Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints

David Blaschke (Wroclaw University, JINR Dubna)

Structure and Cooling of Compact Stars obeying Modern Constraints David Blaschke (Wroclaw University, JINR Dubna)

Thanks to 'cool' coauthors: Hovik Grigorian, Fridolin Weber, Dima Voskresensky and 'dense' ones: Thomas Klaehn, Rafal Lastowiecki, Fredrik Sandin, Daniel Zablocki

- NS-WD binary in Scorpius
- NS is recycled MSP with P = 3.15 ms
- almost edge-on, inclination 89.17°
- Shapiro delay measured!
- $M_{WD} \sim 0.5 \ M_{\odot}$
- $M_{NS} = (1.97 \pm 0.04) M_{\odot}$

Demorest et al., Nature 467, 1081 (2010)

- NS-WD binary in Scorpius
- NS is recycled MSP with P = 3.15 ms
- almost edge-on, inclination 89.17°
- Shapiro delay measured!
- $M_{WD} \sim 0.5 M_{\odot}$
- $M_{NS} = (1.97 \pm 0.04) M_{\odot}$

Demorest et al., Nature 467, 1081 (2010)

Klähn et al., PLB 654, 170 (2007)

Neutron Star

Strange Star

- Outer Crust
- ions
- electron gas

Core

- neutrons, protons
- electrons, muons
- superconducting protons

strange quark matter

CompStar, in preparation (2010)

State-of-the-art hybrid EoS model:

- Chiral symmetry restoration
- Color superconductivity
- Vector meanfield "stiffening"

State-of-the-art hybrid EoS model:

- Chiral symmetry restoration
- Color superconductivity
- Vector meanfield "stiffening"

Constraints from heavy-ion collisions:

- Flow constraint at high densities
- Not too early onset of quark matter
- \Rightarrow **QCD** phase diagram

CONSTRAINTS FROM PSR J1614-2230 FOR QUARK MATTER EOS

Özel, Psaltis, Ransom, Demorest, Alford, arxiv:1010.5790 [astro-ph] (2010)

Phenomenological Quark Matter EoS:

$$\Omega_{\rm QM} = -\frac{3}{4\pi}a_4\mu^4 + \frac{3}{4\pi^2}a_2\mu^2 + B_{\rm eff}$$

If the critical density for chiral restoration/deconfinement is reached in the compact star core, then $M_{\rm J1614}=1.97\pm0.04~M_{\odot}$ implies the following:

- Quark matter is strongly interacting, QCD corrections (a₄) important
- Quark matter is color superconducting: $a_2 \le 0$

CONSTRAINTS FROM PSR J1614-2230 FOR QUARK MATTER EOS

Özel, Psaltis, Ransom, Demorest, Alford, arxiv:1010.5790 [astro-ph] (2010)

Phenomenological Quark Matter EoS:

$$\Omega_{\rm QM} = -\frac{3}{4\pi}a_4\mu^4 + \frac{3}{4\pi^2}a_2\mu^2 + B_{\rm eff}$$

If the critical density for chiral restoration/deconfinement is reached in the compact star core, then $M_{\rm J1614}=1.97\pm0.04~M_{\odot}$ implies the following:

- Quark matter is strongly interacting, QCD corrections (a₄) important
- Quark matter is color superconducting: $a_2 \le 0$

Recent systematic studies: S. Weissenborn et al., ApJ Lett. 740 (2011) L. Bonanno & A. Sedrakian, 1108.0559 (2011) T. Klahn et al., 1111.6889; R. Lastowiecki et al. (in preparation)

Extreme States of Matter - The Phase Diagram

NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

CHIRAL MODEL FIELD THEORY FOR QUARK MATTER

• Partition function as a Path Integral (imaginary time au = i t)

$$Z[T,V,\mu] = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \exp\left\{-\int^{\beta} d\tau \int_{\boldsymbol{V}} d^3x [\bar{\psi}[i\gamma^{\mu}\partial_{\mu} - m - \gamma^0(\mu + \lambda_8\mu_8 + i\lambda_3\phi_3]\psi - \mathcal{L}_{\rm int} + U(\Phi)]\right\}$$

Polyakov loop: $\Phi = N_c^{-1} \text{Tr}_c[\exp(i\beta\lambda_3\phi_3)]$ Order parameter for deconfinement

