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Gravitational Waves

Gravitational waves are ripples which propagate on the fabric of spacetime
at the speed of light.

@ Sources: BBH, BNS sysems

@ Theory and Models: approximations of GR

= Post Newtonian (PN), Post Minkowskian (PM)
= Phenomenological
= EOB

@ Applications: Astrophysics, cosmology, extreme matter and MORE!

e Methods: Parameter Estimation (PE) = extracting the source’s
properties from the data.
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Neutron Stars and Extreme Matter

Neutron stars (NS) are the collapsed core of a giant star:
@ Allow for studying cold,
high-density nuclear matter

@ statements on the behavior of
NS matter = constraints on its
EoS

@ constraints on EoS = limits on
stellar parameters (M, R, )

@ Terrestrial experiments, constraints on densities below saturation
ps ~= 2.7 x 10**g/cm?

@ Astrophysical measurements, information on M and R

@ Relatively new addition: GW measurements!
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Focus

PE is a very delicate process!

The signal is submerged by noise! = assumptions about the shape of the
signal to extract it

Our aim: Quantify and discuss two possible systematic errors stemming
from different modelling choices:

@ Low-density EoS;

o Waveform systematics.
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Tidal deformability

Quadrupole deformation of the star Aj
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Matter Contributions to the Inspiral Waveform

GW signal: } .
h(f) = A(f)e™)
with:

1
A(f) :d—L\/Ww_2/3,\/lc5/6f_7/6

3 9 Vo -
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= GW measurements give us:

BYi5
. A mimy
o Chlrp mass ,\/lc = W

o mass-weighted tidal deformability A = [(11% + li) A +16 2}

6/25



Matter Contributions to the Postmerger Waveform

Postmerger waveform is also sensible to matter effects (NR simulations,

semi-analytical models)
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Figure: Example of time domain postmerger model, obtained by fitting some
characteristic quantities from a set of NR simulation 1908.11418. f, can be linked
to Ry 1508.05493
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Measurability of matter effects through GWs

—-— signal-to-noise ratio

—— symmetric mass ratio
\ —— chirp mass

—— spin-spin parameter
spin-orbit parameter

tidal parameter

Erick Leon+, CSUF, https://dcc.ligo.org/LIGO-G1901180
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?2 allows for good measurement of Ry ¢ if the postmerger SNR is =~ 8; in
this scenario the inspiral signal would lead to much better constraints
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Parameterized EOS

Popular choice during BNS PE: assume a functional form for the EoS. E.g:
spectral parameterization

e L [Pup)
= / (o) %

with
dp

n(p) = exp[— /P: p/r(,/)/)]

M(p) = exp[y i log(p)]

i=0

During PE one can:
e sample (my, mo, Ay, \2)

e sample (my, m2,Yo,... 3) = obtain (my, my, A1, A2, R)
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Quasi-Universal Relations
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Figure: Visual representation of the
Binary-Love relation, 1804.03221
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GW170817

First NS-NS merger observed by LVC
@ analysis performed through
MCMC sampling
o IMRPhenomPv2NRTidal
@ spectral parameterization
@ EOS has to support 1.97 Mg
= Rip=11.971% km
But!

@ Uncertainty on R due to crust EoS
o if A unaffected by crust = systematics on R! J

Aim: quantify effect that crust has on PE (1902.04616)
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Alternative Crusts

120 T T T T T

Excluded

Set of different possible crust EOS "
(BPS+CLDM) 1110.4043. Each of

them has two parameters:

@ S = symmetry energy, measures
difference between the energies
of pure neutron and symmetric
nuclear matter;

L[MeV]

o L = derivative of S with respect
to x, the neutron/baryon woowmoow oW owoomow o ®

i Si[MeV]
fraction.

Figure: Constraints on S and L from
different experiments, from 1611.07133

30 < § <32 MeV and 40 < L <60 MeV, but these intervals are uncertain

= We focus on the intervals 30 < S < 34MeV and 30 < L < 70 iasod




Alternative Crusts
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Figure: Set of different crusts EoS that we consider. Constrained by terrestrial
experiments, we select the higher and lower bounds
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Assumption: masses and the core EOS are weakly affected by the choice
of the crust = we can use results from the EQS paper to predict the
posterior distributions of stellar parameters R and A we would get with our
variant crust:

o New crust + "old” parametrized core EOSs — full {p/(e)}
o {p'(e)} + "old"{M], M;} — estimates of {A], A}, R}, R3}
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Reanalysis
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Figure: Left: 90% CLs in log scale, at higher densities they are superimposed;
right: Ajvs/A, distributions, almost perfectly superimposed
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R distributions systematically shifted )
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Crust + ClLs
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Figure: More physical insight obtained by mapping the 90% pressure-density CLs,
appropriately glued to the variant crusts, into M(R) and A(R) curves
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More about the crust
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Modelling systematics - Waveforms

Our ability to measure tidal effects will increase with higher SNRs.
However, this also brings additonal theoretical challenges:
Waveform templates are necessary to extract the signal (modelled
analyses):

@ We need accurate waveform models (how accurate?)

@ How large are the biases due to waveform systematics?
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GW Approximants 101

e PN models (TaylorT4, e
SpinTaylorT4, TaylorF2 ...) = B D o
fast, but not good at higher 006 T
frequencies; , /4

-0.08|
1-0.038

e EOB (TEOBResumsS, s
SEOBNRVAT) = physically oo

rich, informed by NR, o2 e
computationally more expensive; 014 |
@ Phenomenological waveforms = oo 36 a8

PN + EOB + NR, faster then R . .

£ ] Figure: E(j) relation for a point-mass
EOB but Ika o_ physical q=1 system, from Damour, Nagar,
framework” behind Pollney, Resswig 1110.2938
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GW170817 and GW190425
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Figure: The A distributions for GW170817 (left) and GW190425 (right). For
both, waveform systematics are negligible with respect to fluctuations of the
background noise.

Careful: there are studies that show how it is possible to have biases with
SNRs as low as 20 1904.09558
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Injection studies

18 TEOBResumS waveforms injected;

Recovery with: TaylorF2, IMRPhenomPv2NRTidal (spin aligned);
Different EOS, mass ratio, low spin prior (x < 0.05);

GW170817 - like extrinsic parameters;

aLIGO PSD (SNR = 80-100);

sampling (m1, ma, A1, \2)
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A recovery
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IMRPhenomP underestimates 7\, while TaylorF2 overestimates it
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Conclusions

What we learned:

@ Low sensitivity of tidal parameters to the crust density
= GW measurements give more direct information on higher densities;
= in this region the constraints obtained from analyses are independent of
uncertainties In crust;
@ Systematic error is mass dependent: the lower the mass, the bigger
the radii variations (crust becomes overall more important). For
GW170817, AR ~ 0.3 km;

@ At higher SNRs, waveform systematics will become important in the
determination of tidal parameters (Better to stay away from PN
approximants)

Thank you for the attention!
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