

TECHNISCHE UNIVERSITÄT DARMSTADT

Constraining the nuclear equation of state through neutron star observations

Svenja Kim Greif

Hirschegg, January 14, 2020 Nuclear equation of state and neutron stars

International Workshop XLVIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 12 - 18, 2020

Outline

- Motivation
- Equation of state constraints
- Equation of state and neutron star structure
- Mass-radius determination from NICER
- The double pulsar's moment of inertia
- Era of multi-messenger astronomy
- Key messages

Motivation Neutron stars as unique laboratories

 Equation of state (EOS) of dense matter beyond nuclear saturation density
 ρ_{sat} = 2.8 × 10¹⁴ g cm⁻³ is poorly understood

 Unique relation between EOS and mass-radius

- Precise mass measurements from pulsar observations are available
- Radius determination is now studied

Lattimer & Prakash, PRL 94, 111101 (2005) https://stellarcollapse.org/nsmasses (2020-01-09)

Equation of state constraints ... from astrophysical observations

• Significant constraints from massive neutron stars, e.g. PSR J0348-0432 and PSR J0740+6620 with masses $2.01^{+0.04}_{-0.04} M_{\odot}$ and $2.14^{+0.10}_{-0.09} M_{\odot}$ Antoniadis *et al.*, Science 340, 6131 (2013); Cromartie *et al.*, NatAs, in press (2019)

 Each constructed EOS is required to reproduce the heaviest observed neutron star

Image credit: N. Wex https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html (2020-01-09)

- First joint mass-radius measurement from NICER of PSR J0030+0451
 Riley et al., ApJL 887, L21 (2019); Miller et al., ApJL 887, L24 (2019)
- Gravitational wave astronomy: direct detection of binary neutron star mergers LVC, PRL 119, 161101 (2017); LVC, arXiv:2001.01761 (2020)
- Ongoing measurement of the moment of inertia of PSR J0737-3039A

$$M = 1.34^{+0.15}_{-0.16} M_{\odot}$$

$$R = 12.71^{+1.14}_{-1.19} \text{ km}$$

Riley et al. (2019)

$$M = 1.44^{+0.15}_{-0.14} M_{\odot}$$

$$R = 13.02^{+1.24}_{-1.06} \text{ km}$$

Miller et al. (2019)

LVC, PRL 119, 161101 (2017)

Equation of state constraints ... from nuclear experiments and pQCD

- Radius of typical neutron stars is correlated with EOS properties around $\rho_{\rm sat}$
- Pressure around $\rho_{\rm sat}$ is correlated with symmetry parameters $S_{\rm v}$ and L
- Constraints from functional renormalization group for symmetric matter are available
- pQCD imposes constraints for the speed of sound at very large densities, e.g. $\gg \rho_{c, \text{ neutron star}}$

Leonhardt, PhD thesis, TU Darmstadt (2019)

Equation of state constraints ... from nuclear experiments and pQCD

- Radius of typical neutron stars is correlated with EOS properties around $\rho_{\rm sat}$
- Pressure around $\rho_{\rm sat}$ is correlated with symmetry parameters $S_{\rm v}$ and L
- Constraints from functional renormalization group for symmetric matter are available
- pQCD imposes constraints for the speed of sound at very large densities, e.g. $\gg \rho_{c, \text{ neutron star}}$

Leonhardt, PhD thesis, TU Darmstadt (2019)

Equation of state and neutron star structure Slow rotation approximation

Non-rotating neutron stars Mass M Radius R Slowly rotating neutron stars Moment of inertia I Interaction with a companion Tidal deformability λ

See Soumi's talk from Monday

Hartle, ApJ 150, 1005 (1967) Hartle & Thorne, ApJ 153, 807 (1968) Hinderer, ApJ 677, 1216 (2008) Lindblom & Indik, PRD 89, 064003 (2014) Chirp mass *M*

$$\mathcal{M} = \frac{\left(M_{1}M_{2}\right)^{\frac{3}{5}}}{\left(M_{1} + M_{2}\right)^{\frac{1}{5}}}$$

Binary tidal deformability
$$\tilde{\Lambda}$$

 $\tilde{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2) M_1^4 \bar{\lambda}_1 + (1 \leftrightarrow 2)}{(M_1 + M_2)^5}$