• Current-current interaction (4-Fermion coupling) and KMT determinant interaction

$$\mathcal{L}_{\text{int}} = \sum_{M=\pi,\sigma,\dots} G_M(\bar{\psi}\Gamma_M\psi)^2 + \sum_D G_D(\bar{\psi}^C\Gamma_D\psi)^2 - K[\det_f(\bar{q}(1+\gamma_5)q) + \det_f(\bar{q}(1-\gamma_5)q)]$$

Bosonization (Hubbard-Stratonovich Transformation)

$$Z[T, V, \mu] = \int \mathcal{D}M_M \mathcal{D}\Delta_D^{\dagger} \mathcal{D}\Delta_D \, \mathrm{e}^{-\sum_{M, D} \frac{M_M^2}{4G_M} - \frac{|\Delta_D|^2}{4G_D} + \frac{1}{2} \mathrm{Tr} \, \ln S^{-1}[\{M_M\}, \{\Delta_D\}, \Phi] + U(\Phi) + V_{\mathrm{KMT}}}$$

- Collective quark fields: Mesons (M_M) and Diquarks (Δ_D) ; Gluon mean field: Φ
- Systematic evaluation: Mean fields + Fluctuations
 - -Mean-field approximation: order parameters for phase transitions (gap equations)
 - -Lowest order fluctuations: hadronic correlations (bound & scattering states)
 - -Higher order fluctuations: hadron-hadron interactions

NJL MODEL FOR NEUTRAL 3-FLAVOR QUARK MATTER

Thermodynamic Potential $\Omega(T, \mu) = -T \ln Z[T, \mu]$

$$\begin{split} \Omega(T,\mu) &= \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} + \frac{K \phi_u + \phi_d + \phi_s}{16G_S^3} - \frac{(\mu^* - \mu)^2}{4G_V} \\ &- T \sum_n \int \frac{d^3p}{(2\pi)^3} \frac{1}{2} \mathrm{Tr} \ln\left(\frac{1}{T} S^{-1}(i\omega_n,\vec{p})\right) + U(\Phi) + \Omega_e - \Omega_0. \end{split}$$

InverseNambu – GorkovPropagator
$$S^{-1}(i\omega_n, \vec{p}) = \begin{bmatrix} \gamma_\mu p^\mu - M(\vec{p}) + \mu \gamma^0 & \widehat{\Delta}(\vec{p}) \\ \widehat{\Delta}^{\dagger}(\vec{p}) & \gamma_\mu p^\mu - M(\vec{p}) - \mu \gamma^0 \end{bmatrix},$$

Fermion Determinant (Tr In D = In det D): $\operatorname{Indet}[\beta S^{-1}(i\omega_n, \vec{p})] = 2 \sum_{a=1}^{18} \ln\{\beta^2[\omega_n^2 + \lambda_a(\vec{p})^2]\}$. Result for the thermodynamic Potential (Meanfield approximation)

$$\begin{split} \Omega(T,\mu) \;\; = \;\; \frac{\phi_u^2 + \phi_d^2 + \phi_s^2}{8G_S} + \frac{|\Delta_{ud}|^2 + |\Delta_{us}|^2 + |\Delta_{ds}|^2}{4G_D} + \frac{K \; \phi_u + \phi_d + \phi_s}{16G_S^3} - \frac{(\mu^* - \mu)^2}{4G_V} \\ - \;\; \int \frac{d^3p}{(2\pi)^3} \sum_{a=1}^{18} \left[\lambda_a + 2T \ln \left(1 + e^{-\lambda_a/T} \right) \right] + U(\Phi) + \Omega_e - \Omega_0. \end{split}$$

Color and electric charge neutrality constraints: $n_Q = n_8 = n_3 = 0$, $n_i = -\partial\Omega/\partial\mu_i = 0$, Equations of state: $P = -\Omega$, etc.

