Quasi-free knockout reactions with radioactive beams at F

Reactions with neutron-proton asymmetric nuclei

Reactions with neutron-proton asymmetric nuclei

PDR – Electromagnetic excitation of neutron-rich nuclei

- PDR strength observed in neutron-rich Sn nuclei below the GDR at energies above particle threshold (around 10 MeV excitation energy exhausting about 5% EWSR)
- Virtual photon scattering on ⁶⁸Ni identifies PDR above threshold

O. Wieland et al., PRL 102 (2009) 092502

Symmetry energy and dipole response

Pygmy dipole strength, neutron skin, and the equation of state of neutron-rich matter

Relation between dipole strength and n-skin thickness

"...,the pygmy dipole resonance may place important constraints on the neutron skin of heavy nuclei and, as a result, on the equation of state of neutron-rich matter."

J. Piekarewicz, PRC 73 (2006) 044325

Constraints on EoS of neutron-rich matter derived from dipole strength of n-rich Sn isotopes

symmetry energy $a_4 = 32.0 \pm 1.8$ MeV pressure $p_0 = 2.3 \pm 0.8$ MeV/fm³

A. Klimkiewicz et al., PRC 76 (2007) 051603(R)

n-skin thickness derived from dipole strength

Reactions with neutron-proton asymmetric nuclei

<u>A laboratory for studying nuclear properties</u> <u>as a function of isospin and density:</u>

Single-particle structure and correlations

Single-particle cross sections Quenching for neutron-proton asymmetric nuclei

Figure from Alexandra Gade, Phys. Rev. C 77, 044306 (2008)

Correlations in asymmetric nuclei and nuclear matter

SPECTROSCOPIC FACTORS IN ¹⁶O AND NUCLEON ASYMMETRY

arXiv:0901.1920v1 [nucl-th] 14 Jan 2009

C. Barbieri

Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan

W. H. Dickhoff

Department of Physics, Washington University, St.Louis, Missouri 63130, USA

Quenching of Spectroscopic Factors for Proton Removal in Oxygen Isotopes

Ø. Jensen,¹ G. Hagen,^{2,3} M. Hjorth-Jensen,¹ B. Alex Brown,^{4,5} and A. Gade^{4,5}

Coupled-cluster calculation N³LO

including coupling to scattering states above the neutron separation threshold

Sensitivity of Coulomb and nuclear breakup

Sensitivity to the tail of the wave function only

Alternative approach: quasi-free scattering: (p,2p), (p,pn) etc. at LAND and R3B

or (e,e'p) at the e-A collider at FAIR

One-neutron removal reaction (nuclear breakup)

Reaction mechanisms:

- knockout (stripping)
- inelastic scattering (diffraction)

cross section dominated by knockout for

- high beam energies
- non-halo states

$$p_{stripping} = \langle S_c^2(\mathbf{b_c})[1 - S_n^2(\mathbf{b_n})] \rangle$$

$$p_{inelastic} = \langle [1 - S_c(\mathbf{b_c})S_n(\mathbf{b_n})]^2 \rangle - \langle 1 - S_c(\mathbf{b_c})S_n(\mathbf{b_n}) \rangle^2$$

$$\underline{no-recoil\ limit:}\ A_c \gg 1, \mathbf{b_c} = \mathbf{b}$$

$$p_{diffraction} = S_c^2 \langle [1 - S_n(\mathbf{b_n})]^2 \rangle - S_c^2 \langle 1 - S_n(\mathbf{b_n}) \rangle^2$$

$$\underline{elastic\ scattering}}$$

$$\underline{elastic\ scattering}}$$

$$\underline{of\ neutron}$$

$$\underline{of\ projectile}$$

Single-particle cross sections Quenching for neutron-proton asymmetric nuclei

Figure from Alexandra Gade, Phys. Rev. C 77, 044306 (2008)

Quasi-free scattering in inverse kinematics

Measurement of proton recoils after knockout reactions with a CH₂ target

0

- kinematical complete measurement of (p,pn), (p,2p), (p,pd), (p,α), reactions
- redundant experimental information: kinematical reconstruction from proton momenta plus gamma rays, invariant mass, recoil momentum
- sensitivity not limited to surface
 - \rightarrow spectral functions
 - \rightarrow knockout from deeply bound states
- cluster knockout reactions

Experimental setup: LAND/R3B@GSI

Quasi-free scattering with exotic nuclei:¹⁷Ne(p,2p)¹⁵O+p The two-proton Halo (?) nucleus ¹⁷Ne

Pilot experiments with ¹²C, ¹⁷Ne and Ni isotopes already performed at the LAND-R3B setup are under analysis ...

