Gorkov-Green's function approach to open-shell nuclei

Vittorio Somà (EMMI/TU Darmstadt)

Collaborators:
Carlo Barbieri (Surrey, UK) Thomas Duguet (CEA Saclay, France)

> Based on:

VS, Duguet, Barbieri PRC 84064317 (2011)

"Facets of Strong-Interaction Physics"
Hirschegg 2012

Towards a unified description of nuclei

\& How to extend to open-shell?
\& How to link with EDF?
¿ How to calculate reactions?

Towards a unified description of nuclei

[Waldecker, Barbieri, Dickhoff 2011]

State-of-the-art ab-initio nuclear structure theory

絭 Methods for an ab-initio description of medium-mass nuclei
(1) Self-consistent Dyson-Green's function [Barbieri, Dickhoff, ...]
(2) Coupled-cluster [Dean, Hagen, Hjorth-Jensen, Papenbrock, ...]
(3) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk, ...]
\longrightarrow Similar level of accuracy
\longrightarrow But limited to to doubly-closed-shell ± 1 and ± 2 nuclei

State-of-the-art ab-initio nuclear structure theory

絭 Methods for an ab-initio description of medium-mass nuclei
(1) Self-consistent Dyson-Green's function [Barbieri, Dickhoff, ...]
(2) Coupled-cluster [Dean, Hagen, Hjorth-Jensen, Papenbrock, ...]
(3) In-medium similarity renormalization group [Tsukiyama, Bogner, Schwenk, ...]

粦 Truly open-shell nuclei
(a) Multi-reference methods: IMSRG + CI, MR-CC
(b) Single-reference methods: explicit account of pairing mandatory

Connection to non-empirical EDF

粦 Standard EDF parameterizations (e.g. Skyrme, Gogny, relativistic)

- Successful in major shell where adjusted
${ }^{\circ}$ Lack predictive power in new regions of interest

Efforts to extend and connect with more fundamental approaches
类 Non-empirical EDF from low-momentum interactions
[Lesinski et al. 2011]

- Pairing channel [Lesinski et al.]
- Particle-hole channel [Gebremariam et al.]

Benchmarks needed from many-body methods that share the same features

Green's functions: essential features

\rightarrow Ab-initio, self-consistent approach
$\xrightarrow{\prime \prime} \rightarrow$ Direct connection to observables
$\rightarrow \rightarrow$ Improvability (diagrammatic expansion)
$\rightarrow \rightarrow$ Control over many-body requirements (conserving approximations)

Dyson Green's functions

粦 Spectral function

$$
\left.\mathrm{S}_{a}^{-}(\omega) \equiv \sum_{k}\left|\left\langle\psi_{k}^{N-1}\right| a_{a}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{0}^{N}-E_{k}^{N-1}\right)\right)=\frac{1}{\pi} \operatorname{Im} G_{a a}(\omega)
$$

[Barbieri 2009]

Dyson Green's functions

粦 Spectral function

$$
\left.\mathrm{S}_{a}^{-}(\omega) \equiv \sum_{k}\left|\left\langle\psi_{k}^{N-1}\right| a_{a}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{0}^{N}-E_{k}^{N-1}\right)\right)=\frac{1}{\pi} \operatorname{Im} G_{a a}(\omega)
$$

粦 Green's function

$$
i G_{a b}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}^{N}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}^{N}\right\rangle \equiv
$$

\rightarrow N-particle ground state
\rightarrow One nucleon addition and removal ($\mathrm{N} \pm 1$ systems)

Dyson Green's functions

絭 Spectral function

$$
\left.\mathrm{S}_{a}^{-}(\omega) \equiv \sum_{k}\left|\left\langle\psi_{k}^{N-1}\right| a_{a}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{0}^{N}-E_{k}^{N-1}\right)\right)=\frac{1}{\pi} \operatorname{Im} G_{a a}(\omega)
$$

粦 Green's function

$$
i G_{a b}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}^{N}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}^{N}\right\rangle=
$$

$\rightarrow \rightarrow$ N-particle ground state
\rightarrow One nucleon addition and removal ($\mathrm{N} \pm 1$ systems)
\rightarrow Contains all structure information probed by nucleon transfer

$$
G_{a b}(\omega) \equiv \sum_{k} \frac{\left\langle\psi_{0}^{N}\right| a_{a}\left|\psi_{k}^{N+1}\right\rangle\left\langle\psi_{k}^{N+1}\right| a_{b}^{\dagger}\left|\psi_{0}^{N}\right\rangle}{\omega-\left(E_{k}^{N+1}-E_{0}^{N}\right)+i \eta}+\sum_{k} \frac{\left\langle\psi_{0}^{N}\right| a_{b}^{\dagger}\left|\psi_{k}^{N-1}\right\rangle\left\langle\psi_{k}^{N-1}\right| a_{a}\left|\psi_{0}^{N}\right\rangle}{\omega-\left(E_{0}^{N}-E_{k}^{N-1}\right)-i \eta}
$$

