

Exploring compressed nuclear matter with HADES

Hirschøgg, January 15-21, 2012

Tetyana Galatyuk Goethe-Univertsität Frankfurt / EMMI

for the HADES Collaboration

Highestgateptance Dielectron Spectrometer

The HADES mission

Search (in this region) for new states of matter with rare and penetrating probes

- Stage I (2002 2008)
 - Light collision systems → limited granularity of time-of-flight system
- Stage II (2012 2015)
 - Heavy collision systems
 - π-induced reactions
- Stage III (2018 ...)
 - Lepton pair excitation function up to 8 GeV/u (medium-heavy systems) and (multi-)strange particle
- + Various aspects of baryon-resonances physics

Outline

- Introduction
- Reference measurements (p+p, n+p, C+C)
- Ar+KCl collisions at 1.67 GeV/u
 - Dileptons
 - Strangeness
- Perspectives and challenges at SIS18 and SIS100
- Summary

Motivation

"I wonder if it finally will turn into a bluff..."

Partial restoration of chiral symmetry

Y. Nambu 1960, R.D. Pisarski 1982, W. Weise 1992,

. . .

Exotic phases

L. McLerran, R.D. Pisarski 2007,

. . .

 \rightarrow Experimental test

Searching for landmarks of the phase diagram of matter

High Acceptance Di-Electron Spectrometer

- Beams provided by SIS18: π, p, nuclei
- Full azimuthal coverage
- Hadron and lepton identification
- e⁺e⁻ pair acceptance 0.35
- Mass resolution 2 % (ρ/ω region)
- ~ 80.000 channels
- now: 50 kHz event rate (400 Mbyte/s peak data rate)

HADES strategy:

Systematic di-electron and strangeness measurements in NN, AA, pA, π N and π A collisions

Hirschegg, 15.-21. January 2012

Origin of the low-mass pair excess in C+C collisions

8

Baryonic contributions from NN "reference"

Dilepton "excess" scales with beam energy like π production

HADES pp and dp (tagged n) data vs. models

HADES: Phys. Lett. B 690 (2010) 118 Model: Pluto - ROOT based event generator

- n+p case: Different schemes for implementing gauge invariance
- OBE effective models reproduce p+p, but not (yet) n+p
- Coupling of the γ^* to Δ via intermediate ρ might play a role

Virtual photon emission in A+A collisions

HADES: Phys.Rev.C84:014902,2011

- Isolation of excess by a comparison with a measured "reference" spectrum
- First evidence for radiation from the "medium"!
- Excess yield scales with system size like A_{part}^{1.4}
 - → multi-step processes or multi-particle correlation

Quest for heavier systems!

Centrality dependence of spectral shape

HADES: Phys.Rev.C84:014902,2011

- 34% most central collisions (A_{part}=38)
- Δ regeneration

 Rapid increase of relative yield reflects the number of ρ's regenerated in fireball

Na60 data: EPJC 61 (2009) 711

Electron pairs from cold nuclear matter

"if you are out to describe the truth, leave elegance to the tailor" (A. Einstein)

cocktail: PYTHIA +Pluto

HADES p+p data: arXiv:1112.3607 [nucl-ex] HADES p+Nb data: in preparation

- First measurement of lepton pairs with
 - $p_{e^+e^-}$ < 0.8 GeV/c radiated from cold matter
 - \rightarrow not measured by CLAS, KEK-E325
- Mass resolution: σ_{ω} = 16 MeV/c²

Electron pairs from cold nuclear matter

HADES p+Nb data (M. Weber, M. Lorenz), publication in preparation

- No ω line shape modification is observed
- For p_{e+e-}< 0.8 GeV/c clear excess over p+p
 → role of the secondary ρ from N(1520), ∆ (1700),...?

Origin of the excess in p+Nb system?

Nuclear modification factor: $R_{pA} = \frac{d\sigma/dp^{pNb}}{d\sigma/dp^{pp}}$

 R_{pA} grows significantly when p_{e+e-} decreases (max for ρ) → role of secondary reactions?

Identified ω do not show momentum dependence!

reaction

reaction

From T_A to ω absorption, like in γA reactions (see talk V. Metag)?

→ not straightforward in pA collisions

GiBUU calculations : p+p at 3.5 GeV

J. Weil at al., arXiv:1106.1344v1 [hep-ph] 7 Jun 2011

HSD and UrQMD calculations : p+p at 3.5 GeV

Particle production by LUND string fragmentation Particle production through baryonic resonances

Reconstruction of the baryonic resonances: exclusive analysis of pp \rightarrow pn π^+ ans pp \rightarrow pp π^0

- 14 baryonic resonances are included in the analysis (N*1535 constrained by pp → ppη channel)
 K. Teilab Int.J.Mod.Phys.A26:694-696,2011
- Cross section for resonance production via exclusive analysis of pp → pnπ⁺ and pp → ppπ⁰

pp → ppe⁺e⁻

339

Dileptons: from SIS to SPS...

Exclusive analysis: $pp \rightarrow ppe^+e^-$

Dybczak

Data: in preparation, A

G

∠etenyi and

(2003) Wolf

044002

67,

S

Rev.

Model: M. Phys. Rev.

- Dalitz decays of baryonic resonances dominant source at low beam energies.
- Relative contribution reconstructed from the hadronic channels

 10^{-6} $(1/N_{ch}) d^2 N_{\mu\mu} / (dM d\eta) (20 MeV)^{-1}$ NA60 no baryons Data: EPJC 59 (2009) 607 R.Rapp: NPA806 (2008) 3 full model 10^{-7} 10⁻⁸ In+In at √s_{NN}=17.3 GeV 10⁻⁹ 1.2 1.4 0.4 0.2 0.6 0.8M (GeV)

Acceptance corrected dimuon excess yield

In-medium ρ spectral function:

strength of dilepton yield at low masses is due to coupling to baryons!

