Thermodynamic Nuclear Equation of State from (Chiral) Effective Field Theory

Corbinian Wellenhofer

"Nuclear equation of state and neutron stars"

International Workshop XLVIII on Gross Properties of Nuclei and Nuclear Excitations

Darmstädter Haus, Hirschegg, Austria

January 16, 2020

Matter under Extreme Conditions

Neutron stars & supernova cores: nuclear matter at high ρ , T, $\delta = (\rho_n - \rho_p)/\rho$

Andresen et al., arXiv:1810.07638

Watts et al., RMP 88 (2016)

- fundamental problem of strong interaction physics: nuclear many-body problem
- relevant for: nucleosynthesis, gravitational waves, heavy-ion collisions

Neutron-Star Matter: Towards Controlled Uncertainties

Nuclear EOS P(E) determines M-R relation of neutron star (T = 0)

www.mpifr-bonn.mpg.de

Tews, Margueron, Reddy, EPJ A55 (2019)

- Iow densities: → effective field theory (EFT) calculations
- higher densities: observational constraints, FRG methods

Effective Field Theory of Nuclear Interactions

Low-Energy QCD: $Q < \Lambda_{\chi} \sim 1 \text{ GeV}$

- strongly-coupled, confinement
- nonlinear realization of chiral symmetry

by: S. Aoki (Kyoto U)

		2N Force	3N Force	4N Force
Effective Nuclear Interactions	LO $(Q/\Lambda_{\chi})^0$	XH		
• General Lagrangian $\mathscr{L}_{EFT}(N, \pi, \ldots)$	NLO	Xblet		
 Low-energy constants {c_i} 	$(Q/\Lambda_{\chi})^2$			
• Renormalization (of 'nonrenormalizable' interactions)	NNLO $(Q/\Lambda_{*})^{3}$			
Goal: systematic expansion for observables	(\$\$7.4\$)	1 11 1	TX X	
Method 1: perturbative EFT → dilute nuclear matter	${f N^3 LO} \ (Q/\Lambda_\chi)^4$	XMX MA	++ 4- >41:X+-	† ∦ † ∗_
Few-body systems require resummations! Method 2: chiral EFT potentials → higher densities	${f N^4 LO} \ (Q/\Lambda_\chi)^5$			t † X

Machleidt; Symm. 8 (2016)

- Crust: dilute neutron gas \rightarrow Part 1
- Outer Core: dense nuclear fluid \rightarrow Part 2
- Inner core: constrained extrapolation → talk by Sabrina Schäfer

Simpler Problem: Dilute Fermi Gas

 \rightarrow (Perturbative) Pionless EFT

Nuclear Many-Body Problem

Chiral EFT Potentials

EFT Lagrangian

$$\begin{split} \mathscr{L}_{\mathsf{EFT}}[\psi] = \psi^{\dagger} \left[i\partial_{t} + \frac{\vec{\nabla}^{2}}{2M} \right] \psi - \frac{C_{0}^{(\mathsf{bare})}}{2} (\psi^{\dagger}\psi)^{2} + \frac{C_{2}^{(\mathsf{bare})}}{16} \left[(\psi\psi)^{\dagger} (\psi\vec{\nabla}^{2}\psi) + h.c. \right] \\ + \frac{C_{2'}^{(\mathsf{bare})}}{8} (\psi\vec{\nabla}\psi)^{\dagger} \cdot (\psi\vec{\nabla}\psi) - \frac{D_{0}^{(\mathsf{bare})}}{6} (\psi^{\dagger}\psi)^{3} + \dots \end{split}$$

(Bare) low-energy constants: • NN interaction: $C_0^{(bare)}, C_2^{(bare)}, C_{2'}^{(bare)}, \dots$ • 3N interaction: $D_0^{(bare)}, \dots$

see for example: Hammer & Furnstahl, NPA 678 (2000)

Perturbative renormalization (sharp cutoff *Λ***)**

Divergent loop integrals ($C_0^{(bare)}$ term):

• NN scattering:
$$I = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

• MBPT:
$$I = \frac{1}{2\pi} \int_{k_{T}}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

Perturbative renormalization (sharp cutoff A)

Divergent loop integrals ($C_0^{(\text{bare})}$ term):

• NN scattering:
$$I = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

• MBPT:
$$I = \frac{1}{2\pi} \int_{k_{\rm E}}^{\Lambda} d^3 q \, \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

Perturbative renormalization (sharp cutoff A)

Divergent loop integrals ($C_0^{(\text{bare})}$ term):

