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Gravitational Waves

Gravitational waves are ripples which propagate on the fabric of spacetime
at the speed of light.

Sources: BBH, BNS sysems

Theory and Models: approximations of GR

⇒ Post Newtonian (PN), Post Minkowskian (PM)
⇒ Phenomenological
⇒ EOB

Applications: Astrophysics, cosmology, extreme matter and MORE!

Methods: Parameter Estimation (PE) ⇒ extracting the source’s
properties from the data.
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Neutron Stars and Extreme Matter

Neutron stars (NS) are the collapsed core of a giant star:

Allow for studying cold,
high-density nuclear matter

statements on the behavior of
NS matter ⇒ constraints on its
EoS

constraints on EoS ⇒ limits on
stellar parameters (M,R,Λ)

Terrestrial experiments, constraints on densities below saturation
ρs ≈ 2.7× 1014g/cm3

Astrophysical measurements, information on M and R

Relatively new addition: GW measurements!
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Focus

PE is a very delicate process!

The signal is submerged by noise! ⇒ assumptions about the shape of the
signal to extract it

Our aim: Quantify and discuss two possible systematic errors stemming
from different modelling choices:

Low-density EoS;

Waveform systematics.
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Tidal deformability

λi =
Quadrupole deformation of the star

External tidal field
→ Λi =

λi
m5

i
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Matter Contributions to the Inspiral Waveform

GW signal:
h̃(f ) = A(f )e iψ(f )

with:

A(f ) =
1

dL

√
5/24π−2/3Mc

5/6f −7/6

ψ(f ) =2πftc − φc −
π

4
+

3

128νv5
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16
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µM4
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⇒ GW measurements give us:

chirp mass Mc = (m1m2)
3/5

(m1+m2)
1/5

mass-weighted tidal deformability Λ̃ =
[(

11m2
m1

+ M
m1

)
Λ1 + 1↔ 2

]
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Matter Contributions to the Postmerger Waveform

Postmerger waveform is also sensible to matter effects (NR simulations,
semi-analytical models)

Figure: Example of time domain postmerger model, obtained by fitting some
characteristic quantities from a set of NR simulation 1908.11418. f̂2 can be linked
to R1.6 1508.05493
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Measurability of matter effects through GWs

f̂2 allows for good measurement of R1.6 if the postmerger SNR is ≈ 8; in
this scenario the inspiral signal would lead to much better constraints
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Parameterized EOS

Popular choice during BNS PE: assume a functional form for the EoS. E.g:
spectral parameterization

e(p) =
e0
µ(p)

+
1

µ(p)

∫ p

p0

µ(p′)

Γ(p′)
dp′

with

µ(p) = exp[−
∫ p

p0

dp′

p′Γ(p′)
]

Γ(p) = exp[
∞∑
i=0

γi log(p)i ]

During PE one can:

sample (m1,m2,Λ1,Λ2)

sample (m1,m2, γ0,...,3)⇒ obtain (m1,m2,Λ1,Λ2,R)
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Quasi-Universal Relations

Phenomenological relations
between NS quantities, common
between large range of EoSs.

I-Love-Q

C-Lambda

De-Lattimer

Binary-Love

Raithel et al.

...

Can be used to obtain
information on, e.g, R, or reduce
PE parameter space Figure: Visual representation of the

Binary-Love relation, 1804.03221
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Current constraints

11 / 25



GW170817

First NS-NS merger observed by LVC

analysis performed through
MCMC sampling

IMRPhenomPv2NRTidal

spectral parameterization

EOS has to support 1.97 M�

⇒ R1,2 = 11.9+1.4
−1.4 km

But!

Uncertainty on R due to crust EoS

if Λ̃ unaffected by crust ⇒ systematics on R!

Aim: quantify effect that crust has on PE (1902.04616)
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Alternative Crusts

Set of different possible crust EOS
(BPS+CLDM) 1110.4043. Each of
them has two parameters:

S = symmetry energy, measures
difference between the energies
of pure neutron and symmetric
nuclear matter;

L = derivative of S with respect
to x , the neutron/baryon
fraction.

Figure: Constraints on S and L from
different experiments, from 1611.07133

30 ≤ S ≤ 32 MeV and 40 ≤ L ≤ 60 MeV, but these intervals are uncertain

⇒ We focus on the intervals 30 ≤ S ≤ 34MeV and 30 ≤ L ≤ 70
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Alternative Crusts
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Figure: Set of different crusts EoS that we consider. Constrained by terrestrial
experiments, we select the higher and lower bounds
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Predictions

Assumption: masses and the core EOS are weakly affected by the choice
of the crust ⇒ we can use results from the EOS paper to predict the
posterior distributions of stellar parameters R and ∧ we would get with our
variant crust:

New crust + ”old” parametrized core EOSs → full
{
pi (e)

}{
pi (e)

}
+ ”old”

{
M i

1,M
i
2

}
→ estimates of

{
Λi
1,Λ

i
2,R

i
1,R

i
2

}
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Reanalysis
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Figure: Left: 90% CLs in log scale, at higher densities they are superimposed;
right: Λ1vsΛ2 distributions, almost perfectly superimposed
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M vs R

R distributions systematically shifted
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Crust + CLs
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Figure: More physical insight obtained by mapping the 90% pressure-density CLs,
appropriately glued to the variant crusts, into M(R) and Λ(R) curves
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More about the crust
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Modelling systematics - Waveforms

Our ability to measure tidal effects will increase with higher SNRs.
However, this also brings additonal theoretical challenges:
Waveform templates are necessary to extract the signal (modelled
analyses):

We need accurate waveform models (how accurate?)

How large are the biases due to waveform systematics?
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GW Approximants 101

PN models (TaylorT4,
SpinTaylorT4, TaylorF2 . . . ) ⇒
fast, but not good at higher
frequencies;

EOB (TEOBResumS,
SEOBNRv4T) ⇒ physically
rich, informed by NR,
computationally more expensive;

Phenomenological waveforms ⇒
PN + EOB + NR, faster then
EOB but lack of ”physical
framework” behind

Figure: E(j) relation for a point-mass
q=1 system, from Damour, Nagar,
Pollney, Resswig 1110.2938
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GW170817 and GW190425

Figure: The Λ̃ distributions for GW170817 (left) and GW190425 (right). For
both, waveform systematics are negligible with respect to fluctuations of the
background noise.

Careful: there are studies that show how it is possible to have biases with
SNRs as low as 20 1904.09558
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Injection studies

18 TEOBResumS waveforms injected;

Recovery with: TaylorF2, IMRPhenomPv2NRTidal (spin aligned);

Different EOS, mass ratio, low spin prior (χ < 0.05);

GW170817 - like extrinsic parameters;

aLIGO PSD (SNR ≈ 80-100);

sampling (m1,m2,Λ1,Λ2)
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Λ̃ recovery

PRELIMINARY

IMRPhenomP underestimates Λ̃, while TaylorF2 overestimates it
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Conclusions

What we learned:

Low sensitivity of tidal parameters to the crust density

⇒ GW measurements give more direct information on higher densities;
⇒ in this region the constraints obtained from analyses are independent of

uncertainties in crust;

Systematic error is mass dependent: the lower the mass, the bigger
the radii variations (crust becomes overall more important). For
GW170817, ∆R ≈ 0.3 km;

At higher SNRs, waveform systematics will become important in the
determination of tidal parameters (Better to stay away from PN
approximants)

Thank you for the attention!
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