PHASES OF QCD @ EXTREMES: NO COLOR NEUTRALITY

PHASE DIAGRAM FOR SYMMETRIC MATTER (HIC)

DB, Sandin, Skokov, NICA WhitePaper (2009)

- Critical density for chiral restoration $n_{\chi} \ge 1.5 n_0$ increasing (!) with low T
- Almost crossover (masquerade!), i.e. small density jump, small latent heat/ time delay in heavy-ion coll.!
- High $T_c \approx 0.9T_d$ for 2SC phase due to Polyakov loop.
- •2SC CFL phase transition at n ≥
 6 n₀ with density jump and latent heat/ time delay!
 Provided the temperature can be kept low T ≤ 100 MeV

Acta Phys. Pol. Suppl. 3, 641 (2010); arxiv:1004.4375 [hep-ph]

EXPLORING THE QCD PHASE DIAGRAM: TRAJECTORIES

Heavy-Ion Collisions:

Supernova Explosions (15 M_o):

D.B., Skokov, Sandin, NICA WhitePaper (2009)

Liebendoefer et al. (2005) Sagert et al., PRL 102 (2009)

Fischer et al., arxiv: 1103.3004

- Mass radius constraints from quiescent LMXB's and RXJ 1856 ⇒ Small AND large stars? NJL with KMT allows for mass twins! Direct transition DBHF-CFL possible!
- Flow constraint \Rightarrow PT not too early! No direct DBHF-CFL trans.!

D.B., Klähn, Łastowiecki, Sandin, J. Phys. G 37, 094063 (2010); arxiv:1002.1299 [nucl-th]

- Mass radius constraints from quiescent LMXB's and RXJ 1856 ⇒ Small AND large stars? NJL with KMT allows for mass twins! Direct transition DBHF-CFL possible!
- Flow constraint \Rightarrow PT not too early! No direct DBHF-CFL trans.!

D.B., Klähn, Łastowiecki, Sandin, J. Phys. G 37, 094063 (2010); arxiv:1002.1299 [nucl-th]

HYBRID-EOS ROBUST? CONSTRAINTS & COVARIANT NCQM

Covariant, nonlocal interaction model:

 $\mathcal{L}_{
m int} = -\int d^4x \; \left\{ rac{G_S}{2} j^f_S(x) j^f_S(x) + rac{H}{2} \left[j^a_D(x)
ight]^\dagger j^a_D(x) + rac{G_V}{2} j^\mu_V(x) \, j^\mu_V(x)
ight\}$

• Nonlocal currents, e.g.

 $j_{S}^{f}(x) = \int d^{4}z \ g(z) \ \bar{\psi}(x + \frac{z}{2}) \ \Gamma_{f} \ \psi(x - \frac{z}{2}) \,,$

D.B., Gomez-Dumm, Grunfeld, Klähn, Scoccola, PRC 75, 065804 (2007); [arxiv:nucl-th/0703088] Recent developments: Radzhabov et al., arxiv:1012.0664; Horvatic et al., arxiv:1012.2113

HYBRID-EOS ROBUST? CONSTRAINTS & COVARIANT NCQM

Covariant, nonlocal interaction model:

 $\mathcal{L}_{
m int} = -\int d^4x \; \left\{ rac{G_S}{2} j^f_S(x) j^f_S(x) + rac{H}{2} \left[j^a_D(x)
ight]^\dagger j^a_D(x) + rac{G_V}{2} j^\mu_V(x) \, j^\mu_V(x)
ight\}$

• Nonlocal currents, e.g.

 $j_{S}^{f}(x) = \int d^{4}z \ g(z) \ \bar{\psi}(x + \frac{z}{2}) \ \Gamma_{f} \ \psi(x - \frac{z}{2}) \,,$

D.B., Gomez-Dumm, Grunfeld, Klähn, Scoccola, PRC 75, 065804 (2007); [arxiv:nucl-th/0703088] Recent developments: Radzhabov et al., arxiv:1012.0664; Horvatic et al., arxiv:1012.2113

MASS-RADIUS CONSTRAINT AND FLOW CONSTRAINT

• Large Mass ($\sim 2 M_{\odot}$) and radius ($R \ge 12 \text{ km}$) \Rightarrow stiff EoS;

• Flow in Heavy-Ion Collisions \Rightarrow not too stiff EoS !

Sandin et al., CompOSE project (2009-10); See also: Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, PLB 654, 170 (2007)

• Large Mass (~ 2 M_{\odot}) and radius ($R \ge 12$ km) \Rightarrow stiff EoS;

• Flow in Heavy-Ion Collisions \Rightarrow not too stiff EoS !