• NN scattering:
$$I = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

• MBPT:
$$I = \frac{1}{2\pi} \int_{k_{T}}^{\Lambda} d^{3}q \frac{q^{0}}{q^{2}-p^{2}} = 2\Lambda + \dots$$

⇒ same counterterms renormalize NN scattering and MBPT (ladders)

Perturbative renormalization (sharp cutoff A)

Divergent loop integrals ($C_0^{(\text{bare})}$ term):

• NN scattering:
$$I = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

• MBPT:
$$I = \frac{1}{2\pi} \int_{k_{\rm E}}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

⇒ same counterterms renormalize NN scattering and MBPT (ladders)

$$C_0^{(\text{bare})} = C_0 + C_0 \sum_{\nu=1}^3 \left(C_0 \frac{M}{2\pi^2} \Lambda \right)^{\nu} + C_2 C_0 \frac{M}{3\pi^2} \Lambda^3 + \dots$$
$$C_2^{(\text{bare})} = C_2 + C_2 C_0 \frac{M}{\pi^2} \Lambda + \dots$$

Renormalized perturbation theory:

- power counting w.r.t. physical LECs C₀, C₂, ...
- "non-renormalizable" $C_2^{(bare)}, \ldots$ require higher-order counterterms at each loop order

Perturbative renormalization (sharp cutoff Λ)

Divergent loop integrals ($C_0^{(bare)}$ term):

• NN scattering:
$$I = \frac{1}{2\pi} \int_{0}^{\Lambda} d^3 q \frac{q^0}{q^2 - p^2} = 2\Lambda + \dots$$

• MBPT:
$$I = \frac{1}{2\pi} \int_{k_{\rm E}}^{\Lambda} d^3 q \frac{q^0}{q^2 - \rho^2} = 2\Lambda + \dots$$

⇒ same counterterms renormalize NN scattering and MBPT (ladders)

LEC fixing $(\Lambda \rightarrow \infty)$

- NN LECs matched to ERE: $C_0 = \frac{4\pi a_s}{M}, C_2 = C_0 \frac{a_s r_s}{2}, \dots$
- g > 2: three-body LEC at 4th order, to be fixed in 3N sector
- \Rightarrow predictions for many-body sector

EFT Expansion up to Third Order

Ground-state energy:
$$E(k_{\rm F}) = n \frac{k_{\rm F}^2}{2M} \left[\frac{3}{5} + (g-1) \sum_{\nu=1}^{\infty} \alpha_{\nu}(k_{\rm F}) \right]$$

$$\alpha_1(k_{\rm F}) = \frac{2}{3\pi} k_{\rm F} a_s$$

W. Lenz (1929)

$$\alpha_2(k_{\rm F}) = \frac{4}{35\pi^2} (11 - 2\ln 2)(k_{\rm F}a_{\rm s})^2$$

T.D. Lee & C.N. Yang (1957)
C. de Dominicis & P.C. Martin (1957)

$$\alpha_{3}(k_{\rm F}) = \left[0.0755732(0) + 0.0573879(0) (g-3)\right] (k_{\rm F}a_{\rm s})^{3} + \frac{1}{10\pi} (k_{\rm F}a_{\rm s})^{2} k_{\rm F}r_{\rm s} + \frac{1}{5\pi} \frac{g+1}{g-1} (k_{\rm F}a_{\rm p})^{3} \right]$$
V.N. Efimov (1966)

C₀ contributions: MBPT(1,2): 1 diag, MBPT(3): 3 diags, MBPT(4): 33 diags, MBPT(5): 668

I(1,2,4,5), II(1,2,6), III(1,8): UV power divergences: subladders, NN counterterms

• II(5,6), IIA1, III1: logarithmic UV divergences: 3N counterterm g > 2, cancel g = 2 \rightarrow logarithmic term at fourth order $(g - 2)(k_F a_S)^4 \ln k_F / \Lambda_0$

V. N. Efimov, Phys. Lett. 15, (1965)

• III(1,2,8,10): infrared divergences: cancel in III(1+8) and III(2+10)

 $\alpha_{4}(k_{\rm F}) = -0.0425(1) (k_{\rm F}a_{\rm s})^{4} + 0.0644872(0) (k_{\rm F}a_{\rm s})^{3} k_{\rm F}r_{\rm s} + \gamma_{4} (g-2) (k_{\rm F}a_{\rm s})^{4}$

with: $\gamma_4(k_{\rm F}) = \frac{M D_0(\Lambda_0)}{108 \pi^4 a_s^4} + 0.2707(4) - 0.00864(2)(g-2) + \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) \ln(k_{\rm F}/\Lambda_0)$