Equation of state and neutron star structure Piecewise polytropic expansion

- Nuclear density regime: knowledge of nuclear physics
 - BPS crust EOS up to ~ $\sim \rho_{\rm sat}/2$
 - Chiral effective field theory interactions up to $~\sim \rho_{\rm sat}$
- Direct parametrization: piecewise polytropic expansion $P(\rho) = K \rho^{\Gamma}$ Read, Lackey, Owen, Friedman, PRD 79, 124032 (2009)
- ► Large parameter space constrained by general constraints: causality ($c_{\rm s} < c$) and heaviest neutron star ($M_{\rm max} \ge 1.97 M_{\odot}$, 1σ lower limit) Antoniadis *et al.*, Science 340, 6131 (2013)

Hebeler, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013)

Equation of state and neutron star structure Piecewise polytropic expansion

- Nuclear density regime: knowledge of nuclear physics
 - BPS crust EOS up to ~ $\sim \rho_{\rm sat}/2$
 - Chiral effective field theory interactions up to $~\sim \rho_{\rm sat}$
- Direct parametrization: piecewise polytropic expansion $P(\rho) = K \rho^{\Gamma}$ Read, Lackey, Owen, Friedman, PRD 79, 124032 (2009)
- Large parameter space constrained by general constraints: causality ($c_{\rm s} < c$) and heaviest neutron star ($M_{\rm max} \ge 1.97 M_{\odot}$, 1σ lower limit)

Antoniadis et al., Science 340, 6131 (2013)

• Speed of sound:
$$c_s^2 = \frac{dP}{d\epsilon}$$

Hebeler, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013)

• Piecewise polytropic parametrisation causes discontinuities in c_s^2

Idea: parametrize c_s^2 and infer the EOS

Equation of state and neutron star structure New speed of sound parametrization

- Physically motivated parametrization of the speed of sound $c_{\rm s}$
 - Approach pQCD constraint $c_s^2 \rightarrow 1/3$ from below Kurkela, Romatschke, Vuorinen, PRD 81, 105021 (2010)
 - Exceed conformal limit for intermediate densities
 Bedaque & Steiner, PRL 114, 031103 (2015)
 - Constraints at nuclear densities from Fermi liquid theory
 - Continuous matching to chiral EFT band
- Parameters are varied to explore full parameter space

$$c_{s}^{2}(\epsilon) = a_{1}e^{-\frac{1}{2}\frac{(\epsilon-a_{2})^{2}}{a_{3}^{2}}} + a_{6} + \frac{\frac{1}{3} - a_{6}}{1 + e^{-a_{5}(\epsilon-a_{4})}}$$
$$P(\epsilon) = \int_{\epsilon_{0}}^{\epsilon} d\epsilon' \ c_{s}^{2}(\epsilon')$$

SKG, Raaijmakers, Hebeler, Schwenk, Watts, MNRAS 485, 5363 (2019)

Tews, Carlson, Gandolfi, Reddy, ApJ 860, 149 (2018)

EOS and MR space

SKG, Raaijmakers, Hebeler, Schwenk, Watts, MNRAS 485, 5363 (2019)

$$R_{1.4 M_{\odot}}^{\text{PP}} = 9.97 - 13.65 \,\text{km}$$
 $R_{1.4 M_{\odot}}^{\text{CS}} = 10.04 - 13.32 \,\text{km}$

EOS and MR space

SKG, Raaijmakers, Hebeler, Schwenk, Watts, MNRAS 485, 5363 (2019)

$$R_{1.4 M_{\odot}}^{\text{PP}} = 9.97 - 13.65 \,\text{km}$$
 $R_{1.4 M_{\odot}}^{\text{CS}} = 10.04 - 13.32 \,\text{km}$

How do observations constrain this further?

Mass-radius determination from NICER

SKG, Raaijmakers, Hebeler, Schwenk, Watts, MNRAS 485, 5363 (2019)

- Analysis framework for simultaneous mass-radius measurements based on NICER's primary science targets
- Results of both parametrizations are compatible
- Posterior distribution from Bayesian analysis

Geert's talk Wednesday morning

Mass-radius determination from NICER

SKG, Raaijmakers, Hebeler, Schwenk, Watts, MNRAS 485, 5363 (2019)

- Analysis framework for simultaneous mass-radius measurements based on NICER's primary science targets
- Results of both parametrizations are compatible
- Posterior distribution from Bayesian analysis

Geert's talk Wednesday morning

- Underlying EOS is not recovered in each case
- Results are sensitive to the prior and the parametrization

