

Operator representation for realistic effective interactions

Dennis Weber Hans Feldmeier, Thomas Neff

GSI Helmholtzzentrum für Schwerionenforschung GmbH

19.01.2012

Nuclear ab-initio calculations

Outline

Nuclear *ab-initio* calculations

- Argonne potential
- Unitary Correlation Operator Method
- Similarity Renormalization Group
- Fermionic Molecular Dynamics

Operator representation from partial wave matrix elements

3 Results

- UCOM with reduced set of operators
- SRG operator representation

Summary and conclusions

Argonne potential Wiringa, Stoks, Schiavilla; Phys.Rev.C 51 1995

Operator representation

$$\begin{split} \mathcal{V}_{Argonne} &= \sum_{S,T} V_{ST}^{Z}(\underline{r}) \prod_{ST} \langle k(LS) JM; TM_{T} | \mathcal{V}_{Argonne} | k'(L'S) JM; TM_{T} \rangle \\ &+ \sum_{S,T} V_{ST}^{L2}(\underline{r}) \vec{L}^{Z} \prod_{ST} \\ &+ \sum_{T} V_{1T}^{LS}(\underline{r}) \vec{L}^{Z} \prod_{ST} \\ &+ \sum_{T} V_{1T}^{T}(\underline{r}) \vec{S}_{12} \prod_{TT} \\ &+ \sum_{T} V_{1T}^{T}(\underline{r}) \vec{S}_{12} (\vec{L}, \vec{L}) \prod_{TT} \\ &+ \sum_{T} V_{1T}^{TLL}(\underline{r}) s_{12} (\vec{L}, \vec{L}) \prod_{TT} \\ &+ \sum_{T} V_{1T}^{TLL}(\underline{r}) s_{12} (\vec{L}, \vec{L}) \prod_{TT} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{12} \vec{S}_{1T} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{1T} \vec{S}_{1T} \vec{S}_{1T} \vec{S}_{1T} \vec{S}_{1T} \\ &+ \sum_{T} (\vec{L}, \vec{L}) \vec{S}_{1T} \vec{S}_{$$

partial wave matrix elements

Unitary Correlation Operator Method

- > nuclear interaction induces strong short-range correlations which cannot be described by "simple" many-body states $\mid \psi \; \rangle$
- "Unitary Correlation Operator Method" (UCOM):
 Feldmeier, Neff, Roth, Schnack; Nucl.Phys. A632 1998
 Roth, Neff, Feldmeier; Prog.Part.Nucl.Phys. 65 2010
 - imprint correlations onto uncorrelated states by unitary operator <u>C</u>:

$$\left| \hat{\psi} \right\rangle = \mathop{\mathcal{C}}_{\sim} \left| \psi \right\rangle$$

• correlated operator: $\hat{\mathcal{Q}} = \mathcal{L}^{\dagger} \mathcal{Q} \mathcal{C}$:

$$\left\langle \left. \hat{\psi} \left| \underset{\sim}{\mathcal{O}} \right| \left. \hat{\psi}' \right. \right\rangle = \left\langle \left. \psi \left| \underset{\sim}{\mathcal{C}}^{\dagger} \underset{\sim}{\mathcal{O}} \underset{\sim}{\mathcal{C}} \right| \left. \psi' \right. \right\rangle = \left\langle \left. \psi \left| \underset{\sim}{\mathcal{O}} \right| \left. \psi' \right. \right\rangle \right.$$

UCOM potential Operator representation

operator representation:

$$\begin{split} \mathcal{V}_{UCOM} &= \mathcal{L}^{\dagger} \mathcal{H} \mathcal{L} - \mathcal{I} &= \sum_{S,T} V_{ST}^{Z}(x) \prod_{ST} + \sum_{S,T} V_{ST}^{L2}(x) \vec{L}^{2} \prod_{ST} \\ &+ \sum_{S,T} \frac{1}{2} (\vec{p}^{2} V_{ST}^{p2}(x) + V_{ST}^{p2}(x) \vec{p}^{2}) \prod_{ST} \\ &+ \sum_{T} V_{1T}^{LS}(x) \vec{L} \vec{S} \prod_{1T} + \sum_{T} V_{1T}^{L2LS}(x) \vec{L}^{2} \vec{L} \vec{S} \prod_{1T} \\ &+ \sum_{T} V_{1T}^{T}(x) \mathcal{S}_{12} \prod_{1T} + \sum_{T} V_{1T}^{TL}(x) s_{12} (\vec{L}, \vec{L}) \prod_{1T} \\ &+ \sum_{T} V_{1T}^{T}(x) \mathcal{S}_{12} (p_{\Omega}, p_{\Omega}) \prod_{1T} \\ &+ \sum_{T} (p_{T} V_{1T}^{Tpp}(x) + V_{1T}^{Tpp}(x) p_{T}) s_{12} (x, p_{\Omega}) \prod_{1T} \\ &+ \sum_{T} V_{1T}^{L2Tpp}(x) [\vec{L}^{2} \vec{s}_{12} (p_{\Omega}, p_{\Omega}) + \vec{s}_{12} (p_{\Omega}, p_{\Omega}) \vec{L}^{2}] \prod_{TT} \\ &+ \cdots \end{split}$$