Efimov, Phys. Lett. 15, (1965) Braaten & Nieto, PRB 55 (1997) Hammer & Furnstahl, NPA 678 (2000) Kaiser, EPJA 48 (2012) Wellenhofer, Drischler, Schwenk, arXiv:1812.08444 $\alpha_{4}(k_{\rm F}) = -0.0425(1) (k_{\rm F}a_{\rm s})^{4} + 0.0644872(0) (k_{\rm F}a_{\rm s})^{3} k_{\rm F}r_{\rm s} + \gamma_{4} (g-2) (k_{\rm F}a_{\rm s})^{4}$

with:
$$\gamma_4(k_{\rm F}) = \frac{M D_0(\Lambda_0)}{108 \pi^4 a_s^4} + 0.2707(4) - 0.00864(2) (g-2) + \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) \ln(k_{\rm F}/\Lambda_0)$$

Efimov, Phys. Lett. 15, (1965) Braaten & Nieto, PRB 55 (1997) Hammer & Furnstahl, NPA 678 (2000) Kaiser, EPJA 48 (2012) Wellenhofer, Drischler, Schwenk, arXiv:1812.08444

Systematic uncertainty bands by estimating next-order term as $C_{n+1} < Max[C_n]$

 $\alpha_{4}(k_{\rm F}) = -0.0425(1) (k_{\rm F}a_{\rm s})^{4} + 0.0644872(0) (k_{\rm F}a_{\rm s})^{3} k_{\rm F}r_{\rm s} + \gamma_{4} (g-2) (k_{\rm F}a_{\rm s})^{4}$

Extrapolation/resummation methods (e.g., Pade Approximants), unitary limit $\xi = 0.37$

Simpler Problem: Dilute Fermi Gas

 \rightarrow (Perturbative) Pionless EFT

Nuclear Many-Body Problem

Chiral EFT Potentials

Effective Field Theory of Nuclear Interactions

Low-Energy QCD: $Q < \Lambda_{\chi} \sim 1 \text{ GeV}$

- strongly-coupled, confinement
- nonlinear realization of chiral symmetry

by: S. Aoki (Kyoto U)

		2N Force	3N Force	4N Force
Effective Nuclear Interactions	LO	VII		
• General Lagrangian $\mathscr{L}_{EFT}(N, \pi, \ldots)$	$(Q/\Lambda_{\chi})^{\circ}$	NET Mali A		
• Low-energy constants {c _i }	$NLO (Q/\Lambda_{\chi})^2$	- X94 - KIHW		
Renormalization (of 'nonrenormalizable'		P1-4A		
interactions)	NNLO		 	
Goal: systematic expansion for observables	$(Q/\Lambda_\chi)^3$	MM	+XX	
Method 1: perturbative EFT \rightarrow dilute nuclear matter: $\Lambda \rightarrow \infty$, $c_i^{\text{bare}} = c_i + c.t$.	$rac{\mathbf{N}^{3}\mathbf{LO}}{(Q/\Lambda_{\gamma})^{4}}$			
'		¶NP3 +	X+-	+
Few-body systems require resummations! Method 2: chiral EFT potentials	$\frac{N^4LO}{(Q/\Lambda_s)^5}$			†• † •X
\rightarrow higher densities: $\Lambda \lesssim \Lambda_{\chi}$, $c_i^{\text{bare}} = c_i^{\text{bare}}(\Lambda)$	(10) - 10	₽ † ? † •	KX X ⊷	+

Machleidt; Symm. 8 (2016)

NN Potentials

(Ad hoc) NN potentials (~ 1970-1990) from fits to NN data

- long range: pion exchange (I)
- intermediate-range attraction (II)
- strong short-distance repulsion: 'hard core' (III)
- → nuclear many-body problem nonperturbative!

figure adapted from: Holt et al; PPNP 73 (2013), Taketani; PTPS 3 (1956)

RG methods to construct perturbative NN potentials \rightarrow MBPT for nuclear matter calculations

RG evolution induces multi-nucleon forces

- → truncation leads to cutoff dependence!
- \rightarrow power counting: \varLambda dependence should decrease with increasing EFT orders

