ + g(\sigma + i \gamma_{5} \vec{\pi} \cdot \vec{\tau}) + \mu_{f} \gamma_{0} \tau_{3} \right] \psi \\ &+ \frac{1}{2} \partial \sigma \partial \sigma + \frac{1}{2} \partial \pi_{0} \partial \pi_{0} + \frac{1}{2} \vec{\partial} \pi_{+} \vec{\partial} \pi_{+} + \frac{1}{2} \vec{\partial} \pi_{-} \vec{\partial} \pi_{-} \\ &+ (\partial_{0} + 2\mu_{f}) (\pi_{+} + i \pi_{-}) (\partial_{0} - 2\mu_{f}) (\pi_{+} - i \pi_{-}) \\ &+ U_{k} (X = \sigma^{2} + \pi_{3}^{2}, Y = \pi_{+}^{2} + \pi_{-}^{2}) - c\sigma \end{split}$$

- LPA leads to the flow equation for effective action.
- We neglect wave function renormalization.

BMW approximation

q << k

$$\begin{split} \Gamma_{abi}^{(0,3)}[p,-p+q,-q] &\to \Gamma_{abi}^{(0,3)}[p,-p,0] = \frac{\partial \Gamma_{ab}^{(0,2)}[p]}{\partial \phi_i} \\ \Gamma_{abij}^{(0,4)}[p,-p,q,-q] &\to \Gamma_{abij}^{(0,4)}[p,-p,0,0] = \frac{\partial^2 \Gamma_{ab}^{(0,2)}[p]}{\partial \phi_i \partial \phi_j} \end{split}$$

J. P. Blaizot, R. Mendez-Galain and N. Wschebor, Phys. Rev. E 74, 051116 (2006)

• Equations are closed up to two point function.

Consistency

$$\Gamma_{\sigma}^{(0,2)}[p=0] = M_{\sigma,\text{curv}}^2$$
 $\Gamma_{\pi}^{(0,2)}[p=0] = M_{\pi,\text{curv}}^2$

- BMW approximation does not have consistency with curvature mass.
- We can realize consistency under the another approximation (RPA-like).

$$\Gamma_{abi}^{(0,3)}[p,-p,0] = \frac{\partial \Gamma_{ab}^{(0,2)}[p]}{\partial \phi_i} \to \frac{\partial^3 U}{\partial \phi_a \partial \phi_b \partial \phi_i}$$

$$\Gamma_{abij}^{(0,4)}[p,-p,0,0] = \frac{\partial^2 \Gamma_{ab}^{(0,2)}[p]}{\partial \phi_i \partial \phi_j} \to \frac{\partial^4 U}{\partial \phi_a \partial \phi_b \partial \phi_j \partial \phi_k}$$

How to calculate real time correlation

$$\partial_k \Gamma^{(0,2)}(\omega_n) = f(\omega_n, \phi)$$

$$\partial_k \Gamma_R^{(0,2)}(p_0) = \operatorname{Re} f(\omega_n \to ip_0 + \epsilon, \phi)$$

- After all analytic calculation along the Matsubara formalism, we make analytic continuation.
- We directory solve flow equation for real time correlation function.

pion 2 point function

• In this parameter set, LPA and BMW have good agreement at zero external momentum.

phase transiton (T = 0)

- normalized by curvature mass (M_c)
- There is the difference between onset of pion condensation and curvature mass

phase transition (T = 0)

• normalized by pole mass (M_p)

• pole mass almost satisfy silver blaze relation

Results

- The value of curvature mass and pole mass are different at 17%.
- Numerical result support pole mass.
- We must use pole mass as meson masses instead of curvature mass.

Phase diagram (mean field)

$$\frac{\partial U_K}{\partial k} = \underbrace{\operatorname{Meson-part}}_{\text{Fermion part}} + \operatorname{Fermion part}$$

$$U_{\Lambda} = a(X+Y) + b(X+Y)^2 - 2\mu_f^2 Y - c\sqrt{X} \qquad a = 0.1\Lambda^2 [\text{Mev}^2] \\ b = 3.5 \\ c = 0.08\Lambda^3 [\text{Mev}^3] \\ \Lambda = 600 [\text{Mev}] \\ g = 3.2 \end{cases}$$

- Neglect meson contribution for flow equation.
- Only quark determinant term remains (mean field).

phase diagram

- phase transition of sigma is cross over.
- For large isospin chemical potential sigma became small.

Conclusion

- We consider phase diagram with isospin chemical potential by using Functional renormalization group equation.
- We calculate real time mesonic 2 point function and redefine meson masses by pole of correlation function.

