Equation of state effects in core-collapse supernovae

Sabrina Schäfer

with Arianna Carbone, Corbinian Wellenhofer, Hannah Yasin,

Almudena Arcones, and Achim Schwenk

TECHNISCHE UNIVERSITÄT DARMSTADT

Picture credit: NASA/ESA Hubble Space Telescope

Proto-neutron star evolution

Proto-neutron star (PNS) evolution is sensitive to equation of state (EOS)

 \rightarrow faster contraction favors explosion

Proto-neutron star evolution

Proto-neutron star (PNS) evolution is sensitive to equation of state (EOS)

 \rightarrow faster contraction favors explosion

key finding: effective mass m* mainly determines PNS contraction!

Yasin, SS, Arcones, Schwenk, arXiv:1802.02002

Equations of state for supernova simulations

EOS differ in underlying theory and nuclear matter properties

- LS EOS: based on Skyrme energy density functional
- Shen EOS: Relativistic mean-field theory

Equation of state of nuclear matter

T = 0 properties

expansion of energy per particle around n_0 and $\beta = (n_n - n_p)/n$

$$\frac{E}{A}(n,\beta) = -B + \frac{K}{18} \left(\frac{n-n_0}{n_0}\right)^2 + S(n)\beta^2 + \dots$$

saturation density n_0 , binding energy B, incompressibility K, symmetry energy $S(n_0) \simeq E_{sym}$

		Nucl. Theory	LS220	Shen
<i>n</i> ₀	[fm ⁻³]	0.164(7)	0.155	0.145
В	[MeV]	15.86(57)	16.0	16.3
Esyr	n [MeV]	32(4)	29.6	36.9
L	[MeV]	51(19)	73.7	110.8
Κ	[MeV]	215(40)	220	281
$m^{*}/m(n_{0})$		\sim 0.9(2)	1.0	0.634

Hebeler et al., PRC (2011); Hebeler et al., APJ (2013); Wellenhofer et al., PRC (2014); Drischler et al., PRC (2016, 2017); Drischler et al., PRL (2019)

Skyrme parameters and nuclear matter properties

LS EOS: simplified Skyrme energy density functional for nucleons

$$\frac{E}{V}(n, x, T) = \sum_{t} \frac{\tau_{t}}{2m_{t}^{*}} + [a + 4bx(1 - x)]n^{2} + cn^{1+\delta} - xn\Delta$$
Lattimer, Swesty, Nucl. Phys. A (1991)

with density–dependent
$$m^*(n)$$
: $\frac{1}{2m_t^*} = \frac{1}{2m} + \alpha n$

Skyrme parameters depend on nuclear matter properties m^{*}, K, E_{sym}, B, n₀

systematically vary nuclear matter properties one by one

Skyrme parameters and nuclear matter properties

TECHNISCHE UNIVERSITÄT DARMSTADT

_		generated with SRO Code, Schneider, Roberts, Ott, PRC (201)17	
LS EOS: simplifie	model	$m^*/m(n_0)$	K [MeV]	E _{sym} [MeV]	$n_0 [{\rm fm}^{-3}]$	B[MeV]	
_	LS220	1.0	220	29.3	0.155	16	
$\frac{E}{M}$ (r	m _{0.8}	0.8	220	29.3	0.155	16	
V`	m _s *	0.634	220	29.3	0.155	16	
	$(m^*, K)_{S}$	0.634	281	29.3	0.155	16	
with density-deper	$(m^*, E_{sym})_S$	0.634	220	36.9	0.155	16	
	$(m^*, K, E_{sym})_S$	0.634	281	36.9	0.155	16	
	SkShen	0.634	281	36.9	0.145	16.3	

Skyrme parameters depend on nuclear matter properties m*, K, E_{sym}, B, n₀

systematically vary nuclear matter properties one by one

Proto-neutron star contraction and shock behavior

Sim: 1D with heating factor, FLASH code, M1 v-transport, 15 M_o progenitor

PNS contraction mainly governed by effective mass

Yasin, SS, Arcones, Schwenk, arXiv:1802.02002; cf. Schneider *et al.*, PRC (2019)

