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Motivation

Chiral pertubation theory (ChPT) is a successful method to
describe the interaction of the lightest mesons. However, the
expansion converges at low energies only and has perturbative
unitarity.

There are several approaches that extend the use of Chiral
Lagrangian to higher energies [IAM,BSE, ...].

The purpose of our work is to apply the novel scheme [A.Gasparyan,
M.F.M.Lutz Nucl. Phys. A 848, 126 (2010)] to Goldstone boson
scattering, based on the SU(3) chiral Lagrangian with light vector
mesons.
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Motivation

Why do we explore the dynamic role of light vector mesons in a
chiral Lagrangian?

Resonance saturation mechanism
The values of the O(Q4) parameters in Chiral Lagrangian are
basically saturated by vector-meson exchange between Goldstone
bosons [G.Ecker, J.Gasser, A.Pich and E.de Rafael, Nucl. Phys. B 321
(1989) 311].

Hadrogenesis conjecture
For instance the leading chiral interaction of Goldstone bosons with
light vector mesons generates an axial-vector meson spectrum
[M.F.M.Lutz, E.E.Kolomeitsev, Nucl. Phys. A 730 (2004) 392].
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Chiral Lagrangian (No unknown parameters!)

The relevant terms of the chiral Lagrangian for the Goldstone bosons Φ
(π, K , K̄ , η) and vector mesons Vµν (ρµν , ωµν , Kµν , K̄µν , φ)

L =
1
4

tr
{
∂µΦ ∂µΦ

}
− 1

4
tr
{
∂µVµα ∂νV να

}
+

1
8

m2
1− tr

{
V µν Vµν

}
− 1

4
tr
{

Φ2 χ0

}
+

1
48f 2 tr

{
Φ4 χ0

}
+

1
8

bD tr
{

V µν Vµν χ0

}
+

1
48f 2 tr

{
[Φ, ∂µΦ]− [Φ, ∂µΦ]−

}
− i

mV hP

8f 2 tr
{
∂µΦ V µν ∂νΦ

}
,

All parameters were fixed before, for instance in [M.F.M.Lutz, S.Leupold,
Nucl.Phys.A813 (2008), 51-71]

m1− ' 0.76 GeV, bD ' 0.95 ,
mV hp ' 0.22 GeV, f ' 90MeV .
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Partial-wave projection of the scatting amplitude

p

q

p̄

q̄ ρ, ω, ... ρ, ω, ...

ρ, ω, ...

Partial-wave amplitudes are introduced by an average

T J(s) =

∫ +1

−1

d cos θ
2

(
p̄cm pcm

s

)J

T (s, t, u) PJ(cos θ) ,

over the center-of mass scattering angle θ.
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Partial-wave dispersion relation

The partial-wave dispersion relation

T J
ab(s) = UJ

ab(s) +
∑
c,d

∫ ∞
µ2

thr

ds̄
π

s − µ2M
s̄ − µ2M

T J
ac(s̄) ρJ

cd (s̄) T J∗
db (s̄)

s̄ − s − iε
,

separate left and right-hand cuts
the generalized potential UJ

ab(s) contains all left hand cuts

The phase space fuction

=T J
ab(s) =

∑
c,d

T J
ac(s) ρJ

cd(s) T J∗
db (s̄) , ρJ

ab(s) =
1
8π

(
pcm√

s

)2 J+1

δab
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Approximation for the generalized potential UJ
ab(s)

In χPT one can perform a pert. expansion only in the
close-to-threshold region (asymptotically growing potential).

To solve the non-linear integral eq. and restore T J
ab(s) we need

UJ
ab(s) for energies above threshold.

Reliable extrapolation is possible:

Conformal mapping techniques may be used to approximate UJ
ab(s)

for (s > µ2thr ), based on UJ
ab(s) only around threshold µ2thr .
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Conformal mapping technique

We need UJ
ab(s) for energies above threshold s > µ2

th.

UJ
ab(s) =

N∑
k=0

Ck [ξ(s)]k for s < ΛS

Reliable approximation is within this area

π π

π π

π

π π

π
π π

ρ
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J=0: The role of the vector meson exchange
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J=0: The role of the vector meson exchange
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vector meson exchange.
No free parameters adjusted!
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J=1: The role of the vector meson exchange
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Γφ ' 3.47 MeV Exp: Γφ(KK̄ ) = 3.54± 0.04 MeV

No free parameters adjusted!
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Conclusions

We have considered S and P-wave scattering of Goldstone bosons
with exchange of vector mesons based on the chiral Lagrangian
without free parameters.

The phase shifts are in good agreement with the experimental data.

In S-wave 0− + 0− → 0+ → 0− + 0− f0(980), ...

In P-wave CDD poles were considered ρ, K ∗, ...

We conclude that the dynamics depends sensitively on the details
of the vector meson exchange.
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Conformal mapping technique

Typical example: U(w) = ln (w) =
∞∑

k=1

(−1)k+1

k!
[w − 1]k

=
∞∑

k=0

Ck [ξ(w)]k

ξ(w) = 1−√
w

1+
√
w ξ

0−11

w

0
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ln (w) :
N∑

k=1

(−1)k+1

k!
[w − 1]k vs.
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k=0

Ck [ξ(w)]k

Taylor [ξ], N=1
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