Probing Extreme Matter through Gravitational Waves: Current Constraints and Possible Systematics

Rossella Gamba

Friedrich Schiller University, Jena

International Workshop XLVIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria

January 15, 2020

Gravitational waves are **ripples** which propagate on the fabric of spacetime at the speed of light.

- Sources: BBH, BNS sysems
- Theory and Models: approximations of GR
 - ⇒ Post Newtonian (PN), Post Minkowskian (PM)
 - \Rightarrow Phenomenological
 - \Rightarrow EOB
- Applications: Astrophysics, cosmology, extreme matter and MORE!
- Methods: Parameter Estimation (PE) ⇒ extracting the source's properties from the data.

Neutron stars (NS) are the collapsed core of a giant star:

- Allow for studying cold, high-density nuclear matter
- statements on the behavior of NS matter \Rightarrow constraints on its EoS
- constraints on EoS \Rightarrow limits on stellar parameters (M, R, Λ)
 - Terrestrial experiments, constraints on densities below saturation $\rho_s\approx 2.7\times 10^{14}g/cm^3$
 - Astrophysical measurements, information on \boldsymbol{M} and \boldsymbol{R}
 - Relatively new addition: GW measurements!

PE is a **very** delicate process!

The signal is submerged by noise! \Rightarrow assumptions about the shape of the signal to extract it

Our aim: Quantify and discuss two possible systematic errors stemming from different modelling choices:

- Low-density EoS;
- Waveform systematics.

Tidal deformability

Matter Contributions to the Inspiral Waveform

GW signal:

$$\tilde{h}(f) = \mathcal{A}(f)e^{i\psi(f)}$$

with:

$$\mathcal{A}(f) = \frac{1}{d_L} \sqrt{5/24} \pi^{-2/3} \mathcal{M}_c^{5/6} f^{-7/6}$$
$$\psi(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\nu\nu^5} - \frac{9}{16} \frac{\nu^5}{\mu M^4} \tilde{\Lambda}$$

 \Rightarrow GW measurements give us:

• chirp mass $\mathcal{M}_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$

• mass-weighted tidal deformability $\tilde{\Lambda} = \left\lceil \left(11 \frac{m_2}{m_1} + \frac{M}{m_1} \right) \Lambda_1 + 1 \leftrightarrow 2 \right\rceil$

Matter Contributions to the Postmerger Waveform

Postmerger waveform is also sensible to matter effects (NR simulations, semi-analytical models)

Figure: Example of time domain postmerger model, obtained by fitting some characteristic quantities from a set of NR simulation 1908.11418. \hat{f}_2 can be linked to $R_{1.6}$ 1508.05493

Measurability of matter effects through GWs

 \hat{f}_2 allows for good measurement of $R_{1.6}$ if the postmerger SNR is \approx 8; in this scenario the inspiral signal would lead to much better constraints

Parameterized EOS

Popular choice during BNS PE: assume a functional form for the EoS. E.g: spectral parameterization

$$e(p)=rac{e_0}{\mu(p)}+rac{1}{\mu(p)}\int_{p_0}^prac{\mu(p')}{\Gamma(p')}dp'$$

with

$$\mu(p) = exp[-\int_{p_0}^{p} \frac{dp'}{p'\Gamma(p')}]$$
$$\Gamma(p) = exp[\sum_{i=0}^{\infty} \frac{\gamma_i}{p'} \log(p)^i]$$

During PE one can:

- sample $(m_1, m_2, \Lambda_1, \Lambda_2)$
- sample $(m_1, m_2, \gamma_{0,\dots,3}) \Rightarrow$ obtain $(m_1, m_2, \Lambda_1, \Lambda_2, \mathbb{R})$

Phenomenological relations between NS quantities, common between large range of EoSs.

- I-Love-Q
- C-Lambda
- De-Lattimer
- Binary-Love
- Raithel et al.

• ...

Can be used to obtain information on, e.g, R, or reduce PE parameter space

Figure: Visual representation of the Binary-Love relation, 1804.03221

Current constraints

First NS-NS merger observed by LVC

- analysis performed through MCMC sampling
- IMRPhenomPv2NRTidal
- spectral parameterization
- EOS has to support 1.97 M_{\odot}

 $\Rightarrow R_{1,2} = 11.9^{+1.4}_{-1.4} \text{ km}$ But!

- Uncertainty on R due to crust EoS
- if $\tilde{\Lambda}$ unaffected by crust \Rightarrow systematics on R!

Aim: quantify effect that crust has on PE (1902.04616)

Set of different possible crust EOS (BPS+CLDM) 1110.4043. Each of them has two parameters:

- S = symmetry energy, measures difference between the energies of pure neutron and symmetric nuclear matter;
- L = derivative of S with respect to x, the neutron/baryon fraction.