more complicated, nonlocal structure

Dennis Weber (GSI)

GSİ

Similarity Renormalization Group

- decoupling of low and high momentum matrix elements by evolving potential to band-diagonal structure
- Similarity Renormalization Group (SRG) Bogner, Furnstahl, Perry; Phys.Rev.C 75 2007 starting from initial Hamiltonian H₀ = T + V₀ flow equation:

 $\frac{\mathsf{d}H_{s}}{\mathsf{d}s} = \left[\eta_{s}, H_{s}\right]$

with flow parameter s and generator $\eta_s = [\mathcal{I}, \mathcal{H}_s] = [\mathcal{I}, \mathcal{V}_s]$ • evolution towards $[\mathcal{I}, \mathcal{H}_s] = 0: \mathcal{H}_s \rightarrow \text{band-diagonal}$

651

Similarity Renormalization Group SRG flow

SRG evolution

partial wave matrix elements, no operator representation

Dennis Weber (GSI)

GSİ

Fermionic Molecular Dynamics (FMD)

Feldmeier, Nucl. Phys. A515 1990

- microscopic model to describe nuclei and nuclear reactions
- model states: antisymmetrized gaussian wave packets:

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes \cdots \otimes |q_A\rangle)$$

$$\vec{r} |q\rangle = \sum_i c_i \exp\{\frac{(\vec{r} - \vec{b}_i)^2}{2a_i}\} \otimes |\chi_i^{\uparrow}, \chi_i^{\downarrow}\rangle \otimes |\xi\rangle$$

- complex parameters \vec{b}_i encode mean position and momentum
- width parameter a_i
- description of exotic phenomena like halos, cluster-states, ...
- interaction matrix elements in FMD basis calculated analytically: operator representation needed!

From partial wave matrix elements

to operator representation

operator representation

choose appropriate set of operators

$$\mathcal{V}_{ansatz} = \sum_{ST,i} \mathcal{V}_{ST}^{i}(\underline{r}, \underline{p}) \mathcal{Q}_{i} \prod_{ST} ST$$

GSİ

From partial wave matrix elements

to operator representation

operator representation

choose appropriate set of operators

$$\mathcal{V}_{ansatz} = \sum_{ST,i} \mathcal{V}^{i}_{ST}(\underline{r}, \underline{p}) \mathcal{Q}_{i} \prod_{ST} ST$$

 representation of (unknown!) radial functions by a sum of gaussians:

$$\mathcal{V}_{ST}^{i}(\underline{r}) = \sum_{k} \gamma_{ST, k}^{i} \cdot e^{-\frac{\overline{\zeta}^{2}}{2\kappa_{k}}}$$
$$p_{ST}^{i}(\underline{r}, \underline{p}) =$$

 $\sum_{k,l} \gamma_{ST,kl}^{i} \cdot e^{-\frac{\lambda_l}{4}\vec{p}^2} e^{\frac{-\vec{z}^2}{2(\kappa_k - \lambda_l/4)}} e^{-\frac{\lambda_l}{4}\vec{p}^2}$

• choose parameters κ_j and λ_l on a grid

Dennis Weber (GSI)

ν

From partial wave matrix elements to operator representation

partial wave matrix elements ${}^{1}S_{0}$ 208 $-20 \\ -40$ 6 k4 8 2 6 "k' [fm⁻¹] 2 Fit ${}^{3}D_{2}$ $\gamma_{ST,i}^{i}$ 8 6 -4 k4 8 2 6 4 k' [fm⁻¹] 2

operator representation

choose appropriate set of operators

$$\mathcal{V}_{ansatz} = \sum_{ST,i} \mathcal{V}^{i}_{ST}(\underline{r}, \underline{p}) \mathcal{Q}_{i} \prod_{ST} ST$$

 representation of (unknown!) radial functions by a sum of gaussians:

$$\mathcal{V}_{ST}^{i}(\underline{r}) = \sum_{k} \gamma_{ST,k}^{i} \cdot e^{-\frac{\overline{r}^{2}}{2\kappa_{k}}}$$
$$\stackrel{i}{}_{ST}^{i}(\underline{r},\underline{p}) =$$

