In-medium properties of mesons from photo nuclear reactions

Volker Metag Mariana Nanova II. Physikalisches Institut, Universität Gießen, Germany

- motivation: theoretical predictions
- In-medium properties of the ω and η meson from the measurement of
 - a.) the transparency ratio
 - b.) meson line shape
 - c.) the meson momentum distribution
 - d.) the excitation function for photoproduction off nuclei
 - in photonuclear reactions at CBELSA/TAPS (Bonn) and Crystal Ball/TAPS (Mainz)
- summary and conclusions

40th. International Workshop on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Austria, Jan. 15-21, 2012

hadron masses

J.Wambach

- QCD-vacuum: complicated structure characterized by condensates
- in the nuclear medium: condensates are changed
- → change of the hadronic excitation energy spectrum

V. Bernard and U.-G. Meißner, NPA 489 (1988) 647 G.E.Brown and M. Rho, $\frac{m^*}{m} \approx \frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \approx 0.8 (\rho \approx \rho_0)$ PRL 66 (1991) 2720

T.Hatsuda and S. Lee, $\frac{\mathbf{m}_{V}^{*}}{\mathbf{m}_{V}} = \left(1 - \alpha \frac{\rho_{B}}{\rho_{0}}\right); \alpha \approx 0.18$ PRC 46 (1992) R34

⇒ widespread theoretical and experimental activities to search for in-medium modifications of hadrons

in-medium modifications of the ρ meson through hadronic many body effects

in vacuum:

ρ-width determined by coupling to $ρ \rightarrow ππ$ channel

π

π

in the nuclear medium:

π of π cloud couple to $ΔN^{-1}$ excitations (Δ width not yet taken into account)

M. Hermann, B. Friman, W. Nörenberg,

in-medium modifications of the ρ meson through hadronic many body effects

medium modificatios through coupling to baryon resonances:

B. Friman , H.J.Pirner, NPA 617 (1997) 496

medium effects calculable from elementary γ -, π - induced reactions: exploit information from coupled channel analyses: πN , ρN , ωN , $\pi \Delta$, $N\eta$

σ (elementary); unitary coupled channel analysis → t_{VN} → Π=t_{VN}• ρ → V_{opt} low density approximation

structure in spectral function due to coupling to baryon resonances

M.F.M. Lutz, Gy. Wolf, B. Friman, NPA 706 (2002) 431

4

Model predictions for in-medium masses of vector mesons

5

Model predictions for in-medium masses of vector mesons

M. Post et al., NPA 741 (2004) 81

P. Mühlich et al., NPA 780 (2006) 187

- structure in ρ spectral function due to coupling to baryon resonances
- strong momentum dependence
- modifications most pronounced for small momenta

spectral function for ω mesons at rest: splitting into ω -like and a N*N⁻¹ mode due to coupling to S₁₁, resonance; (level repulsion)

Model predictions for spectral functions of the η ^{\prime} meson

almost no dependence of η' mass on density

strong variation of η ' mass with density

Experimental approaches and observables to extract in-medium properties of mesons

experimental task: search for

ensure sensitivity to low momentum mesons !!

1.) Transparency ratio:
$$T_A = \frac{\sigma_{\gamma A \to V X}}{A \cdot \sigma_{\gamma N \to V X}}$$

2.) Lineshape analysis: $M \rightarrow X_1 + X_2$; $\mu_H(\rho, \vec{p}) = \sqrt{(p_1 + p_2)^2}$

3.) Meson momentum distribution

4.) Excitation function

Experimental setups

I. Measurement of the transparency ratio

Meson attenuation:

$$T_{A} = \frac{\sigma_{\gamma A \to V X}}{A \cdot \sigma_{\gamma N \to V X}}$$

production probability per nucleon within nucleus compared to production probability on free nucleon

inelastic channels remove ω , η '-mesons, e.g. ω N, η ' N $\rightarrow \pi$ N \rightarrow shortening of ω , η ' - lifetime \Rightarrow increase in width

low density approximation:
$$\Gamma(\rho) = -\frac{Im\Pi(\rho)}{E} \sim \rho \cdot v \cdot \sigma_{inel}$$

 $\Gamma(\rho) = \Gamma(\rho_0) \cdot \frac{\rho}{\rho_0}$

<u>in-medium</u> η' = quasi-particle; properties reflect interaction with the medium; applicable to any meson lifetime !!!