NN+3N potentials used in this work

	Λ (fm ⁻¹)	CE	CD	c ₁ (GeV ⁻¹)	$c_3 ({\rm GeV}^{-1})$	c_4 (GeV ⁻¹)
n3lo414	2.1	-0.072	-0.4	-0.81	-3.0	3.4
n3lo450	2.3	-0.106	-0.24	-0.81	-3.4	3.4
n3lo500	2.5	-0.205	-0.20	-0.81	-3.2	5.4
VLK21	2.1	-0.625	-2.062	-0.76	-4.78	3.96
VLK23	2.3	-0.822	-2.785	-0.76	-4.78	3.96

Entem, Machleidt; PRC 68 (2003), Gazit; Phys.Lett.B 666 (2008), Coraggio, Holt *et al.*; PRC 87 (2013) + PRC 89 (2014) Bogner, Furnstahl, Schwenk, Nogga; NPA 763 (2005), Nogga, Bogner, Schwenk; PRC 70 (2004)

Symmetric Nuclear Matter

Many-Body Perturbation Theory: $F(\rho) = F_0(\rho) + F_1(\rho) + F_2(\rho) + \dots \xrightarrow{T \to 0} E(k_F)$

• empirical saturation point $(E_0, \rho_0) \approx (16 \text{ MeV}, 0.16 \text{ fm}^{-3})$

negative thermal expansion at high ρ (?) (~ water below 4°C)

 \rightarrow astrophysics: thermal index $\Gamma = 1 + \frac{P(T) - P(0)}{\epsilon(T) - \epsilon(0)} < 1$

• $\rho \gtrsim \rho_{sat}$: model dependence sizeable, dominated by 3N contributions

Wellenhofer, Holt, Kaiser, Weise; PRC 89 (2014) see also: Carbone et al.; PRC 98 (2018)

Pure Neutron Matter, Symmetry Energy

Good agreement with

- virial expansion for dilute neutron matter Horowitz & Schwenk; Phys.Lett.B 638 (2006)
- empirical constraints on symmetry energy *E*_{sym} from measurements of isobaric analog states (IAS) and neutron skins (NS)
 Danielewicz & Lee: Nucl. Phys. A 922 (2013)

Wellenhofer, Holt, Kaiser; PRC 92 (2015) see also: Tews et al.; PRL 110 (2013) see also: Drischler et al.; PRC 94 (2016)

Nuclear Liquid-Gas Phase Transition

Neutron star crust-core transition – Coulomb = nuclear liquid-gas transition

• spinodal instability \rightarrow multifragmentation experiments $\rightarrow T_c(\delta = 0) \approx 15 - 20 \text{ MeV}$ Karnaukhov *et al.*, Phys.Atom.Nucl. 71 (2008)

Dependence of T_c on isospin-asymmetry $\delta = (\rho_n - \rho_p)/\rho$

isospin distillation: F(δ) ~ F(0) + δ²F_{sym}(0) + ... does not work!

• (metastable) self-bound states at low T and δ

Wellenhofer, Holt, Kaiser, PRC 92 (2015) & PRC 93 (2016), see also: Carbone et al., PRC 98 (2018)

Explicit parametrization via expansion about $\delta = 0$, where $\delta = (\rho_n - \rho_p)/\rho$

 $\gtrsim\!\!99\%$ of literature

$$F(\delta) \sim \overline{F(\delta=0)} + A_2 \,\delta^2 + A_4 \,\delta^4 + A_6 \,\delta^6 + \dots$$

Explicit parametrization via expansion about $\delta = 0$, where $\delta = (\rho_n - \rho_p)/\rho$

$$F(\delta) \sim \overbrace{F(\delta=0) + A_2 \, \delta^2}^{\gtrsim 99\% \text{ of literature}} + A_4 \, \delta^4 + A_6 \, \delta^6 + \dots$$

Higher-order coefficients A₄, A₆ are **singular** at zero temperature!

$$F_{2}(T = 0, \rho, \delta) = A_{0}(0, \rho) + A_{2}(0, \rho) \delta^{2} + \sum_{n=2}^{\infty} A_{2n, \text{reg}}(\rho) \delta^{2n} + \sum_{n=2}^{\infty} A_{2n, \log}(\rho) \delta^{2n} \ln |\delta|$$
Kaiser: PBC 92 (2015) Wellenholer, Kaiser, Weise: PBC 95 (2016)

Explicit parametrization via expansion about $\delta = 0$, where $\delta = (\rho_n - \rho_p)/\rho$

$$F(\delta) \sim \overbrace{F(\delta=0) + A_2 \, \delta^2}^{\gtrsim 99\% \text{ of literature}} + A_4 \, \delta^4 + A_6 \, \delta^6 + \dots$$

Higher-order coefficients A₄, A₆ are **singular** at zero temperature!

$$F_{2}(T = 0, \rho, \delta) = A_{0}(0, \rho) + A_{2}(0, \rho) \delta^{2} + \sum_{n=2}^{\infty} A_{2n,reg}(\rho) \delta^{2n} + \sum_{n=2}^{\infty} A_{2n,log}(\rho) \delta^{2n} \ln |\delta|$$

Kaiser; PRC 92 (2015) Wellenholer, Kaiser, Weise; PRC 95 (2016)

What is the origin of the logarithmic terms at T = 0? What happens at finite T?

