# Hadron properties from Lattice QCD

Christine Davies University of Glasgow HPQCD collaboration

Hirschegg January 2012

# QCD is a key part of the Standard Model but quark confinement is a complication/interesting feature.



Cross-sections calculated at high energy using QCD pert. th. NLO gives ~5% errors. Also have pdf and hadronisation uncertainties

But properties of hadrons calculable from QCD if fully nonperturbative calc. is done can test QCD and determine parameters very accurately (1%).





Compare to exptl rate gives  $V_{qq'}$  accurately







# Lattice QCD = fully nonperturbative QCD calculation

### RECIPE

- Generate sets of gluon fields for Monte Carlo integrn of Path Integral (inc effect of u, d, s (+ c) sea quarks)
  - Calculate averaged "hadron correlators" from valence q props.
  - Fit as a function of time to obtain masses and simple matrix elements
  - Determine a and fix  $m_q$  to get results in physical units.
  - extrapolate to  $a = 0, m_{u,d} = phys$ for real world

Example parameters for calculations now being done. Lots of different formalisms for handling quarks.



The gold-plated meson spectrum - HPQCD





### Determining quark masses

Lattice QCD has direct access to parameters in Lagrangian for accurate tuning  $(MeV/c^2)$ 

- issue is converting to contnm schemes such as  $\overline{MS}$ 

quark mass ratios very accurate: e.g.  $m_c/m_{s}$ ,  $m_b/m_c$ ,  $m_s/m_{u,d}$ 





C. McNeile, CTHD et al, HPQCD, 0910.3102, 1004.4285

Can now rule out some quark mass matrix models ...

**Quark masses** 

C. McNeile, 1004.4985

## 2010: Strong convergence of lattice results for strange quark mass



Determining  $\alpha_s$ 

Lattice QCD now has several determines of  $\alpha_s$  to 1%. Dominate world average : 0.1184(7)

Key points:

- high statistical precision
- high order (NNLO) pert. th. exists and can estimate higher orders
- nonpert. systs. not a significant issue
- approaches very different good test

see 2011 Munich alphas workshop Shintani LAT11

![](_page_9_Figure_8.jpeg)

Y decays  $\tau$  decays DIS  $[F_2]$ DIS  $[e,p \rightarrow jets]$ e<sup>+</sup>e<sup>-</sup>[jets shps] electroweak e<sup>+</sup>e<sup>-</sup>[jets shps] HPQCD: wloops HPQCD: heavy q corrs JLQCD: light q. vac. poln World average: Bethke 0908.1135

Weak decays probe structure, determine CKM elements

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_11_Figure_0.jpeg)

```
1110.6887;CTH Davies et al,1008.4018.
```

![](_page_11_Figure_2.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_13_Figure_0.jpeg)

#### Mapping out dependence on heavy quark mass ... uses HISQ and multiple m and a. Finest: a=0.045fm HPOCD: 0.35 C McNeile et al, 1110.4510. 0.30 (GeV)0.25 $f_{H_S}$ 0.20 $m_{B_s}$ $m_{D_s}$ 0.15 3 2 5 4 $f_{B_s} < f_{D_s}$ $m_{H_s}$ (GeV) $f_{B_s} = 225(4) \text{MeV}$ but only by 10%: $f_{B_s}/f_{D_s} = 0.906(14)$ expt: $f_B = 247(40) \text{MeV}$

![](_page_15_Figure_0.jpeg)

Semileptonic form factors for charmed mesons:

![](_page_16_Figure_1.jpeg)

Comparison to expt gives more detailed test of QCD. Note: form factor seems to be independent of spectator quark in decay. (not predicted by QCD sum rules ....)

#### Convert to decay rate in q2 bins to compare to experiment: HPQCD PRELIMINARY $D \to K$ 2 lattice $D^0$ to $K^{-}e^+v_e$ lattice ₫₫ and CLEO CLEO results: arXiv 0906.2983 $\overline{\Phi}$ expt Absolutely normalized decay rate 1.5 $\overline{\mathbb{O}}$ errors at ШΦ 1-2%Фп ᠐

1.2

1  $q^2$  1.4

1.88

Koponen et al

1.6

J.

using

Vcs

from

unitarity

0.5

0

0

0.2

0.4

0.6

0.8

#### UT fits using lattice QCD results

![](_page_18_Figure_2.jpeg)

Tensions in UT at 2-3 $\sigma$  level - improve precision further

Problems :  $\frac{V_{ub,excl.}vs.V_{ub,incl.}}{\sin(2\beta)vs.\mathcal{B}r(B\to\tau\nu)}$  excl. uses lattice, incl. does not

## Conclusion

• Lattice QCD results for gold-plated hadron masses and decay constants now very accurate. Gives QCD parameters and some CKM elements to 1%.. Info. appearing on how decay constants/form factors depend on quark masses. Future

- sets of '2nd generation' gluon configs now have  $m_{u,d}$  at physical value (so no extrapoln) or
- *a* down to 0.03fm (so b quarks are 'light') *or much* higher statistics (for harder hadrons) also can include charm in the sea now.
- Pushing errors down to 1% level for B physics still a lot of work but for ratios Bs/B will certainly be possible.
- Harder calculations (flavor singlet, excited states, nuclear physics) will improve

## Spares

#### B, B<sub>s</sub> decay constant update 2011

![](_page_21_Figure_1.jpeg)

### Neutral K and B mixing and oscillations

Result from "box diagram". Calculate in lattice QCD

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_0.jpeg)

#### A Very Good Error Budget Look at error budgets to see how things will improve in future ...

stats

tuning

chiral

#### continuum

$$\Delta_q = 2m_{Dq} - m_{\eta c}$$

|                             | $f_K/f_{\pi}$ | $f_K$ | $f_{\pi}$ | $f_{D_s}/f_D$ | $f_{D_s}$ | $f_D$ | $\Delta_s/\Delta_d$ |
|-----------------------------|---------------|-------|-----------|---------------|-----------|-------|---------------------|
| $r_1$ uncerty.              | 0.3           | 1.1   | 1.4       | 0.4           | 1.0       | 1.4   | 0.7                 |
| $a^2$ extrap.               | 0.2           | 0.2   | 0.2       | 0.4           | 0.5       | 0.6   | 0.5                 |
| Finite vol.                 | 0.4           | 0.4   | 0.8       | 0.3           | 0.1       | 0.3   | 0.1                 |
| $m_{u/d}$ extrap.           | 0.2           | 0.3   | 0.4       | 0.2           | 0.3       | 0.4   | 0.2                 |
| Stat. errors                | 0.2           | 0.4   | 0.5       | 0.5           | 0.6       | 0.7   | 0.6                 |
| <i>m<sub>s</sub></i> evoln. | 0.1           | 0.1   | 0.1       | 0.3           | 0.3       | 0.3   | 0.5                 |
| $m_d$ , QED, etc.           | 0.0           | 0.0   | 0.0       | 0.1           | 0.0       | 0.1   | 0.5                 |
| Total %                     | 0.6           | 1.3   | 1.7       | 0.9           | 1.3       | 1.8   | 1.2                 |

### for different quantities different systematics are important

Ionday, April 26, 2010