Angular Correlations measured with Si-strip detectors for ¹⁷Ne(p,2p)¹⁵O+p

 $\Delta\theta$ ~180°, $\Delta\phi$ ~83° (sim. as for free pp scattering)

¹⁷Ne, Felix Wamers, PhD thesis

Benchmark experiment: ¹²C(p,2p) in inverse kinematics

Selective one-proton knockout from core- and 'Halo'- states in ¹⁷Ne

R3B preliminary data 2011, unpublished

Beyond the dripline: Ground and first excited state of ¹⁰He - three-body correlations in the decay of unbound nuclei -

High-energy radioactive beams at FAIR

Reactions with Relativistic Radioactive Beams

The R³B Collaboration

T. Adachi¹ (Y. Aksyutina^{2,15}) J. Alcantara³, S. Altstadt⁴, H. Alvarez-Pol³, N. Ashwood⁵, T. Aumann^{6,2}, M. D.⁵ S. Deceno⁷, D. Bemmerer⁷, J. Benlliure³, K. Boretzky², G. Burgunder⁸, M. Caamano³, C. Caesar⁶, C. Casarejos³, W. Catford⁹, S. Chakraborty¹⁰, M. Chartier¹¹, D. Cortina-Gil³, U. Datta Pramamκ[•], P. Diaz³, I. Dillmann², J. Enders⁶, O. Ershova⁴, A. Estrade², F. Farinon², L.M. Fraile¹², M. Freer⁵, M. Freudenberger⁶, D. Galaviz Redondo¹³, D. Gonzalez Diade I. Hagdahl⁸, T. Heftrich⁴, M. Heil², M. Heine⁶, A. Henriques¹³, M. Holl⁶, A. Ignatov (H. Johansson⁸), B. Jonson⁸, N. Kalantar¹, R. Knöbel², T. Kroell⁶, R. Krücken¹⁴, J. Kurcewicz, W. Laonche⁷, C. Langer⁴, T. LeBleis¹⁴, R. Lourin, I. Machado¹³, J. Marganiec¹⁵, A. Movsesyan⁶, A. Najafi¹, T. Nilsson⁸, C. Nociford , V. Panin⁶, S. Pietri², R. Plag⁴, A. Prochazka², A. Rahaman¹⁰, G. Rastrepina², R. Reifarth⁴, G. KIDENO^o, M.V. Ricciardi², C. Rigollet¹, K. Riisager¹, M. Röder¹⁶, D. Rocc² J. Sanchez del Rio¹², D. Savran^{15,17}, H. Scheit¹⁸, H. Simon², O. Sorlin⁸, B. Streiche C, J. Taylor¹¹ O. Tengblad¹², S. Terashim², D. Thies⁸, T. Yasuhiro¹⁸, E. Uberseder¹⁹, J. Van de Walle, T. venno¹⁸ <u>.</u> V. Volkov⁶, A. Wagner (F. Wamers⁶,). Weick², M. Weigand⁴, C. Wheldon⁵, G. Wilson⁹, C. Wimmer⁴, J. Winnerg, T. Woods²⁰, D. Yakorev⁷, M. Zoric², and K. Zuber¹⁶

¹KVI Groningen, Netherlands; ²GSI Darmstadt, Germany; ³University of Santiago de Compostela, Spain; ⁴ University of Frankfurt, Germany; ⁵Birmingham University, United Kingdom; ⁶ TU Darmstadt, Germany; ⁷ HZDR Dresden-Rossendorf, Germany; ⁸GANIL, Caen, France; ⁹ University of Surrey, United Kingdom; ¹⁰ SINP Kolkata, India; ¹¹ University of Liverpool, United Kingdom; ¹² Universidad Complutense of Madrid, Spain; ¹³University of Lisbon, Portugal; ¹⁴ TU Munich, Germany; ¹⁵ExtreMe Matter Institute EMMI and Research Division, GSI Darmstadt, Germany; ¹⁶TU Dresden, Germany; ¹⁷Frankfurt Institut for Advanced Studies FIAS, Frankfurt, Germany; ¹⁸ RIKEN, Japan; ¹⁹University of Notre Dame, United States; ²⁰University of Edinburgh, United Kingdom

Summary

- Quasi-free scattering
 - QFS successfully applied in inverse kinematics
 - Rich physics program: N-N correlations, shell structure, cluster structure, unbound nuclei
- R3B development
 - Technical Design Report for neutron detector NeuLAND and calorimeter CALIFA ready
 - Start construction in 2012, physics run with new dipole GLAD and 20% NeuLAND and CALIFA in 2014
 - Full R3B detection system operational in Cave C for physics runs 2016
- FAIR
 - R3B hall ready for installation in 2017
 - R3B @ FAIR with Super FRS will start in 2018