Sandin et al., CompOSE project (2009-10); See also: Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, PLB 654, 170 (2007)

• Large Mass ($\sim 2 M_{\odot}$) and radius ($R \ge 12 \text{ km}$) \Rightarrow stiff EoS;

Flow in Heavy-Ion Collisions ⇒ not too stiff EoS !

Klähn, D.B., Sandin, Fuchs, Faessler, Grigorian, Röpke, Trümper, PLB 654, 170 (2007)

Implications from PSR J1614-2230 within 3fCS NJL – DBHF model

T. Klahn et al., Acta Phys. Pol. (to appear); arxiv: 1111.6889

If hybrid star, Then:

- 2SC QM

- Vector MF

- HIC: n_c ~ 4n_0

If no hybrid star, then:

small (<0.85)
diquark coupl.
HIC:
n_c > 4.5 n_0

R. Lastowiecki et al., in preparation

If hybrid star, Then: - 2SC QM - Vector MF - HIC: n_c ~2-3 n_0

If no hybrid star, then:

small (<0.85)
diquark coupl.
HIC:
n_c > 2 n_0

The question of hyperons and quark-hyperon hybrids

- Hyperonic matter without strange vector meson
 Repulsion → too soft; Demorest constraint failed
- Inclusion of phi-meson repulsion \rightarrow OK
- Phase transition: "masquerade" problem ...
- Density dependence of gluon sector (bag) !

Lastowiecki et al., 1112.6430 [nucl-th]

$$p_{\text{quark}}(\mu) = p_{\text{NJL}}(\mu) - B(\mu)$$
$$B(\mu) = B_0 \left[\exp\left(-\frac{\mu - \mu_c}{\delta\mu}\right) - 1 \right] , \ \mu > \mu_c$$
$$\Delta n(\mu) = -\frac{\partial B(\mu)}{\partial\mu} = \frac{B_0 + B(\mu)}{\delta\mu}$$

$$\Delta \varepsilon(\mu) = \varepsilon_{\text{quark}}(\mu) - \varepsilon_{\text{NJL}}(\mu) = B(\mu) + \mu \Delta n(\mu)$$

NICA White Paper Exploring hybrid star matter at NICA & FAIR T.Klähn (1), D.Blaschke (1,2), F.Weber (3)

(1) Institute for Theoretical Physics, University of Wroclaw, Poland (2) Joint Institute for Nuclear Research, Dubna (3) Department of Physics, San Diego State University, USA

Heavy-Ion Collisions

Compact Stars

Proposal:

1. Measure transverse and elliptic flow for a wide range of energies (densities) at NICA and perform Danielewicz's flow data analysis ---> constrain stiffness of high density EoS 2. Provide lower bound for onset of mixed phase ---> constrain QM onset in hybrid stars

"The CBM Physics Book", Springer LNP 841 (2011), pp.158-181; arxiv:1101.6061

Conclusions I

- PSR 1614-2230 ("Demorest-pulsar") puts strong constraints to dense matter EoS
- Both alternatives for the inner structure, hadronic and hybrid star, are viable for the Demorest pulsar; HIC favors hybrid model
- If Demorest pulsar has a quark matter (QM)core, then QM must:
 - be color superconducting
 - -- have a strong (vector-field) repulsion
 - occur at >2 n_o in HIC, depending on $<\bar{q}q>$
- Discriminating test? Measure M-R relation !!

Neutron Star in Cassiopeia A (Cas A)

- 16.08.1680 John Flamsteed
 - 6m star 3 Cas
 - 1947 re-discovery in radio
 - 1950 optical counterpart
 - T ~ 30 MK
 - V_{exp}~ 4000 6000 km/s
- distance 11.000 ly = 3.4 kpc

picture: spitzer space telescope

Ho & Heinke, Nature 462 (2009) 71, Heinke & Ho, arxiv:1007.4719

- Page, Prakash, Lattimer, Steiner, PRL (2011); arxiv:1011.6142 Shternin, Yakovlev, Heinke, Ho, Patnaude, MNRAS (2011); arxiv:1012.0045
- D.Blaschke, H. Grigorian, D. Voskresensky, F. Weber, arxiv:1108.4125

Cas A Cooling Observations

Cas A is a rapidly cooling star – Temperature drop ~4% in 10 years

W.C.G. Ho, C.O. Heinke, Nature 462, 71 (2009)

