Nuclear matter properties	Numerical Methods	Summary	Backup
00000000000000000	0000000000000000		000000000000000000000000000000000000000

Nuclear Equation of State for Hot Dense Matter

Yeunhwan Lim¹

¹ Max-Planck-Institut f
ür Kernphysik/MPG Technische Universit
ät Darmstadt, Institut f
ür Kernphysik

Jan-16-2019

XLVIII International Workshop on Gross Properties of Nuclei and Nuclear Excitations, January 12-18, 2020

TECHNISCHE UNIVERSITÄT DARMSTADT

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000000000000000000000000000

Neutron Stars

- Formed after core collapsing supernovae.
- Suggested by Walter Baade and Fritz Zwicky (1934) Only a year after the discovery of the neutron by James Chadwick
- Jocelyn Bell Burnell and Antony Hewish observed pulsar in 1965.
- $\bullet\,$ Neutron star is cold after 30s \sim 60s of its birth
 - inner core, outer core, inner crust, outer crust, envelope
 - $R : \sim 10$ Km, $M : 1.2 \sim 2.x M_{\odot}$
 - 2 \times 10^{11} earth g \rightarrow General relativity
 - B field : $10^8 \sim 10^{12} G.$
 - Central density : $3 \sim 10\rho_0 \rightarrow \text{Nuclear physics}!!$
- TOV equations for macroscopic structure

$$\frac{dp}{dr} = -\frac{G(M(r) + 4\pi r^3 p/c^2)(\epsilon + p)}{r(r - 2GM(r)/c^2)c^2},$$

$$\frac{dM}{dr} = 4\pi \frac{\epsilon}{c^2} r^2,$$
(1)

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000000000000000000000000000

Inner structure of neutron stars

- Neutron Stars:
 - Dense nuclear matter physics

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		0000000000000000

Nuclear matter properties

- What is dense matter? comparable with the nuclear saturation density $n_0 = 0.16 \, {\rm fm}^{-3}$
- How do we know? How can we extrapolate?
 - Nuclear experiments

$$\frac{E}{A}(n,\delta_{np}) = A_0(n) + S_2(n)\delta_{np}^2 + \sum_{n=2}^{\infty} (S_{2n} + L_{2n}\ln|\delta_{np}|)\delta_{np}^{2n}$$
(2)

$$A_0(n) = -B + \frac{1}{2} \kappa \left(\frac{n - n_0}{3n_0}\right)^2 + \frac{1}{6} Q \left(\frac{n - n_0}{3n_0}\right)^2 + \cdots$$
(3)

$$S_{2}(n) = J + L\left(\frac{n-n_{0}}{3n_{0}}\right) + \frac{1}{2}K_{sym}\left(\frac{n-n_{0}}{3n_{0}}\right)^{2} + \frac{1}{6}Q_{sym}\left(\frac{n-n_{0}}{3n_{0}}\right)^{2} + \cdots$$
(4)

- Application?
 - Constructing nuclear equation of state for hot dense matter

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000000000000000000000000000

• Symmetric nuclear matter(*B*, ρ₀, *K*, *Q*), Lim & Holt, EPJA 2019, Dutra et al. 2019)

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

- Pure neutron matter matter
 - Chiral Effective Field Theory and Many body physics (MBPT,QMC, variational method, Green function, $\cdots)$

Krüger et al. (Left, PRC 88, 025802), Tews et al.(Right, PRC 93, 024305)

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000000000000000000000000000

• Most neutron matter results can be fitted using the quadratic expansion.

$$\mathcal{E}(n,x) = \frac{1}{2m}\tau_n + \frac{1}{2m}\tau_p + (1-2x)^2 f_n(n) + \left[1 - (1-2x)^2\right] f_s(n), \quad (5)$$
$$f_s(n) = \sum_{i=0}^3 a_i n^{(2+i/3)}, \quad f_n(n) = \sum_{i=0}^3 b_i n^{(2+i/3)} \quad (6)$$

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000

Bayesian Analysis

- How do we construct energy density functional (EDF) parameters *a*?
- Baye's theorem:

$$P(\vec{a}|D) \sim P(D|\vec{a})P(\vec{a}) \tag{7}$$

 $P(\vec{a}|D)$: posterior, $P(D|\vec{a})$: likelihood, $P(\vec{a})$: prior

- Strategy:
 - Find useful parametrizations for the equation of state
 - Obtain priors from chiral EFT predictions

- Use laboratory measurements of finite nuclei to obtain likelihood functions and posteriors

- Neutron & Symmetric matter from EFT (N2LO450, N2LO500, N3LO414, N3LO450, N3LO500 + N2LO 3-Body interaction, MBPT)
- Symmetric matter from Finite nuclei properties (205 Skyrme force models)
- Or Bayesian (EFT \rightarrow prior; Skyrme, FLT \rightarrow Likelihood)

Nuclear matter properties	
000000000000000000000000000000000000000	

Numerical Methods

Summary O

Correlation between SNM & PNM

clear matter properties	Numerical Methods	Backup
000000000000000000000000000000000000000		

Nu

 $\bullet\,$ Correlation between S_{ν} and L (Left: Lattimer & Lim ApJ 2013, Lim & Holt, EPJA 2019)

Numerical Methods

Summary O

Neutron Star Phenomenology

uclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000			

Probability distribution of central density I

luclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000			

Probability distribution of central density II

10 15 20 25 30 35 10

70 80 30 40 50 60

 10^{-2}

 10^{-1}

 $L \,({\rm MeV\,fm^{-3}})$

 $p_{2n_0} \,({\rm MeV}\,{\rm fm}^{-3})$

 10^{-1}

 10^{-2}

0.10

 u^{t} (u^{-3}) u^{t} (u^{-3})