Dyson Green＇s functions

絭 Spectral function

$$
\left.\mathrm{S}_{a}^{-}(\omega) \equiv \sum_{k}\left|\left\langle\psi_{k}^{N-1}\right| a_{a}\right| \psi_{0}^{N}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{0}^{N}-E_{k}^{N-1}\right)\right)=\frac{1}{\pi} \operatorname{Im} G_{a a}(\omega)
$$

粦 Green＇s function

$$
\left.i G_{a b}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}^{N}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}^{N}\right\rangle\right) \equiv
$$

\rightarrow N－particle ground state
＂\rightarrow One nucleon addition and removal（ $\mathrm{N} \pm 1$ systems）

粦 Dyson equation

$$
G_{a b}(\omega)=G_{a b}^{(0)}(\omega)+\sum_{c d} G_{a c}^{(0)}(\omega) \Sigma_{c d}^{\star}(\omega) G_{d b}(\omega)
$$

\rightarrow
Solution breaks down when pairing instabilities appear

Going open-shell: Gorkov ansatz

粦 Formulate the expansion scheme around a Bogoliubov vacuum
\longrightarrow Zeroth order already incorporates pairing
粦Auxiliary many-body state $\left|\Psi_{0}\right\rangle \equiv \sum_{N}^{\text {even }} c_{N}\left|\psi_{0}^{N}\right\rangle$
\longrightarrow Mixes various particle numbers
\longrightarrow Introduce a "grand-canonical" potential $\quad \Omega=H-\mu N$

$$
\begin{aligned}
& \Rightarrow \quad\left|\Psi_{0}\right\rangle \quad \text { minimizes } \quad \Omega_{0}=\left\langle\Psi_{0}\right| \Omega\left|\Psi_{0}\right\rangle \\
& \quad \text { under the constraint } \quad N=\left\langle\Psi_{0}\right| N\left|\Psi_{0}\right\rangle \\
& \Rightarrow \quad \Omega_{0}=\sum_{N^{\prime}}\left|c_{N^{\prime}}\right|^{2} \Omega_{0}^{N^{\prime}} \approx E_{0}^{N}-\mu N
\end{aligned}
$$

Gorkov Green's functions and equations

粦 Set of 4 Green's functions
[Gorkov 1958]

$$
\mathbf{G}_{a b}(\omega)=\mathbf{G}_{a b}^{(0)}(\omega)+\sum_{c d} \mathbf{G}_{a c}^{(0)}(\omega) \boldsymbol{\Sigma}_{c d}^{\star}(\omega) \mathbf{G}_{d b}(\omega)
$$

Gorkov equations

$$
\Sigma_{a b}^{\star}(\omega) \equiv\binom{\Sigma_{a b}^{\star 11}(\omega) \Sigma_{a b}^{\star 12}(\omega)}{\Sigma_{a b}^{\star 21}(\omega) \Sigma_{a b}^{\star 22}(\omega)}
$$

$$
\boldsymbol{\Sigma}_{a b}^{\star}(\omega) \equiv \boldsymbol{\Sigma}_{a b}(\omega)-\mathbf{U}_{a b}
$$

$$
\begin{aligned}
& i G_{a b}^{11}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \|_{b}^{a} \\
& i G_{a b}^{21}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) a_{b}^{\dagger}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \|_{\|}^{\bar{a}} \\
& i G_{a b}^{12}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{a_{a}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv \\
& i G_{a b}^{22}\left(t, t^{\prime}\right) \equiv\left\langle\Psi_{0}\right| T\left\{\bar{a}_{a}^{\dagger}(t) \bar{a}_{b}\left(t^{\prime}\right)\right\}\left|\Psi_{0}\right\rangle \equiv{ }_{\bar{b}}^{\bar{a}}
\end{aligned}
$$

$1^{\text {st }} \& 2^{\text {nd }}$ order diagrams and eigenvalue problem

絭 $1^{\text {st }}$ order $\mathrm{m} \rightarrow$ energy－independent self－energy

絭 $2^{\text {nd }}$ order $->$ energy－dependent self－energy
$\Sigma_{a b}^{11(2)}(\omega)={ }_{c}^{a}$

$$
\Sigma_{a b}^{12(2)}(\omega)=
$$

㐘 Gorkov equations \longrightarrow eigenvalue problem

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}} \quad \begin{aligned}
& \mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\
& \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