 $\sum_{k,l} \gamma_{ST, kl}^{i} \cdot e^{-\frac{\lambda_l}{4}\vec{p}^2} e^{\frac{-\vec{z}^2}{2(\kappa_k - \lambda_l/4)}} e^{-\frac{\lambda_l}{4}\vec{p}^2}$

- choose parameters κ_j and λ_l on a grid
- ► calculate analytically matrix elements $\langle k(LS)JT | \chi_{ansatz} | k'(L'S)JT \rangle$

Dennis Weber (GSI)

ν

$$\mathcal{V}_{UCOM} = \sum_{S,T} V_{ST}^{Z}(\underline{r}) \prod_{ST} V_{ST}$$

- + $\sum_{C,T} V_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim} \overset{\mathcal{I}}{\sim} \overset{\mathcal{I}}{\sim} ST$
- + $\sum_{n=1}^{\infty} \frac{1}{2} (\vec{p}^{2} V_{ST}^{p2}(r) + V_{ST}^{p2}(r) \vec{p}^{2}) \prod_{n \in ST} V_{ST}^{p2}(r) \vec{p}^{2}$
- + $\sum_{T} V_{1T}^{LS}(\underline{r}) \overset{\vec{L}}{\sim} \overset{\vec{S}}{\sim} \overset{\vec{\Pi}}{\sim} \overset{1}{\sim} \overset{T}{\sim}$
- + $\sum_{r} V_{1T}^{L2LS}(r) \overset{\vec{L}^2}{\sim} \overset{\vec{L}S}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{L}^2}{\sim} \overset{\vec{L}S}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} \overset{\vec{n}_{1T}}{$
- + $\sum_{T} V_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \underset{\sim}{\Pi}_{1T}$
- + $\sum_{\tau} V_{1T}^{TLL}(\underline{r}) \underset{\sim}{s}_{12}(\overline{L}, \overline{L}) \underset{\sim}{\Pi}_{1T}$
- + $\sum V_{1T}^{Tpp}(\underline{r}) \overline{s}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\Pi_{1T}}$
- + $\sum (\underset{\sim}{p_r} V_{1T}^{Trp}(\underline{r}) + V_{1T}^{Trp}(\underline{r}) \underset{\sim}{p_r}) \underset{\sim}{s_{12}} (r, p_{\Omega}) \underset{\sim}{\Pi_{1T}}$
- $+ \sum V_{1T}^{L2T\rhop}(\underline{r})[\underline{\vec{L}}^2 \bar{s}_{12}(\underline{\rho}_{\Omega}, \underline{\rho}_{\Omega}) + \bar{s}_{12}(\underline{\rho}_{\Omega}, \underline{\rho}_{\Omega})\underline{\vec{L}}^2]\underline{\prod}_{1T}$
- $\mathcal{V}_{ansatz} = \sum_{c \in T} \mathcal{V}_{ST}^{Z}(r) \prod_{ST} ST$ + $\sum_{C,T} \mathcal{V}_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim}$ + $\sum_{n=1}^{\infty} \frac{1}{2} (\vec{p}^2 \mathcal{V}_{ST}^{p2}(\vec{r}) + \mathcal{V}_{ST}^{p2}(\vec{r}) \vec{p}^2) \Pi_{ST}$ + $\sum \mathcal{V}_{1T}^{LS}(\underline{r}) \overset{\vec{L}S}{\sim} \overset{\vec{\Pi}_{1T}}{\sim} 1_T$ + $\sum_{r} \mathcal{V}_{1T}^{L2LS}(\underline{r}) \overset{\vec{L}}{\sim}$ + $\sum_{\tau} \mathcal{V}_{1T}^{T}(\underline{r}) S_{12} \prod_{\tau} \Pi_{1T}$ + $\sum_{\tau} \mathcal{V}_{1T}^{TLL}(r) \underset{\sim}{s}_{12}(\vec{L}, \vec{L}) \underset{\sim}{\Pi}_{1T}$ + $\sum_{r} \mathcal{V}_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\square}_{1T}$ + $\sum_{\tau} (p_r \mathcal{V}_{1T}^{Trp}(r) + \mathcal{V}_{1T}^{Trp}(r) p_r) s_{12}(r, p_\Omega) \prod_{\tau} Trp$ + $\sum_{\boldsymbol{r}} V_{1T}^{L2Tpp}(\boldsymbol{r})[\boldsymbol{\vec{L}}^2 \bar{\boldsymbol{s}}_{12}(\boldsymbol{p}_{\Omega}, \boldsymbol{p}_{\Omega}) + \bar{\boldsymbol{s}}_{12}(\boldsymbol{p}_{\Omega}, \boldsymbol{p}_{\Omega})\boldsymbol{\vec{L}}^2] \boldsymbol{\prod}_1 \boldsymbol{\vec{r}}_{\boldsymbol{r}}$