Information on in-medium properties of mesons from measuremens of their decay outside of the nucleus

Photoproduction of ω and η ' mesons off C, Ca, Nb, Pb

Extraction of in-medium width and inelastic cross section from T_A

$$\sigma_{\gamma A \rightarrow \eta' A'} = C \int d^{3}r \rho(\vec{r}) \frac{1}{2\pi} \int_{0}^{2\pi} d(\phi_{c.m.}^{\eta'}) \frac{1}{2} \int_{-1}^{1} d(\cos \theta_{c.m.}^{\eta'}) \frac{d\sigma}{d\Omega} (\gamma p \rightarrow \eta' p) P_{s}(\vec{r})$$
where $P_{s}(\vec{r})$ is the survival probability $P_{s}(\vec{r}) = \exp \left[\int_{0}^{\infty} dl \frac{\operatorname{Im} \Pi_{\eta'}(\rho(\vec{r}'))}{|\vec{k}_{\eta'}|} \right]$ with $\vec{r}' = \vec{r} + l \frac{\vec{k}_{\eta'}}{|\vec{k}_{\eta'}|}$

$$\begin{array}{c} \mathbf{\omega} - \mathbf{meson} \\ \text{M. Kaskulov, E. Hernandez, E. Oset P. Mühlich and U. Mosel \\ EPJ A 31 (2007) 245 \\ \text{NPA 773 (2006) 156} \\ \text{NPA 773 (2006) 156} \\ \text{M. Nanova et al.,} \\ \mathbf{F} = \frac{1}{90 \text{ MeV}} \\ \begin{array}{c} \mathbf{F} = 30 \text{ MeV} \\ \mathbf{F} = 105 \text{ MeV} \\ \mathbf{F} = 105 \text{ MeV} \\ \mathbf{F} = 105 \text{ MeV} \\ \mathbf{F} = 120 \text{ MeV} \\ \mathbf{F} = 120 \text{ MeV} \\ \mathbf{F} = 210 \text{ MeV} \\ \mathbf{F} = 105 \text{ MeV} \\ \mathbf{F} = 210 \text{ MeV} \\ \mathbf{F} = 105 \text{ MeV}$$

2

10

0.3

10

10²

10

····· Γ($ρ_0$)=40 MeV

10²

Α

0.6 **b**

10

Extraction of inelastic cross sections within Glauber analysis

approximation of nuclear density distribution:

nucleus = sphere with radius $R=R_0 \cdot A^{1/3}$ homogeneously filled with A nucleons

P. Mühlich and U. Mosel, NPA 773 (2006) 156

0

50

100

$$T_{A} = \frac{\pi R^{2}}{A\sigma_{\eta'N}} \left\{ 1 + \left(\frac{\lambda}{R}\right) \exp\left[-2\frac{R}{\lambda}\right] + \frac{1}{2} \left(\frac{\lambda}{R}\right)^{2} \left(\exp\left[-2\frac{R}{\lambda}\right] - 1\right) \right\}$$

meson mean free path:
$$\lambda = \left(\rho_{0}\sigma_{\eta'N}\right)^{-1}$$

inelastic cross sections:
$$\sigma_{\eta'N} = (11\pm1.5) \text{ mb}$$

$$\sigma_{\omega N} = (65\pm30) \text{ mb}$$

200

Δ

150

Comparison with other mesons

 η interaction with nuclear matter much weaker than for π , η , ω mesons

II. Measurement of the meson lineshape

<u>meson decay</u>: M → X₁ + X₂ ⇒ in-medium mass shift ? broadening ? structures ? $\mu_{\rm H}(\rho,\vec{p}) = \sqrt{(p_1 + p_2)^2}$

• ensure that decays occur in the medium: select shortlived mesons: decay length s = $\beta\gamma\cdot c\tau$ comparable to nuclear dimensions

for
$$\beta \gamma = \frac{p}{mc} \approx 1$$
 s ≈ 1.3 fm (ρ); 23 fm (ω); 46 fm (ϕ) cut on low meson momenta for ω and ϕ mesons

• avoid distortion of 4-momentum vectors by final state interactions \Rightarrow dilepton spectroscopy: $\rho, \omega, \phi \rightarrow e^+e^-$

disadvantage: branching ratio $\approx 10^{-4} - 10^{-5}$

decay mode used in our experiments: $\omega \rightarrow \pi^0 \gamma \rightarrow 3\gamma$ br = 8.9% $\eta' \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$ br = 8.1%

distortions by π^0 rescattering suppressed by cut $T^{\pi}_{kin} > 150 \text{ MeV}$

sensitive to nuclear density at decay point !!!!