Mass-radius determination from NICER

Matching to chiral EFT band causes bimodal structure SKG, Raaijmakers, Hebber, Schwenk, Watts, MNRAS 485, 5363 (2019)

• Parametrize the EOS inside the chiral EFT band by a polytropic EOS for both models PP and CS Raaijmakers, Riley, Watts, SKG, *et al.*, ApJL 887, L22 (2019

12

 $R \,[\mathrm{km}]$

13

14

15

Mass-radius determination from NICER **Prior information**

- Matching to chiral EFT band causes bimodal structure SKG, Raaijmakers, Heberer, Schwenk, Watts, MNRAS 485, 536
- Parametrize the EOS inside the chiral EFT band by a polytropic EOS for both models PP and CS Raaijmakers, Riley, Watts, SKG, et al., ApJL 887, L22 (2019

Mass-radius determination from NICER Inferred mass-radius for PSR J0030+0451

Raaijmakers, Riley, Watts, SKG, et al., ApJL 887, L22 (2019)

$$M = 1.34^{+0.15}_{-0.16} M_{\odot}$$
$$R = 12.71^{+1.14}_{-1.19} \text{ km}$$

Geert's talk Wednesday morning

Riley et al., ApJ 887, L21 (2019)

The double pulsar's moment of inertia Radius constraints from the moment of inertia

- PSR J0737-3039A with $M_{\rm A} = 1.3381(7) \, M_{\odot}$
- Accuracy of $\Delta I = 10~\%\,$ seems feasible

- Predicted range: $I_{\rm A} = 51.5 - 86.0 M_{\odot} \, {\rm km}^2$
- Assume a measurement of $I_{\rm A} = 70 \pm 7 M_{\odot} \, {\rm km}^2$

The double pulsar's moment of inertia Radius constraints from the moment of inertia

- PSR J0737-3039A with $M_{\rm A} = 1.3381(7) \, M_{\odot}$
- Accuracy of $\Delta I = 10~\%\,$ seems feasible

- Predicted range: $I_{\rm A} = 51.5 - 86.0 M_{\odot} \, {\rm km}^2$
- Assume a measurement of $I_{\rm A} = 70 \pm 7 \, M_{\odot} \, {\rm km}^2$

 $\Delta I = \pm 10\%$ measurement yields a reduction of 50% in radius uncertainty

Era of multi-messenger astronomy Constraints from GW170817

• Predicted range for typical neutron stars: $\bar{\lambda}_{1.4\,M_{\odot}} \approx 120 - 930$

• LVC:
$$\bar{\lambda}_{1.4 M_{\odot}} = 190^{+390}_{-120}$$

LVC, PRL 121, 161101 (2018)

Era of multi-messenger astronomy Constraints from GW170817

First GW event provides no strong constraints

LVC, PRL 119, 161101 (2017) LVC, PRL 121, 161101 (2018) LVC, PRX 9, 011001 (2019)

Era of multi-messenger astronomy Inferred constraints for the EOS and radii

Key messages

- Parametrization of the EOS using piecewise polytopes and new speed of sound model
- General constraints for the EOS and neutron star structure
 - BPS crust EOS up to ~ $\sim \rho_{\rm sat}/2$
 - Results based on chiral EFT up to ~ $\rho_{\rm sat}$
 - Physically motivated constraints (causality and $2\,M_{\odot}$ neutron stars)
- First radius constraints from NICER data (multiple sources existent)
- Future moment of inertia measurement hat the potential to provide strong constraints on neutron star radii and the EOS (only one candidate so far)
- Complementary constraints from multi-messenger astronomy (only two events so far)

Key messages

- Parametrization of the EOS using piecewise polytopes and new speed of sound model
- General constraints for the EOS and neutron star structure
 - BPS crust EOS up to ~ $\sim \rho_{\rm sat}/2$
 - Results based on chiral EFT up to ~ $\rho_{\rm sat}$
 - Physically motivated constraints (causality and $2\,M_{\odot}$ neutron stars)
- First radius constraints from NICER data (multiple sources existent)
- Future moment of inertia measurement hat the potential to provide strong constraints on neutron star radii and the EOS (only one candidate so far)
- Complementary constraints from multi-messenger astronomy (only two events so far)

In collaboration with K. Hebeler, J. Lattimer, C. Pethick, G. Raaijmakers, A. Schwenk, and A. Watts

Thank you for your attention!

