Global theories of nuclear structure

G.F. Bertsch University of Washington

> Hirschegg Jan. 20, 2012

I. HFB theory and its extensions

2. CEA/DAM survey of ground state properties and even-parity excited states

J-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Peru, N. Pillet, and G.F. Bertsch, Phys. Rev. C 81 014303 (2010)

Other related work: D.Vretenar P.-G. Reinhard M. Bender, P.-H. Heenen

From model to theory

Characteristics of good theories

-need only a small set of parameters-have wide predictive power-have intrinsic criteria for limits of validity

Goals in this work

-apply theory globally (but with cuts generated by internal criteria)
-quantitative assessment of performance
-for theorists: report weaknesses as well as strengths
-for experimenters: predictions to be tested

The Hamiltonian

We would like to have an effective Hamiltonian:

 $H = ta^{\dagger}a + v^{(2)}a^{\dagger}a^{\dagger}aa + v^{(3)}a^{\dagger}a^{\dagger}a^{\dagger}aaa$

but all we actually have to work with is an energy functional:

 $H = ta^{\dagger}a + v^{(2)}(r - r')a_{r}^{\dagger}a_{r'}^{\dagger}a_{r'}a_{r} + t_{3}\rho(r)^{1/3}v^{(3)}a_{r}^{\dagger}a_{r}^{\dagger}a_{r}a_{r}a_{r}$

Self-consistent Mean-Field Theory

See the textbook (Ring and Schuck, 1980).

Example of Pb-208

²⁰⁸ Pb energy	Ska	D1S
Kinetic	3863	3920
Coulomb direct/exchange	831/-31	832/-31
Spin-orbit	-97	-105
Central 2B	-12480	-12783
t_3	6274	6530
Total	-1640	-1637

The CEA/DAM global survey of even-even spectroscopy

Mapped collective Hamiltonian method Gogny DIS interaction: CPC 63 (1991), 13 parameters

Computed spectroscopic observables for 1712 nuclei:

-yrast energies up to J=6

-excited 0+, first and second yrare J=2

- -B(E2) values for many of the transitions
- -E0 matrix elements

-deformations, including triaxiality

Transition strengths

 $B(E2)_{theory} = (1.20 \pm 45\%) \times B(E2)_{exp}$

FIG. 12. (a) Histogram of experimental R_{42} ratios, Eq. (26), for 501 even-even nuclei, with data from Ref. [24]. (b) Histogram of calculated R_{42} ratios for 1609 even-even nuclei calculated in the CHFB+5DCH theory.

$$\frac{R_{42}(theory)}{R_{42}(exp.)} = 1.03 \pm 0.15$$

Predictive power for deformed nuclei

$$E_{theory} = (1.00 \pm 11\%) \times E_{exp}$$
 95 nuclei

$$B(E2)_{theory} = (1.10 \pm 14\%) \times B(E2)_{exp}$$
 59 nuclei

Charge radii

Experimental data from Angeli, ADNDT 87 (2004)

TABLE II. Comparison of calculated charge radii with experiment: $\bar{\epsilon}$ is the mean of ϵ [see Eq. (18)]; σ is its rms dispersion about the average. Three hundred thirteen nuclear radii were included in the comparison as in Fig. 6. In the column "HFB (new)" we use the modern value $r_p = 0.875$ fm for the proton charge radius [48].

Theory	Ŗ	σ		
HFB	0.001	0.006		
HFB (new)	0.005	0.007		
CHFB+5DCH	0.006	0.007		
Finite surface	0.0000	0.012		

"Mutually enhanced magicity" See Lunney, et al. RMP 75 (2003)

FIG. 2. Two-proton gaps, Eq. (3), for Pb and Sn isotopic chains. Theoretical curves are the following: spherical mean field (short dashed lines); mean field allowing for static deformations (long dashed lines); present theory (solid lines). Experimental values [1] are shown as diamonds.