Fit

3 55 Ú

$$\mathcal{V}_{UCOM} = \sum_{S,T} V_{ST}^{Z}(\underline{r}) \prod_{ST} V_{ST}$$

- + $\sum_{C,T} V_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim} \overset{\mathcal{I}}{\sim} \overset{\mathcal{I}}{\sim} ST$
- + $\sum_{n=1}^{\infty} \frac{1}{2} (\vec{p}^{2} V_{ST}^{p2}(\vec{r}) + V_{ST}^{p2}(\vec{r}) \vec{p}^{2}) \prod_{ST} V_{ST}^{p2}(\vec{r}) \vec{r}^{2}$
- + $\sum_{T} V_{1T}^{LS}(\underline{r}) \stackrel{\vec{LS}}{\sim} \stackrel{\vec{n}_{1T}}{\sim} \stackrel{\vec{n}$
- + $\sum_{r} V_{1T}^{L2LS}(r) \overset{\vec{L}^2}{\sim} \overset{\vec{L}S}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{L}^2}{\sim} \overset{\vec{L}S}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} \overset{\vec{n}_{1T}}{\sim} V_{1T}^{L2LS}(r) \overset{\vec{n}_{1T}}{\sim} \overset{\vec{n}_{1T}}{$
- + $\sum V_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \underset{\sim}{\Pi}_{1T}$
- + $\sum_{\tau} V_{1T}^{TLL}(\underline{r}) \underset{\sim}{s}_{12}(\overline{L}, \overline{L}) \underset{\sim}{\Pi}_{1T}$
- + $\sum V_{1T}^{Tpp}(\underline{r}) \overline{s}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\Pi_{1T}}$
- + $\sum (\underset{\sim}{p_r} V_{1T}^{Trp}(\underline{r}) + V_{1T}^{Trp}(\underline{r}) \underset{\sim}{p_r}) \underset{\sim}{s_{12}} (r, p_{\Omega}) \underset{\sim}{\Pi_{1T}}$
- $+ \sum V_{1T}^{L2T\rhop}(\underline{r})[\underline{\vec{L}}^2 \bar{s}_{12}(\underline{\rho}_{\Omega}, \underline{\rho}_{\Omega}) + \bar{s}_{12}(\underline{\rho}_{\Omega}, \underline{\rho}_{\Omega})\underline{\vec{L}}^2]\underline{\prod}_{1T}$
- $\mathcal{V}_{ansatz} = \sum_{c \in T} \mathcal{V}_{ST}^{Z}(r) \prod_{ST} ST$ + $\sum_{C,T} \mathcal{V}_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim}$ + $\sum_{n=1}^{\infty} \frac{1}{2} (\vec{p}^2 \mathcal{V}_{ST}^{p2}(\vec{r}) + \mathcal{V}_{ST}^{p2}(\vec{r}) \vec{p}^2) \Pi_{ST}$ + $\sum \mathcal{V}_{1T}^{LS}(\underline{r}) \overset{\vec{L}S}{\sim} \overset{\vec{\Pi}_{1T}}{\sim} 1_T$ + $\sum_{r} \mathcal{V}_{1T}^{L2LS}(\underline{r}) \overset{\vec{L}}{\sim}$ + $\sum_{\tau} \mathcal{V}_{1T}^{T}(\underline{r}) S_{12} \prod_{\tau} \Pi_{1T}$ + $\sum_{\tau} \mathcal{V}_{1T}^{TLL}(r) \underset{\sim}{s}_{12}(\vec{L}, \vec{L}) \underset{\sim}{\Pi}_{1T}$ + $\sum_{r} \mathcal{V}_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\prod}_{1T}$ + $\sum (\underbrace{p}_{r} \mathcal{V}_{1T}^{Trp}(\underline{r}) + \mathcal{V}_{1T}^{Trp}(\underline{r}) \underbrace{p}_{r} \underbrace{s}_{12}(r, p_{\Omega}) \prod_{\tau} \mathbf{r}_{\tau}$ $+ \sum V_{1T}^{L2Tpp}(\underline{r})[\underline{\vec{L}}^{2}\overline{s}_{12}(\underline{p}_{\Omega},\underline{p}_{\Omega}) + \overline{s}_{12}(\underline{p}_{\Omega},\underline{p}_{\Omega})\underline{\vec{L}}^{2}] \square_{1T}$