Gorkov equations

$$
\left.\sum_{b}\left(\begin{array}{cc}
t_{a b}-\mu_{a b}+\Sigma_{a b}^{11}(\omega) & \Sigma_{a b}^{12}(\omega) \\
\Sigma_{a b}^{21}(\omega) & -t_{a b}+\mu_{a b}+\Sigma_{a b}^{22}(\omega)
\end{array}\right)\right|_{\omega_{k}}\binom{\mathcal{U}_{b}^{k}}{\mathcal{V}_{b}^{k}}=\omega_{k}\binom{\mathcal{U}_{a}^{k}}{\mathcal{V}_{a}^{k}}
$$

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

Energy independent eigenvalue problem
with the normalization condition $\quad \sum_{a}\left[\left|\mathcal{U}_{a}^{k}\right|^{2}+\left|\mathcal{V}_{a}^{k}\right|^{2}\right]+\sum_{k_{1} k_{2} k_{3}}\left[\left|\mathcal{W}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}+\left|\mathcal{Z}_{k}^{k_{1} k_{2} k_{3}}\right|^{2}\right]=1$

Lanczos projection

$$
\left(\begin{array}{cccc}
T-\mu+\Lambda & \tilde{h} & \mathcal{C} & -\mathcal{D}^{\dagger} \\
\tilde{h}^{\dagger} & -T+\mu-\Lambda & -\mathcal{D}^{\dagger} & \mathcal{C} \\
\mathcal{C}^{\dagger} & -\mathcal{D} & E & 0 \\
-\mathcal{D} & \mathcal{C}^{\dagger} & 0 & -E
\end{array}\right)\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)=\omega_{k}\left(\begin{array}{c}
\mathcal{U}^{k} \\
\mathcal{V}^{k} \\
\mathcal{W}_{k} \\
\mathcal{Z}_{k}
\end{array}\right)
$$

" \rightarrow Conserves moments of spectral functions
$\mu \Rightarrow$ Equivalent to exact diagonalization for $\mathrm{N}_{\mathrm{L}} \rightarrow \operatorname{dim}(\mathrm{E})$

Binding energies

类 Systematic along isotopic/isotonic chains become available

Spectrum and spectroscopic factors

Separation energy spectrum

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \overline{\mathcal{V}}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

Lehmann representation
where $\quad\left\{\begin{array}{l}\mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\ \mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle\end{array}\right.$

$$
\text { and } \quad\left\{\begin{array}{l}
E_{k}^{+(N)} \equiv E_{k}^{N+1}-E_{0}^{N} \\
E_{k}^{-(N)} \equiv E_{0}^{N}-E_{k}^{N-1}
\end{array}\right.
$$

粪 Spectroscopic factors

$$
\begin{aligned}
& \left.\mathcal{S}_{k}^{+} \equiv \sum_{a}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
& \left.\mathcal{S}_{k}^{-} \equiv \sum_{a}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

Separation energies
\square

+ transfer strengths

Centroids

Spectral function

Fragmentation

Static pairing

Dynamical fluctuations
Dyson 2 ${ }^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)

Gorkov $2^{\text {nd }}$ order

Shell structure evolution

絭 ESPE collect fragmentation of "single-particle" strengths from both $\mathrm{N} \pm 1$ $\epsilon_{a}^{c e n t} \equiv h_{a b}^{c e n t} \delta_{a b}=t_{a a}+\sum_{c d} \bar{V}_{a c a d}^{N N} \rho_{d c}^{[1]}+\sum_{c d e f} \bar{V}_{a c d a e f}^{N N N} \rho_{e f c d}^{[2]} \equiv \sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+}+\sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}$
[Baranger 1970, Duguet et al. 2011]

Natural single－particle occupation

粦 Natural orbit a：$\rho_{a b}{ }^{[1]}=n_{a}{ }^{\text {nat }} \delta_{a b}$
粦 Associated energy：$\varepsilon_{a}{ }^{\text {nat }}=h_{a a}{ }^{\text {cent }}$

畨 Dynamical correlations similar for doubly－magic and semi－magic
类 Static pairing essential to open－shells

Conclusions \＆Outlook

粦 Gorkov－Green＇s functions： first ab－initio open－shell calculations

粦 Provide optical potentials for reaction models

粦 Provide constraints for next－generation Energy Density Functionals

粦 Implementation of three－body forces
粦 Formulation of particle－number restored Gorkov theory
粦 Improvement of the self－energy expansion