Figure: Constraints on S and L from different experiments, from 1611.07133

 $30 \le S \le 32$ MeV and $40 \le L \le 60$ MeV, but these intervals are uncertain

 \Rightarrow We focus on the intervals $30 \le S \le 34 MeV$ and $30 \le L \le 70$

Alternative Crusts

Figure: Set of different crusts EoS that we consider. Constrained by terrestrial experiments, we select the higher and lower bounds

Assumption: masses and the core EOS are weakly affected by the choice of the crust \Rightarrow we can use results from the EOS paper to predict the posterior distributions of stellar parameters R and \land we would get with our variant crust:

- New crust + "old" parametrized core EOSs \rightarrow full $\{p^i(e)\}$
- $\left\{p^{i}(e)\right\}$ + "old" $\left\{M_{1}^{i}, M_{2}^{i}\right\}$ \rightarrow estimates of $\left\{\Lambda_{1}^{i}, \Lambda_{2}^{i}, R_{1}^{i}, R_{2}^{i}\right\}$

Figure: Left: 90% CLs in log scale, at higher densities they are superimposed; right: $\Lambda_1 vs \Lambda_2$ distributions, almost perfectly superimposed

M vs R

R distributions systematically shifted

	R_1	R_2
SLy run	$11.9^{+1.4}_{-1.4}$	$11.9^{+1.4}_{-1.4}$
30-65 run	$11.7^{+\overline{1.4}}_{-1.4}$	$11.7^{+\overline{1.4}}_{-1.4}$
30-65 pred	$11.7^{+1.4}_{-1.3}$	$11.7^{+\overline{1.4}}_{-1.4}$
$34\text{-}35~\mathrm{pred}$	$12.0^{+\bar{1}.5}_{-1.4}$	$12.0^{+1.5}_{-1.4}$
$\rightarrow \Delta R^+ = \Delta R^c_{34-35} - \Delta R^c_{Slv}$		
$\approx 0.1 \mathrm{km}$		
$\rightarrow \Delta R^{-} = \Delta R_{SIv}^{c} - \Delta R_{30-65}^{c}$		
$\approx 0.2 \mathrm{km}$		

Figure: More physical insight obtained by mapping the 90% pressure-density CLs, appropriately glued to the variant crusts, into M(R) and $\Lambda(R)$ curves

More about the crust

Our ability to measure tidal effects will increase with higher SNRs. However, this also brings **additonal theoretical challenges**: Waveform templates are necessary to extract the signal (modelled analyses):

- We need accurate waveform models (how accurate?)
- How large are the biases due to waveform systematics?

GW Approximants 101

- PN models (TaylorT4, SpinTaylorT4, TaylorF2 ...) ⇒ fast, but not good at higher frequencies;
- EOB (TEOBResumS, SEOBNRv4T) ⇒ physically rich, informed by NR, computationally more expensive;
- Phenomenological waveforms ⇒ PN + EOB + NR, faster then EOB but lack of "physical framework" behind

Figure: E(j) relation for a point-mass q=1 system, from Damour, Nagar, Pollney, Resswig 1110.2938

GW170817 and GW190425

Figure: The $\tilde{\Lambda}$ distributions for GW170817 (left) and GW190425 (right). For both, waveform systematics are negligible with respect to fluctuations of the background noise.

Careful: there are studies that show how it is possible to have biases with SNRs as low as 20 $\underline{1904.09558}$

- 18 TEOBResumS waveforms injected;
- Recovery with: TaylorF2, IMRPhenomPv2NRTidal (spin aligned);
- Different EOS, mass ratio, low spin prior ($\chi < 0.05$);
- GW170817 like extrinsic parameters;
- aLIGO PSD (SNR \approx 80-100);
- sampling $(m_1, m_2, \Lambda_1, \Lambda_2)$

$\tilde{\Lambda}$ recovery

PRELIMINARY

IMRPhenomP underestimates $\tilde{\Lambda}$, while TaylorF2 overestimates it

Conclusions

What we learned:

- Low sensitivity of tidal parameters to the crust density
 - \Rightarrow GW measurements give more direct information on higher densities;
 - ⇒ in this region the constraints obtained from analyses are independent of uncertainties in crust;
- Systematic error is mass dependent: the lower the mass, the bigger the radii variations (crust becomes overall more important). For GW170817, $\Delta R \approx 0.3$ km;
- At higher SNRs, waveform systematics will become important in the determination of tidal parameters (Better to stay away from PN approximants)

Thank you for the attention!