Fit

65Ť

$$V_{UCOM} = \sum_{S,T} V_{ST}^{Z}(r) \prod_{i \in ST} V_{ST}$$

- $+ \sum_{S,T} V_{ST}^{L2}(\underline{r}) \widetilde{\underline{L}}^2 \widetilde{\Pi}_{ST}$
- + $\sum_{S,T} \frac{1}{2} (\vec{p}^2 V_{ST}^{p2}(\underline{r}) + V_{ST}^{p2}(\underline{r}) \vec{p}^2) \prod_{ST} ST$
- + $\sum_{T} V_{1T}^{LS}(\underline{r}) \underset{\sim}{\overset{\sim}{\sim}} \underset{\sim}{\overset{\sim}{\sim}} \underset{\sim}{\overset{\Pi}{\sim}} \Pi_{1T}$
- + $\sum_{T} V_{1T}^{L2LS}(\underline{r}) \vec{L}^2 \vec{L} \vec{S} \prod_{1T} \Pi_1 T$
- + $\sum_{T} V_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \prod_{T} T$
- + $\sum_{T}^{\prime} V_{1T}^{TLL}(\underline{r}) \underline{s}_{12}(\vec{L}, \vec{L}) \underline{\Pi}_{1T}$
- $+ \sum_{T} V_{1T}^{T\rho\rho}(\underline{r}) \bar{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \bar{\underline{n}}_{1T}$
- $+ \sum_{T} (\underbrace{p_r}_{T} V_{1T}^{Trp}(\underline{r}) + V_{1T}^{Trp}(\underline{r}) \underbrace{p_r}_{\Sigma_{12}} (r, p_{\Omega}) \underbrace{\prod}_{T_T}$
- $+ \sum_{T} V_{1T}^{L2Tpp}(\underline{r})[\underline{\vec{L}}^2 \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega}) + \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega})\underline{\vec{L}}^2] [\Pi_{1T}$
- $\mathcal{V}_{ansatz} = \sum_{c \in T} \mathcal{V}_{ST}^{Z}(r) \prod_{ST} ST$ + $\sum_{C,T} \mathcal{V}_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim}$ $+ \sum_{\alpha,\tau} \frac{1}{2} (\vec{p}^{2} \mathcal{V}_{ST}^{p2}(r) + \mathcal{V}_{ST}^{p2}(r) \vec{p}^{2}) \Pi_{ST}$ + $\sum_{T} \mathcal{V}_{1T}^{LS}(\underline{r}) \stackrel{\vec{L}}{\sim} \stackrel{\vec{S}}{\sim} \stackrel{\Pi_{1T}}{\sim}$ + $\sum_{r} \mathcal{V}_{1T}^{L2LS}(r) \overset{\vec{L}}{\sim} \overset{\vec$ + $\sum_{\tau} \mathcal{V}_{1T}^{T}(\underline{r}) S_{12} \prod_{\tau} \Pi_{1T}$ + $\sum_{\tau} \mathcal{V}_{1T}^{TLL}(r) \underset{\sim}{s}_{12}(\vec{L}, \vec{L}) \underset{\sim}{\Pi}_{1T}$ + $\sum_{r} \mathcal{V}_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\prod}_{1T}$ + $\sum (\underbrace{p}_{r} \mathcal{V}_{1T}^{Trp}(\underline{r}) + \mathcal{V}_{1T}^{Trp}(\underline{r}) \underbrace{p}_{r} \underbrace{s}_{12}(r, p_{\Omega}) \prod_{\tau} \mathbf{r}_{\tau}$ + $\sum V_{1T}^{L2Tpp}(\underline{r})[\underline{\vec{L}}^{2}\bar{s}_{12}(\underline{p}_{\Omega},\underline{p}_{\Omega}) + \bar{s}_{12}(\underline{p}_{\Omega},\underline{p}_{\Omega})\underline{\vec{L}}^{2}]\prod_{1T}$