 \rightarrow energy denominators in contributions beyond first order, e.g.,

Logarithmic terms also when ladders are resummed to all orders!

~ ~ . ~ . ~ . ~ . ~

bottom-right: accuracy of quadratic approximation governed by F_{sym} – A₂

Asymmetry Expansion (High Temperature)

Main Plot: Exact $F(T, \rho, \delta)$ vs different orders in the expansion $F_{2,4,6}(T, \rho, \delta)$ **Insets:** Deviation $\Delta F = F - F_{2,4,6}$

Asymmetry Expansion (Low Temperature)

Wellerindiel, Holl, Raisel, 1110-30 (2010)

Main Plot: Exact $F(T,\rho,\delta)$ vs different orders in the expansion $F_{2,4,6}(T,\rho,\delta)$ **Inset:** Deviation $\Delta F = F - F_{2,4,6}$

Asymmetry Expansion (T = 0)

Wellenhofer, Holt, Kaiser; PRC 93 (2016)

T = 0: Exact $F(T, \rho, \delta)$ vs 'logarithmic' expansion

Statistical Quasiparticles

$$\mathcal{H} = \mathcal{T}_{kin} + \mathcal{V} = \underbrace{(\mathcal{T}_{kin} + \mathcal{U})}_{\text{reference system}} + \underbrace{(\mathcal{V} - \mathcal{U})}_{\text{perturbation}}, \text{ with SP potential } \mathcal{U} = \sum_{k} U_{k} a_{k}^{\dagger} a_{k}$$

 $\rightarrow \text{ usually: Hartree-Fock potential: } U_{k} = \sum_{p} \langle kp | V | kp \rangle = \frac{\delta \Omega_{1}}{\delta n_{k}}$

Order-by-order renormalization of SP potential: $U_{k} = \sum_{n=1}^{N} \frac{\delta \Omega_{n,norma}^{*,**,***}}{\delta n_{k}}$

Balian & de Dominicis; Comp. Rend. (1960) Wellenhofer; PRC 99 (2019)

● thermodynamic relations of Fermi-liquid theory (~ Landau), valid ∀T

 $\varrho = \sum_{k} n_{k}, \quad S = -\sum_{k} \left(n_{k} \ln n_{k} + \bar{n}_{k} \ln \bar{n}_{k} \right), \quad \frac{\delta E}{\delta n_{k}} = \epsilon_{k}, \quad F = F_{0} + F_{\text{int}}$

- grand-canonical and T = 0 MBPT consistent: $F(T, \mu) \xrightarrow{T \to 0} E(k_F)$
- "at each new order, not only is new information about interaction effects included, but this information automatically improves the reference point"
- Fermi-liquid relations: → phenomenological parametrizations, Sommerfeld
- Second-order contribution U_{2,k} has significant effects! Holt, Kaiser; PRC 95 (2017)
- But: convergence rate with higher-order U? → Current Work!

Summary

Dilute Fermi Systems

- perturbative EFT: systematic uncertainties via EFT orders
- $k_{\rm F}$ expansion for $E(k_{\rm F})$ evaluated up to fourth order
 - \rightarrow converged results for $k_{\rm F}a_{\rm s} \leq 0.5$, Padé extrapolations for larger $k_{\rm F}a_{\rm s}$
- \rightarrow improved large $k_{\rm F}a_{\rm s}$ extrapolations? (current work with Daniel Phillips & Achim Schwenk)

Nuclear Matter Thermodynamics

- Realistic nuclear thermodynamics from chiral EFT potentials
 - → astrophysical EOS tables (current work with Sabrina Schäfer & Achim Schwenk)
 - -> improved calculations (current work with Christian Drischler, Jonas Keller, Kai Hebeler, Achim Schwenk)
- 3N contributions enhanced at high densities, dominate uncertainties

Many thanks to my collaborators: Christian Drischler, Kai Hebeler, Jeremy Holt, Norbert Kaiser, **Jonas Keller**, Daniel Phillips, **Sabrina Schäfer**, Achim Schwenk, Wolfram Weise