Cas A Cooling Observations

The influence of the (core) heat conductivity

Blaschke, Grigorian, Voskresensky, A&A 424, 979 (2004)

http://www.nature.com/news/2011/110201/full/news.2011.64.html?s=news_rss#comment-id-18186

Phase Diagram & Cooling Simulation

Cooling Mechanism

$$\frac{dU}{dt} = \sum_{i} C_{i} \frac{dT}{dt} = -\varepsilon_{\gamma} - \sum_{j} \varepsilon_{\nu}^{j}$$

Cooling Processes

- $\implies \underline{\text{Direct Urca:}} \qquad n \to p + e + \bar{\nu}_e$
- ► Modified Urca: $n + n \rightarrow n + p + e + \bar{\nu}_e$
- ► Photons: $\rightarrow \gamma$
- $ightarrow \gamma$
- ► Bremsstrahlung: $n + n \rightarrow n + n + \nu + \overline{\nu}$

Cooling Evolution

The energy flux per unit time I(r) through a spherical slice at distance r from the center is:

$$\boldsymbol{l}(\boldsymbol{r}) = -4\pi r^2 \boldsymbol{k}(\boldsymbol{r}) \frac{\partial (Te^{\Phi})}{\partial r} e^{-\Phi} \sqrt{1 - \frac{2M}{r}}.$$

The equations for energy balance and thermal energy transport are: ∂

$$\begin{split} \frac{\partial}{\partial N_B}(\boldsymbol{l}e^{2\Phi}) &= -\frac{1}{n}(\boldsymbol{\epsilon_{\nu}}e^{2\Phi} + \boldsymbol{c_{V}}\frac{\partial}{\partial t}(Te^{\Phi}))\\ \frac{\partial}{\partial N_B}(Te^{\Phi}) &= -\frac{1}{\boldsymbol{k}}\frac{\boldsymbol{l}e^{\Phi}}{16\pi^2r^4n} \end{split}$$

where n = n(r) is the baryon number density, NB = NB(r) is the total baryon number in the sphere with radius r

$$\frac{\partial N_B}{\partial r} = 4\pi r^2 n (1 - \frac{2M}{r})^{-1/2}$$

F.Weber: Pulsars as Astro. Labs ... (1999);

D. Blaschke Grigorian, Voskresensky, A& A 368 (2001)561.

Neutrino Emissivities in Quark Matter

• Quark direct Urca (QDU) the most efficient process

 $\begin{aligned} d &\to u + e + \bar{\nu} \text{ and } u + e \to d + \nu \\ \epsilon_{\nu}^{\text{QDU}} &\simeq 9.4 \times 10^{26} \alpha_s u Y_e^{1/3} \zeta_{\text{QDU}} T_9^6 \text{ erg cm}^{-3} \text{ s}^{-1}, \end{aligned}$

Compression n/n0 \approx 2, strong coupling $\alpha_s \approx 1$

 Quark Modified Urca (QMU) and Quark Bremsstrahlung

$$d + q \to u + q + e + \bar{\nu} \text{ and } q_1 + q_2 \to q_1 + q_2 + \nu + \bar{\nu}$$

 $\epsilon_{\nu}^{\text{QMU}} \sim \epsilon_{\nu}^{\text{QB}} \simeq 9.0 \times 10^{19} \zeta_{\text{QMU}} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}.$

Suppression due to the pairing
QDU:
$$\zeta_{\text{QDU}} \sim \exp(-\Delta_q/T)$$

QMU and QB: $\zeta_{\text{QMU}} \sim \exp(-2\Delta_q/T)$ for $T < T_{\text{crit},q} \simeq 0.57 \Delta_q$

• $e + e \to e + e + \nu + \bar{\nu}$ (becomes important for $\Delta_q/T >> 1$) $\epsilon_{\nu}^{ee} = 2.8 \times 10^{12} Y_e^{1/3} u^{1/3} T_9^8 \text{ erg cm}^{-3} \text{ s}^{-1}$,

Quark PBF

Surface Temperature & Age Data

Crust Model

Time dependence of the light element contents in the crust

Page,Lattimer,Prakash & Steiner, Astrophys. J. 155, 623 (2004)

Yakovlev, Levenfish, Potekhin, Gnedin & Chabrier, Astron. Astrophys, 417, 169 (2004)

