Ultrasoft fermionic modes at high temperature

Yoshimasa Hidaka

Mathematical Physics Laboratory, RIKEN

Collaboration with Daisuke Satow and Teiji Kunihiro (Kyoto University)

Based on arXiv:1105.0423 [hep-ph] and 1111.5015 [hep-ph], Nucl. Phys. A876, 93 (2012)

QCD Phase Diagram

Collective modes at high T

Massless fermion-boson system (Yukawa, QED, QCD)

E Bosonic Fermionic					
T	Single particle excitation	Single particle excitation	Low energy excitations are collective.		
gT	Plasmon	Normal fermion Plasmino	In bosonic sector, hydro mode exists		
g^2T	Hydro mode	?	as zero modes.		
(g: coupling constant)					

ex) Hydro mode: Density fluctuation

Fermionic ultrasoft-modes at high T?

cf: fermionic ultrasoft mode was suggested: massive boson case: M. Kitazawa, T. Kunihiro and Y. Nemoto, PTP 117, 103 (2007), **QCD: V. V. Lebedev and A. V. Smilga, Annals Phys. 202, 229 (1990).**

e.g., Yukawa model $T \sim m$ boson mass

Kitazawa, Kunihiro and Nemoto ('06)

Does chiral symmetry imply the existence of zero modes?

Yes, in the vacuum. Questionable at finite T.

Perturbation theory at high *T* Naive perturbation does not work at ultrasoft momentum region

Bare propagators

Fermion:
$$D_R(k) = \frac{k}{k^2 + i\epsilon k^0}$$

Boson:
$$G_A(k) = \frac{1}{k^2 - i\epsilon}$$
 (scalar, photon, gluon,..)

One-loop analysis

Dressed perturbation theory

Dressed propagators

One loop results (QED)

Propagator

$$D_R \simeq -\frac{Z}{2} \left(\frac{\gamma^0 - \hat{\mathbf{p}} \cdot \boldsymbol{\gamma}}{p^0 + v|\mathbf{p}| + i\gamma} + \frac{\gamma^0 + \hat{\mathbf{p}} \cdot \boldsymbol{\gamma}}{p^0 - v|\mathbf{p}| + i\gamma} \right).$$

Pole $\omega = \pm \frac{1}{3}p + i\gamma$ Residue $Z = \frac{e^2}{16\pi^2} \left(\frac{8\delta m^2}{e^2 T^2}\right)^2$ where $\delta m^2 = \frac{e^2}{12} \gamma \sim \frac{e^2}{4\pi} \ln \frac{1}{e}$

But this is not the end of story....

Infinite numbers of higher order diagrams can contribute the leading order.

A similar situation: transport coefficients

Higher loop diagrams

All ladder diagram contributes to the leading order.

Resummation Self-consistent equation

Self-energy in the leading order

Special case: Yukawa model

Yukawa model is a special case.

Ladder diagram is suppressed, tree vertex function is leading.

The 'wave function' in the ladder diagram $\sim m_f^2 \sim g^2$, so it is higher order correction.

Results

The velocity is 1/3, the residue is of order g^2 .

	γ	С
Yukawa model	$\sim g^4 T$	2/9
QED	$\sim g^2 T$	1/9
QCD	$\sim g^2 T$	$4(N_f + 5)/3$

Ward-Takahashi identity

Ward-Takahashi identity is satisfied in the leading order.

Origin of ultrasoft modes

Supersymmetry?

In a supersymmetric model: Phonino as Goldstino due to the symmetry breaking of the SUSY at finite T.

Girardello, Grisaru, Salomonson ('81); Boyanovsky ('84); Aoyama, Boyanovsky ('84); Gudmundsdottir, Salomonson ('87). Lebedev, Smilga ('89).

For QCD: At g=0, supersymmetry can be assigned to quarks and gluons, which is explicitly broken by the interaction.

Levedev and Smilga('90)

Origin of ultrasoft modes

Chiral symmetry no explicit mass

Time reversal In vacuum $D^{-1}(\omega,0) = -D^{-1}(-\omega,0)$ pole at $\omega = 0$

In medium

 $\operatorname{Re}D^{-1}(\omega,0) = -\operatorname{Re}D^{-1}(-\omega,0)$

 $\operatorname{Im} D^{-1}(\omega, 0) = \operatorname{Im} D^{-1}(-\omega, 0)$

If ReD⁻¹ is continuous at ω =0, Re $D^{-1}(0,0) = 0$ and if Im D⁻¹ is small, pole at $\omega = -i\gamma$

Ultrasoft fermionic mode

Ward-Takahashi identity: OK

Outlook

Kinetic theory for the ultrasoft fermionic modes.

(in preparation Satow and YH)

Observables

sensitive to the ultrasoft fermionic modes.