⊦ıt

65Ť

- $\bigvee_{\sim} UCOM = \sum_{S,T} V_{ST}^{Z}(\underline{r}) \prod_{\sim} ST$
 - $+ \sum_{S,T} V_{ST}^{L2}(\underline{r}) \widetilde{\underline{L}}^2 \widetilde{\Pi}_{ST}$
 - + $\sum_{S,T} \frac{1}{2} (\vec{p}^2 V_{ST}^{p2}(\underline{r}) + V_{ST}^{p2}(\underline{r}) \vec{p}^2) \prod_{ST} ST$
 - $+ \sum_{T} V_{1T}^{LS}(\underline{r}) \widetilde{\underline{LS}} \widetilde{\underline{S}}_{1T}^{\Pi_{1T}}$
 - + $\sum_{T} V_{1T}^{L2LS}(\underline{r}) \overset{\mathcal{I}}{\sim} \overset{\mathcal$
 - + $\sum_{T} V_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \underset{\sim}{\Pi}_{1T}$
 - $+ \sum_{\mathcal{T}} V_{1\mathcal{T}}^{\mathcal{TLL}}(\underline{r}) \underline{s}_{12}(\vec{L},\vec{L}) \underline{\bigcap}_{1\mathcal{T}}$
 - + $\sum_{T} V_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \underset{\sim}{\prod}_{1T}$
 - + $\sum_{T} (\underline{p}_{r} V_{1T}^{Trp}(\underline{r}) + V_{1T}^{Trp}(\underline{r})\underline{p}_{r}) \underline{s}_{12}(r, p_{\Omega}) \prod_{n \in T} V_{n}$
 - $+ \sum_{T} V_{1T}^{L2Tpp}(\underline{r})[\underline{\vec{L}}^2 \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega}) + \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega})\underline{\vec{L}}^2] [\Pi_{1T}$

- $\mathcal{V}_{ansatz} = \sum_{c \in T} \mathcal{V}_{ST}^{Z}(r) \prod_{ST} ST$ + $\sum_{C,T} \mathcal{V}_{ST}^{L2}(\underline{r}) \overset{\mathcal{I}}{\sim}$ + $\sum_{n=1}^{\infty} \frac{1}{2} (\vec{p}^2 \mathcal{V}_{ST}^{p2}(\vec{r}) + \mathcal{V}_{ST}^{p2}(\vec{r}) \vec{p}^2) \Pi_{ST}$ + $\sum \mathcal{V}_{1T}^{LS}(\underline{r}) \overset{\vec{L}S}{\sim} \overset{\vec{\Pi}_{1T}}{\sim} 1_T$ + $\sum_{r} \mathcal{V}_{1T}^{L2LS}(r) \overset{\vec{L}}{\sim} \overset{\vec$ + $\sum \mathcal{V}_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \underset{\sim}{\Pi}_{1T}$ + $\sum_{\tau} \mathcal{V}_{1T}^{TLL}(r) \underset{\sim}{s}_{12}(\vec{L}, \vec{L}) \underset{\sim}{\Pi}_{1T}$
 - + $\sum_{T} \mathcal{V}_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \underset{\Pi 1T}{\prod}$
 - + $\sum_{T} (\underset{\sim}{p_r} \mathcal{V}_{1T}^{Trp}(\underline{r}) + \mathcal{V}_{1T}^{Trp}(\underline{r}) \underset{\sim}{p_r}) \underset{\sim}{s_{12}} (r, p_{\Omega}) \underset{\sim}{\square}_{1T}$
 - $+ \sum_{T} V_{1T}^{L2T\rhop}(r) [\vec{L}^2 \bar{s}_{12}(p_{\Omega}, p_{\Omega}) + \bar{s}_{12}(p_{\Omega}, p_{\Omega}) \vec{L}^2] [\Pi_1 T]_{T}$

Fit

- $\bigvee_{\sim} UCOM = \sum_{S,T} V_{ST}^{Z}(\underline{r}) \prod_{\sim} ST$
 - $+ \sum_{S,T} V_{ST}^{L2}(\underline{r}) \widetilde{\underline{L}}^2 \widetilde{\Pi}_{ST}$
 - + $\sum_{S,T} \frac{1}{2} (\vec{p}^2 V_{ST}^{p2}(\underline{r}) + V_{ST}^{p2}(\underline{r}) \vec{p}^2) \prod_{ST} ST$
 - $+ \sum_{T} V_{1T}^{LS}(\underline{r}) \overset{\vec{L}}{\sim} \overset{\vec{n}}{\sim} \overset{\vec{n}}{\sim} 1T$
 - + $\sum_{T} V_{1T}^{L2LS}(\underline{r}) \overset{\mathcal{I}}{\sim} \overset{\mathcal$
 - + $\sum_{T} V_{1T}^{T}(\underline{r}) \underset{\sim}{S}_{12} \underset{\sim}{\Pi}_{1T}$
 - $+ \sum_{\mathcal{T}} V_{1\mathcal{T}}^{\mathcal{TLL}}(\underline{r}) \underline{s}_{12}(\vec{L},\vec{L}) \underline{\bigcap}_{1\mathcal{T}}$
 - $+ \sum_{T} V_{1T}^{Tpp}(\underline{r}) \underline{\bar{s}}_{12}(p_{\Omega}, p_{\Omega}) \underline{\bar{n}}_{1T}$
 - + $\sum_{T} (\underline{p}_{r} V_{1T}^{Trp}(\underline{r}) + V_{1T}^{Trp}(\underline{r})\underline{p}_{r}) \underline{s}_{12}(r, p_{\Omega}) \prod_{\tau} V_{1T}$
 - $+ \sum_{T} V_{1T}^{L2Tpp}(\underline{r})[\underline{\vec{L}}^2 \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega}) + \bar{s}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega})\underline{\vec{L}}^2] [\Pi_{1T}$