Friman et al., 1993 Nucl. Phys. A 560 411

Tetyana Galatyuk,EMMI

strangeness

Strangeness production in Ar+KCI collisions

Final state "hadron-chemistry"

THERMUS fit: J.Cleymans, J.Phys.G31(2005)S1069
 HADES Ar+KCl data at 1.76 GeV/u: Eur. Phys. J. A 47:21, 2011

Quest for higher statistics!

- Statistical Hadronization Model describes hadron abundances except in case of large Ξ⁻ yield
- Thermal equilibrium also at low energies (high μ_B)?
- Production mechanism of multistrange baryons?

HADES and the Phase Diagram of Matter

Multi-strange baryons

Strange quarks "trapped" in bubbles?

Probability ($M_{s\bar{s}}$) to produce in Ar+KCl collisions a strange quark pair is $\approx 5 \times 10^{-2}$

$$M_{\Xi^-} \approx 0.1 \times M_{s\bar{s}}^2$$

Bag fussion \rightarrow Quarkyonic matter?

 $T \ll T_c$, finite μ_B

Tetyana Galatyuk,EMMI

The MADES upgrade

HADES upgrade: the RPC time-of-flight system

D. Belver et al . NIM A602(2008) 687, 788 E. Blanco et al. NIM A602(2008) 691 Leading institute: Coimbra, Portugal

 K^{-} acceptance (nice rapidity coverage!)

- New set of Plane I drift chambers: HZDR, Germany
- Stable operation of 4 modules in Au+Au environment in Aug. 2011!

HADES DAQ upgrade

- Event rate up to 100 kHz (p+p), 20 kHz (Au+Au)
- Data rate up to 500 Mbyte/s (peak)

Au+Au at 1.25 GeV/u (commissioning beam time Aug'2011)

- 64 hours beam Au on Au target
- 1.3 x 10⁷ ions per second
- 8 kHz trigger rate
- 200 Mbyte/s data rate
- 0.84 x 10⁹ events
- 17 x 10¹² Byte of data

GSI target lab: B. Kindler et al., NIMP 655, 2011

Hirschegg, 15.-21. January 2012

Particle identification: then and now ...

The Coimbra team (P. Fonte, A. Blanco et al.), detector modules GSI/HADES (M. Traxler, W. Koenig et al.), FEE and read-out

Online spectra from Au+Au collisions at 1.24 GeV/u

Online analysis: preliminary alignment and calibration. New tracking with improved performance in high track density environment

Tetyana Galatyuk,EMMI

Still to come...

π beam experiments with HADES

Physics with πN experiments:

- New precision data are of enormous importance for understanding of baryon resonance physics
- Special interest to sub-threshold production

Challenges:

- Determine π momentum with $\Delta p/p \sim 1-5\%$
- Beam spot of 6x6 cm² at dispersive plane
 → detector with sufficient active area
- Beam intensity ~10⁸ part./s
 → radiation hard detector
 → fast readout electronics

- Strategy:
 - Use 10×10cm² silicon strip detector
 - 2×128 channels double sided
 - Radiation hard
 - Profit from n-xyter developments for CBM
 - ✓ Self-triggered architecture
 - ✓ 128 channels
 - ✓ Average hit per channel rate 160 kHz

Summary

HADES provides high-quality data for understanding di-electron and strangeness production in elementary and heavy-ion collisions at SIS energy regime.

- Long-lived states of compressed nuclear matter are produced in heavy-ion collisions at few GeV energy regime
- This state of matter might be much more exotic than a hadron gas
- Observations:
 - "Thermal" hadron production (with some exceptions)
 - Strong broadening of in-medium states
 - High Ξ^- production cross section

Au+Au at 1.25 GeV/u commissioning beam time

- New HADES took off! Performance goals reached and partly exceeded
- Detector is ready for the production beam time in April - May 2012

Eur.Phys.J.A47:63,2011 Phys.Rev.C84:014902,2011 Eur.Phys.J.A47:21,2011. arXiv:1109.6806 [nucl-ex]→PRC

Thank you!

J.Phys.Conf.Ser.312:012008,2011 J.Phys.Conf.Ser.316:012007,2011 Nucl.Phys.A862-863:205-211,2011 Int.J.Mod.Phys.A26:737-740,2011 Int.J.Mod.Phys.A26:668-670,2011 Int.J.Mod.Phys.A26:384-389,2011 J.Phys.Conf.Ser.270:012021,2011 Int.J.Mod.Phys.A26:694-696,2011

The HADES Collaboration

- → Catania (INFN LNS), Italy
 - → Cracow (Univ.), Poland
 - → Darmstadt (GSI, CMMI), Germany
 - München (TUM, Excellence Cluster Universe), Germany

- -> Dresden (FZD), Germany
- → Frankfurt (Univ., CMMI, HIC for FAIR),
 Germany
 - → Giessen (Univ., HIC for FAIR), Germany
 - → Parmstadt (TUP, CMMI), Germany
 - → Dubna (IINR), Russia
 - → Moscow (ITEP,RAS), Russia
 - → Nicosia (Univ.), Cyprus
- → Orsay (IPN), Francø
- → Rez (CAS, NPI), Czech Rep.
- → Santiago d¢ C. (Univ.), Spain
- → Coimbra (Univ.), LIP, Portugal