r-Process nucleosynthesis

Arcones and Martinez-Pinedo, PRC 83

LETTER

Nature 469 68 (2011)

doi:10.1038/nature09644

Evidence for a spin-aligned neutron-proton paired phase from the level structure of ⁹²Pd

B. Cederwall¹, F. Ghazi Moradi³, T. Bäck¹, A. Johnson¹, J. Blomqvist¹, E. Clément², G. de France², R. Wadsworth³, K. Andgren¹, K. Lagergren^{1,4}, A. Dijon², G. Jaworski^{5,6}, R. Liotta¹, C. Qi¹, B. M. Nyako⁷, J. Nyberg⁸, M. Palacz⁵, H. Al-Azri³, A. Algora⁹, G. de Angelis¹⁰, A. Ataç¹¹, S. Bhattacharyya²†, T. Brock³, J. R. Brown³, P. Davies³, A. Di Nitto¹², Zs. Dombrádi⁷, A. Gadea⁹, J. Gál⁷, B. Hadinia¹, F. Johnston-Theasby⁴, P. Joshi³, K. Juhász¹³, R. Julin¹⁴, A. Jungclaus¹⁵, G. Kalinka⁷, S. O. Kara¹¹, A. Khaplanov⁴, J. Kownacki⁵, G. La Rana¹², S. M. Lenzi¹⁶, J. Molnár⁷, R. Moro¹², D. R. Napoli¹⁰, B. S. Nara Singh³, A. Persson¹, F. Recchia¹⁶, M. Sandzelius¹⁷, J. N. Scheurer¹⁷, G. Sletten¹⁸, D. Sohler², P.-A. Söderström⁸, M. J. Taylor³, J. Timár⁷, J. J. Valiente–Dobón¹⁰, E. Vardaci¹² & S. Williams¹⁹

Phys. Rev. C 81, 014303 (2010) [23 pages]

Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

Phys. Rev. C 81, 014303 (2010) [23 pages]

Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction

•	•	•				:					
\varTheta \varTheta 🔿 Mozilla Firefox								irefox			
	(http://prc.aps.org.offcampus.lib.washington.edu/epaps/PRC/v81/i1/e014303/5dch.								.txt		
	Bertso	h Boo	okmarks APS pubs	french-englis	h Physics	-EJournals	5DCH				
1	🗋 h	ttp://p	rc.aps.oe014303/5d	lch.txt +	J						
	44	102	-1001.112	0.290	24.	4.84	4.81	5.32	-1004.872	-3.760	
	46	42	-699.649	0.000	0.	4.37	4.31	4.19	-701.419	-1.770	(
•	46	44	-730.992	0.000	0.	4.37	4.32	4.22	-733.013	-2.021	(
	46	46	-761.066	0.106	0.	4.38	4.33	4.26	-763.027	-1.961	(
	46	48	-789.873	0.000	0.	4.38	4.33	4.28	-790.963	-1.090	(
	46	50	-817.521	0.000	0.	4.38	4.33	4.30	-816.719	0.802	(
	46	52	-836.390	0.000	0.	4.40	4.35	4.34	-838.888	-2.498	(

How to do GCM H = the many-body Hamiltonian usually approximated by an EDF $\hat{Q}_i = \alpha \text{ set of one-body operators}$ Minimize < 4, 1 H- =>, Q, 14,> to find 4, I) find expectation values q:= <4, 1Q: 14,> $I\!I$ $V(q) \equiv V(\lambda(q)) = \langle \psi_{\lambda} | \hat{H} | \psi_{\lambda} \rangle$ This is the potential energy surface. N, Z, rY, r^2Y_{212}, J 5DCH work: octupole study: N.Z. r2/20. r3/20

Sum rule

$$S = \sum_{i} E(2_{i}^{+})B(E2;0_{1}^{+} \to 2_{i}^{+}) = \frac{25}{4\pi} (\frac{\hbar^{2}}{m})Z^{2} \langle r^{2} \rangle$$

The fraction of the sum rule in the lowest excitation is ~10%.