$ω \rightarrow \pi^0 \gamma$ lineshape analysis

Systematic uncertainties due to different background subtraction approaches 16

ω lineshape analysis (E_v = 900 – 1300 MeV)

no significant structure in spectral function; signal on Nb slightly broader than on LH_2 ; consistent with in-medium broadening of ω

sensitivity to in-medium scenarios

Limited sensitivity of line shape analysis

three effects limit the sensitivity:

1.) ω→π⁰γ signal reduced by increase of in-medium width (Γ_{med} ≈ 16 • Γ_{vac}); ω mesons removed in nuclear medium via inelastic channels (like ωN→πN)

$$\frac{d\sigma_{H \to X_1 X_2}}{d\mu} \sim A(\mu) \cdot \frac{\Gamma_{H \to X_1 X_2}}{\Gamma_{tot}(\mu)}$$

F. Eichstaedt et al.,

Prog. Theo. Phys. Suppl. 168 (2007) 495

- 2.) only 30 % of all ω→π⁰γ decays occur within the Nb nucleus at ≈ 0.5p₀
 (50% for p_ω< 500 MeV/c)
- 3.) ω decays occur over a wide range of densities, thereby smearing out any density-dependent signal

III. Measurement of the momentum distribution of the mesons.

In case of a dropping in-medium mass: when leaving the nucleus hadron has to become on-shell; mass generated at the expense of kinetic energy \Rightarrow downward shift of momentum distribution

applicable to any meson lifetime; sensitive to density at production point !!!

measured momentum distribution favors "broadening without mass shift" ¹⁹

IV. Measurement of ω excitation function

in case of dropping mass higher meson yield for given \sqrt{s} because of increased phase space due to lowering of the production threshold

Gi-BUU simulations: P. Mühlich and u. Mosel, NPA 773 (2006) 156 K. Gallmeister et al. Prog. Part. Nucl. Phys. 61 (2008) 283

enhanced ω yield for dropping mass scenario below production threshold on free nucleon; sensitive to density at production point !!!

Comparison of measured excitation function with GiBUU calculations

B. Lemmer, S. Friedrich, H. Berghäuser, M. Thiel, J. Weil

data disfavour **"broadening + mass shift (-14%)" scenario** and favour **"collisional broadening without mass shift" scenario** but small downward shift of spectral strength can not be excluded

Summary and conclusions

- observables for extracting in-medium properties of mesons: transparency ratio, line shape, momentum distribution, excitation function
- <u>transparency ratio</u>: in-medium broadening of ω , η' mesons; ω : in-medium width $\approx 130 - 150 \text{ MeV}$ at ρ_0 for $p_{\omega} \approx 1.1 \text{ GeV/c}$ η' : in-medium width $\approx 25 \text{ MeV}$ at ρ_0 for $p_{\omega} \approx 1.05 \text{ GeV/c}$ η' interaction with nuclear medium much weaker than for ω meson $<\alpha_{\eta'}>= 0.84\pm0.03; <\alpha_{\eta,\omega}>= 0.66\pm0.04; \sigma = \sigma_0 \cdot A^{\alpha(T)}$
- <u>ω line shape analysis</u>: no evidence for structures or large mass shifts; limited sensitivity due to strong in-medium broadening and small fraction of in-medium decays
- <u>ω momentum distribution</u> favours collisional broadening without mass shift
- <u>ω excitation function</u> favours collisional broadening without mass shift, although small downward shift of spectral strength can not be excluded
- search for $\underline{\omega}$ mesic states: analysis still ongoing

hadron spectral functions do change in the nuclear environment