Blaschke, Grigorian, Voskresensky, A& A 424 (2004) 979

$$\Delta M_{\rm L}(t) = e^{-t/\tau} \Delta M_{\rm L}(0)$$

DU constraint

 $n \rightarrow p + e + \bar{\nu}_e$ implies $p_n \leq p_p + p_e$, charge neutrality results in

$$x_{DU}(x_e) \ge \frac{1}{1 + (1 + x_e^{1/3})^3}$$

$$x_e = n_e / (n_e + n_\mu)$$

no muons:

$$x_{DU} = 11.1\%$$

▶ relativistic limit ($n_e = n_\mu$): $x_{DU} = 14.8\%$

NL ρ , NL $\rho\delta$, DBHF : DU occurs below $2.5n_0$

DU Thresholds

DU critical densities

nc = 2.7 n0 NLW (RMF)nc = 5.0 n0 HHJ (APR) DU critical masses Mc = 1.25 Msun - NLW Mc = 1.84 Msun - HHJ

DU problem & constaint

SC pairing gaps – hybrid stars

2SC phase: 1 color (blue) is unpaired (mixed superconductivity) Ansatz 2SC + X phase:

$$\Delta_0^{\rm X} = \Delta_0 \, \exp -\alpha \, \left(\frac{\mu - \mu_c}{\mu_c} \right)$$

Model	$\Delta_0 \; [\text{MeV}]$	α
Ι	1	10
II	0.1	0
III	0.1	2
\mathbf{IV}	5	25

Grigorian, DB, Voskresensky, PRC 71 (2005) 045801

Pairing gaps for hadronic phase (AV18 - Takatsuka et al. (2004))

Blaschke, Grigorian, Voskresensky, A&A 424 (2004) 979

SC pairing gaps – hybrid stars

Popov, Grigorian, Blaschke, PRC 74 (2006)

Influence of SC on luminosity

Critical temperature Tc, for the proton ¹S₀ and neutron ³P₂ gaps, used in

Page, Lattimer, Prakash & Steiner, Astrophys. J. 707 (2009) 1131

T_c 'measurement' from Cas A

- 1.4 M⊙ star built from the APR EoS
- Rapid cooling at ages
 ~30-100 yrs due to the thermal relaxation of the crust
- Mass dependence

Page, Lattimer, Prakash & Steiner,

Phys. Rev. Lett. 106 (2011) 081101

Medium effects in cooling of neutron stars

- Based on Fermi liquid theory: Landau (1956), Migdal (1967), Migdal et al. (1990)
- MMU instead of MU

$$\frac{\varepsilon_{\nu}[\text{MMU}]}{\varepsilon_{\nu}[\text{MU}]} \sim 10^3 \ (n/n_0)^{10/3} \frac{\Gamma^6(n)}{[\omega^*(n)/m_{\pi}]^8},$$

PBF – fast cooling process for T<T_c

$$\begin{split} \varepsilon_{\nu}[\mathrm{MpPBF}] &\sim 10^{29} \ \frac{m_{N}^{*}}{m_{N}} \left[\frac{p_{Fp}}{p_{Fn}(n_{0})} \right] \quad \left[\frac{\Delta_{pp}}{\mathrm{MeV}} \right]^{7} \\ &\times \left[\frac{T}{\Delta_{pp}} \right]^{1/2} \ \xi_{pp}^{2} \ \frac{\mathrm{erg}}{\mathrm{cm}^{3} \ \mathrm{sec}} \ , \quad T < T_{cp}. \end{split}$$

Anomalies because of PBF proccess

AV18 gaps, pi-condensate, without suppression of 3P2 neutron pairing - Enhanced PBF process

Gaps taken from Yakovlev at al. (2003)

n 3P2 gap strongly suppressed: Friman&Schwenk, PRL (2004)

Grigorian, Voskresensky Astron. Astrophys. 444 (2005)

The influence of the (core) heat conductivity

Blaschke, Grigorian, Voskresensky, A&A 424, 979 (2004)

The influence of the (core) heat conductivity

Blaschke, Grigorian, Voskresensky, A&A 424, 979 (2004)

Cas A as a Hadronic Star – arxiv:1108.4125

QUARK MATTER IN COMPACT STARS: COOLING CONSTRAINT

Popov et al: Neutron star cooling constraints ... PRC 74, 025803 (2006); [nucl-th/0512098]