Proto-neutron star contraction and shock behavior

Sim: 1*D* with heating factor, FLASH code, M1 ν-transport, 15 M_☉ progenitor Fryxell *et al.*, APJ Suppl. Ser. (2000); O'Conner, Couch, APJ (2018); Woosley *et al.*, RMP (2002)

- · PNS contraction mainly governed by effective mass
- · incompressibility and symmetry energy only small impact
- important effect from saturation point \rightarrow SkShen

Yasin, SS, Arcones, Schwenk, arXiv:1802.02002; cf. Schneider *et al.*, PRC (2019)

Impact on central pressure and density

• *P* ∼ 1/*m*[∗]

 \rightarrow smaller m^* leads to larger pressure

- larger incompressibility of Shen stiffens EOS further
- SkShen model yields

similar pressure as Shen EOS

 $(\rightarrow$ nuclear matter properties more important than theoretical framework)

Impact on central pressure and density

larger pressures result in smaller densities

Yasin, SS, Arcones, Schwenk, arXiv:1802.02002

Characterizing thermal effects

separate pressure and energy density into cold and thermal part

Central entropy, electron fraction, and temperature

- larger E_{sym} increases electron fractions \rightarrow larger entropies
- temperatures increase for $m^* < m$ due to similar entropies and $\mathcal{S} \sim m^* \mathcal{T}$

Central entropy, electron fraction, and temperature

- larger E_{sym} increases electron fractions \rightarrow larger entropies
- temperatures increase for $m^* < m$ due to similar entropies and $\mathcal{S} \sim m^* \mathcal{T}$

Mass-radius relation of cold neutron stars

- compute mass-radius relations via Tolman-Oppenheimer-Volkoff equations
 - cold neutron stars: T = 0

beta equilibrium: μ_{ν} = 0

- gray band: radius uncertainty band Hebeler et al., APJ (2013)
- all new parametrizations fulfill mass constraint of a $\sim 2~M_{\odot}$ neutron star Demorest *et al.*, Nature (2010) Antoniadis *et al.*, Solence (2013)
- radius mostly affected by E_{sym}/L
- maximal masses and radii increase for smaller m^{*} and larger K

Constraints from *ab initio* calculations and observations

Nucleon effective mass and thermal effects

- ab initio calculations at finite temperature
 Gatage Schwerk PRC(2019)
- thermal index approximation with *m*^{*} fits thermal index from chiral EFT very well
- *m*^{*} increases after saturation density again
 → need new parametrization
- behavior at densities above 2n₀ unknown
- important impact on thermal index \rightarrow simulation!

Constraints from ab initio calculations

Nuclear matter properties

- extend LS Skyrme functional to incorporate more constraints
- · use estimates for nuclear matter properties from chiral effective field theory

K	E_{sym}	L	n ₀	В
215(40)	32(4)	51(19)	0.164(7)	15.86(57)

```
Hebeler et al., PRC (2011); Hebeler et al., APJ (2013); Wellenhofer et al., PRC (2014); Drischler et al., PRC (2016, 2017); Drischler et al., PRL (2019)
```


High-density constraints

Work in progress!

- causality: speed of sound $c_s \leq c$
- maximum mass $M_{\text{max}} \gtrsim 2 \ M_{\odot}$ Cromartie *et al.*, Nature Astronomy (2020)
- electron fraction $Y_e \lesssim 0.1$ up to $10n_0$

Summary

Proto-neutron star (PNS) evolution is sensitive to equation of state (EOS)

 \rightarrow faster contraction favors explosion

key finding: effective mass *m*^{*} mainly determines PNS contraction!

Future: general EOS with uncertainties for simulation

Summary

Proto-neutron star (PNS) evolution is sensitive to equation of state (EOS)

 \rightarrow faster contraction favors explosion

key finding: effective mass m* mainly determines PNS contraction!

 Future: general EOS with uncertainties for simulation
 Thank you!

 Collaborators: A. Carbone, C. Wellenhofer, H. Yasin, A. Arcones, A. Schwenk