- $\begin{aligned} \underbrace{\mathcal{V}_{ansatz}}_{S,T} &= \sum_{S,T} \underbrace{\mathcal{V}_{ST}^{Z}(\underline{r})}_{ST} \underbrace{\Pi_{ST}}_{S,T} \\ &+ \sum_{S,T} \underbrace{\mathcal{V}_{ST}^{L2}(\underline{r})}_{ST} \underbrace{\overline{\mathcal{L}}_{ST}^{2}}_{ST} \end{aligned}$
 - $+ \sum_{S,T} \frac{1}{2} (\vec{p}^{\,2} \mathcal{V}_{ST}^{p2}(\underline{r}) + \mathcal{V}_{ST}^{p2}(\underline{r}) (\vec{p}^{\,2}) (\underline{p}^{\,2}) (\underline{r}) ($
 - $+ \sum_{T} \mathcal{V}_{1T}^{LS}(\underline{r}) \underset{\sim}{\vec{\mathcal{L}}} \overset{\sigma}{\overset{}_{\sim}} \overset{\Pi}{\underset{\sim}_{\sim}} \overset{\sigma}{\underset{\sim}_{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{\underset{\sim}_{\sim}} \overset{\sigma}{\underset{\sim}_{\sim}} \overset{\sigma}{\underset{\sim}_{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{} \overset{\sigma}{\underset{\sim}} \overset{\sigma}{} \overset{\sigma}$
 - $+ \sum_{T} \mathcal{V}_{1T}^{L2LS}(\underline{r}) \overleftarrow{L}^2 \vec{L} \vec{S} \prod_{n \neq T} \Pi_{1T}$
 - + $\sum_{T} \mathcal{V}_{1T}^{T}(\underline{r}) \underset{\sim}{\lesssim} 12 \underset{\sim}{\Pi}_{1T}$
 - + $\sum_{T} \mathcal{V}_{1T}^{TLL}(\underline{r}) \underline{s}_{12}(\vec{L}, \vec{L}) \prod_{\tau} T$
 - + $\sum_{T} \mathcal{V}_{1T}^{Tpp}(\underline{r}) \overline{\underline{s}}_{12}(p_{\Omega}, p_{\Omega}) \prod_{1T}$
 - $+ \sum_{T} (\underset{\sim}{p_r} \mathcal{V}_{1T}^{Trp}(\underline{r}) + \mathcal{V}_{1T}^{Trp}(\underline{r}) \underset{\sim}{p_r}) \underset{\sim}{s_{12}} (r, p_{\Omega}) \underset{\sim}{\Pi_{1T}}$
 - $+ \sum_{T} V_{1T}^{L2T\rhop}(\underline{r})[\underline{\vec{L}}^2 \bar{\mathbf{s}}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega}) + \bar{\mathbf{s}}_{12}(\underline{p}_{\Omega}, \underline{p}_{\Omega})\underline{\vec{L}}^2] \underline{\vec{l}}_{1T} \mathbf{T}$

- fitting ansatz with reduced set of operators to the matrix elements containing full set of operators
- optimized for 'low' angular momenta, contributions from neglected terms 'absorbed' in other terms
- reduced set of operators has to describe two-nucleon data correctly

Reduced UCOM potential NN phase shifts

Dennis Weber (GSI)

GSİ

Reduced UCOM potential NN phase shifts

Dennis Weber (GSI)

Reduced UCOM potential

Binding energies

Binding energy [MeV]