Temperature in the Hybrid Star Interior

Blaschke, Grigorian, Voskresensky, A& A 368 (2001) 561

HYBRID STAR COOLING WITH 2SC QUARK MATTER (III)

2SC + X phase, $\Delta_0 = 5$ MeV, $\alpha = 25$ Temperature-age and Vela mass OK

Popov, Grigorian, D.B., PRC 74 (2006)

Log N - Log S test passed

Cas A as an Hybrid Star

H. Grigorian, D. Blaschke, D.N. Voskresensky, Phys. Rev. C 71, 045801 (2005)

Cas A as Hybrid Star: T-profile evolution

Conclusions II

- Cas A rapid cooling consistently described by the nuclear medium cooling model as a "first drop", delayed by low conductivity
- Both alternatives for the inner structure, hadronic and hybrid star, are viable for Cas A; a higher star mass favors the hybrid model
- In contrast to the minimal cooling scenario, our approach is sensitive to the star mass and thermal conductivity of superfluid star core matter
- Discriminating test? Log N Log S !! (?)

It's cool to be a CompStar member!

Upcoming School and Conference ...

48th Karpacz Winter School of Theoretical Physics

Cosmic Matter in Heavy-Ion Collision Laboratories

Lądek-Zdrój, Poland, February 4-11, 2012

Lecturers

J.-P. Blaizot (Saclay): Matter under extreme conditions W. Florkowski (Cracow): Ultrarelativistic heavy-ion collisions M. Gaździcki (Frankfurt/Kielce): Energy scan programs in HIC P. Haensel (Warsaw): Dense matter and compact stars G. Martínez-Pinedo (Darmstadt): Supernovae and the origin of heavy elements H. Satz (Bielefeld):

Analysis of matter in QCD

Local Organisers

L. Turko (Wrocław) D. Blaschke (Wrocław & Dubna) K. Redlich (Wrocław) A. Wergieluk (Wrocław) R. Łastowiecki (Wrocław)

Contact

karp48@ift.uni.wroc.pl www.ift.uni.wroc.pl/~karp48 CompStar: the physics and astrophysics of compact stars

Tahiti, June 4-8, 2012

Local organizing committee Jean-Pierre Barriot David Blaschke (chair) Tea Frogier Eric Gourgoulhon Jerôme Margueron (chair) Pierre Méry Tiare Penilla y Perella Pierre Pizzochero (chair) Luciano Rezzolta (chair) Daniel Zablocki

http://compstar-esf.orf/tahiti tahiti@compstar-esf.org Advisory Board (preliminary) Gergely G. Barnaföldi (Budapest) Gordon Baym (Urbana-Champaign) David G. Blair (Perth) David Blaschke (Wrocław)

VENUS TAHITI

2 0 1

ptahiti 2012

Gergely G. Barnaföldi (Budapest) Gordon Baym (Urbana-Champaign) David G. Blair (Perth) David Blaschke (Wrocław) Hovik Grigorian (Yerevan) Paweł Haensel (Warsaw) Wick Haxton (Berkeley) Jorge E. Horvath (São Paulo) D. Ian Jones (Southampton) Dubravko Klabučar (Zagreb) Takeshi Kodama (Rio de Janeiro) Evgenii Kolomeitsev (Banská Bystrica) Michael Kramer (Manchester) Yuxin Liu (Beijing) Jérôme Margueron (Orsay) Andrew Melatos (Melbourne) Jie Meng (Beijing) Dong-Pil Min (Seoul) Ken'ichi Nomoto (Tokyo) Akira Ohnishi (Kyoto) Pierre Pizzochero (Milan) José Pons (Alicante) Constança Providência (Coimbra) Saniav Reddy (Seattle) Luciano Rezzolla (Potsdam) Robert Rutledge (Montreal) Hiroyuki Sagawa (Aizu) Bernd-Jochen Schaefer (Graz) Stuart L. Shapiro (Urbana-Champaign) Luigi Stella (Rome) Friedrich-Karl Thielemann (Basel) Anthony Thomas (Adelaide) Hiroshi Toki (Osaka) Joachim Trümper (Garching) Michiel van der Klis (Amsterdam) Stanford E. Woosley (Santa Cruz) Renxin Xu (Beijing)

Thanks for Your attention!