	² H	³ Н	³ He	⁴ He	⁶ He	⁶ Li	⁷ Li
UCOM	2.23	8.38(1)	7.67(1)	28.53(1)	28.4(2)	31.5(2)	38.6(4)
red. UCOM	2.23	8.37(1)	7.67(1)	28.51(2)	28.6(2)	31.7(2)	38.8(4)
Experiment	2.2246	8.482	7.718	28.296	29.269	31.995	39.245

Dennis Weber (GSI)

19.01.2012 15

35X

Reduced UCOM potential

Spectra and other observables from the NCSM

Properties of ⁶Li

	R _p [fm]	$\mu [\mu_N]$	$Q[e \mathrm{fm}^2]$
UCOM	2.1(1)	0.843(2)	-0.04(2)
red. UCOM	2.1(1)	0.842(1)	-0.03(3)
Experiment	2.41(3)	0.8220	-0.0818(17)

Properties	of ⁷ Li			
	R_p [fm]	$\mu [\mu_N]$	$Q[e \text{ fm}^2]$	L
red. UCOM	2.0(1) 2.0(1) 2.26(2)	2.987(2)	-2.5(3)	

Dennis Weber (GSI)

Hirschegg Workshop 2012

SRG operator representation Ansatz

- complicated momentum dependence
- ▶ operators of Argonne potential, but $\mathcal{V}_{ST}^{i}(\underline{r}) \rightarrow \mathcal{V}_{ST}^{i}(\underline{r}, p)$

$$\begin{split} \mathcal{V}_{ansatz} &= \sum_{S,T} \mathcal{V}_{ST}^{Z}(\underline{r},\underline{\rho}) \prod_{ST} \\ &+ \sum_{S,T} \mathcal{V}_{ST}^{L2}(\underline{r},\underline{\rho}) \vec{L}^{2} \prod_{ST} \\ &+ \sum_{T} \mathcal{V}_{1T}^{LS}(\underline{r},\underline{\rho}) \vec{L} \vec{S} \prod_{1T} \\ &+ \sum_{T} \frac{1}{2} \left(\sum_{12} \mathcal{V}_{1T}^{T}(\underline{r},\underline{\rho}) + \mathcal{V}_{1T}^{T}(\underline{r},\underline{\rho}) \sum_{12} \sum_{11} \right) \prod_{1T} \\ &+ \sum_{T} \mathcal{V}_{1T}^{TLL}(\underline{r},\underline{\rho}) \mathfrak{s}_{12}(\vec{L},\vec{L}) \prod_{1T} \end{split}$$

SRG transforms each partial wave differently for a given flow parameter: more complicated L and J dependence?

Dennis Weber (GSI)

Hirschegg Workshop 2012

65Ť

SRG operator representation NN phase shifts

Dennis Weber (GSI)

GSİ

SRG operator representation NN phase shifts

Dennis Weber (GSI)

Hirschegg Workshop 2012

SRG operator representation Binding energies

Binding energy [MeV]

	³ H	³ Н	³ He	⁴ He	⁶ He	⁶ Li	⁷ Li
SRG	2.23	8.35(1)	7.62(1)	28.38(1)	28.9(4)	31.8(3)	39.3(5)
SRG operator	2.23	8.33(1)	7.61(1)	28.41(2)	29.0(5)	31.9(3)	39.9(5)
Experiment	2.2246	8.482	7.718	28.296	29.269	31.995	39.245

Dennis Weber (GSI)

19.01.2012 20

35X

SRG operator representation

Spectra and other observables from the NCSM

Properties of ⁶Li

	R_p [fm]	$\mu [\mu_N]$	$Q[e \mathrm{fm}^2]$
SRG	2.0(2)	0.839(1)	0.01(1)
SRG operator	2.0(1)	0.840(2)	0.02(2)
Experiment	2.41(3)	0.8220	-0.0818(17)

SRG	R_p [fm] 2.0(1)	$\mu [\mu_N]$ 2.983(3)	$Q[e {\rm fm}^2]$
SRG operator Experiment	2.0(1) 2.26(2)	2.997(2) 3.2564	-2.4(3) -4.06(8)

Dennis Weber (GSI)

Hirschegg Workshop 2012

Summary and conclusions

- Fermionic (Antisymmetric) Molecular Dynamics require operator representation of the interaction
- method to derive an operator representation starting from the partial wave matrix elements of the interaction
- UCOM potential with a reduced set of operators
 - operator form with less operators, but same accuracy in few-nucleon calculations
 - quadratic momentum dependent operators
- operator representation for SRG transformed Argonne potential
 - nonlocal radial functions
 - exact description of low angular momentum phase shifts
 - good agreement with few-nucleon properties calculated with the exact SRG interaction

FC 52 1