0.07

ىليىا 0.06

30 40 50 60

 $L \ (MeV \, fm^{-3})$

 10^{-1}

 10^{0}

Nuclear matter properties	Numerical Methods	Summary O	Backup

Neutron Star EOS constraints

- Experiments See William, Arnaud's talk
 - Symmetric nuclear matter properties, Neutron skin thickness, binding energies
- Theory
 - Neutron matter calculations (QMC, MBPT, ..), ; See Ingo, Corbinian's talk

Observation

Gravitation wave : tidal deformabilities, Moment of inertia, Nicer (mass-radius), ; Soumi, Svenja, Geerts's talk

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000
Nuclear Astrophysics : Hot dense matter EOS			
Nuclear Equation of State			

- Nuclear EOS is thermodynamic relations for given ρ , Y_{θ} , T with wide range of varibles (Fig: Oertel et al., Rev. Mod. Phys. 89, 015007).

 $(\rho: 10^4 \sim 10^{14} \text{g/cm}^3, Y_e: 0.01 \sim 0.56, T: 0.5 \sim 200 \text{MeV})$

- Nuclear EOS is important to simulate core collapsing supernova explosion, proto-neturon stars, and compact binary mergers involving neutron stars.

Nuclear matter properties	Numerical Methods	Backup
000000000000000000000000000000000000000		
Nuclear Astrophysics : Hot dense matter EOS		

- Three representative EOSs.
 - LS EOS (Lattimer Swesty 1991)
 - Use Skyrme type potential with Liquid droplet approach
 - Consider phase transition, several K
 - STOS EOS (H Shen, Toki, Oyamastu, Sumiyoshi 1998), new version (2011) Use RMF with TF approximation and parameterized density profile (PDP)
 - Old : awkward grid spacing
 - New : finer grid spacing, adds Hyperon($\Lambda, \Sigma^{+,-,0})$
 - SHT EOS (G Shen, Horowitz, Teige 2010) Use RMF with Hartree approximation

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000
Nuclear Astrophysics : Hot dense matter EOS			

	LS 220	STOS	SHT
$\rho(\text{fm}^{-3})$	$10^{-6} \sim 1~(121)$	$7.58 imes 10^{-11} \sim 6.022$ (110)	$10^{-8} \sim 1.496$ (328)
Yp	$0.01\sim 0.5~(50)$	$0\sim 0.65$ (66)	$0\sim 0.56~(57)$
T (MeV)	$0.3\sim 30~(50)$	$0.1 \sim 398.1~(90)$	$0 \sim 75.0~(109)$

- STOS & SHT tables don't provide second derivative $\left(\frac{\partial(P,S)}{\partial(T,\rho,Y_0)}\right)$.

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000
Nuclear Astrophysics : Hot dense matter EOS			
How can we construct EOS table ?			

How can we construct EOS table ?

We need nuclear force model and numerical method.

Nuclear force model	Numerical technique
Skyrme Force model	Liquid Drop(let) approach (LDM)
(non-relativistic potential model)	
Relativistic Mean Field model (RMF)	Thomas Fermi Approximatoin (TF)
Finite-Range Force model	Hartree-Fock Approximation (HF)

- LS EOS \Rightarrow Skyrme force + LDM (without neutron skin)
- STOS \Rightarrow RMF + Semi TF (parameterized density profile)
- SHT \Rightarrow RMF + HARTREE

Nuclear force model should be picked up to represent both finite nuclei and neutron star observation + Neutron matter calculation.

Nuclear matter properties	Numerical Methods	Backup
00000000000000000000000		
Nuclear Astrophysics : Hot dense matter EOS		

Nuclear Statistical Equilibrium method

- Hempel et al. 2010, 2012
 - Use Relativistic mean field model (TM1, TMA, FSUgold)
 - Nuclear statistical equilibrium (alpha, deutron, triton, helion)
- Blinnikov et al. 2011
 - Used Saha equation to find fraction of multi-component of nuclei
 - Nuclear mass formula
- Furusawa, 2011
 - Used Saha equation to find fraction of multi-component of nuclei
 - Used Relativistic mean field model
 - Consider phase transtion using geometric function
- The EOS table should be thermodynamically consistent up to second order, (numerical derivative may not be smooth !! $\frac{\partial p}{\partial a}$, $\frac{\partial p}{\partial T}$, $\frac{\partial p}{\partial Y_a}$...)
- EOS should also fit astrophysical observation (M-R relation, Λ, maximum mass)

Nuclear matter properties	Numerical Methods	Summary	Backup
00000000000000000	•000000000000000		000000000000000000000000000000000000000

Finite Nuclei : compressible model

The total binding energy of the finite nuclei at T = 0 MeV, i) Bulk, ii) Surface, iii) Coulomb,

$$F(A,Z) = \left[-B + S_{\nu}\delta^{2}\right]A + 4\pi r^{2}(\sigma_{0} - \delta^{2}\sigma_{\delta}) + \frac{3}{5}\frac{Z^{2}e^{2}}{r} + \lambda_{1}\left[\frac{4\pi}{3}r^{3}n - A\right] + \lambda_{2}\left[\frac{4\pi}{3}r^{3}nx - Z\right]$$

$$(8)$$

where $\delta = 1 - 2x$ and $\sigma = \sigma_0 - (1 - 2x)^2 \sigma_{\delta}$ is surface tension.

$$\frac{\partial F}{\partial n} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial r} = \frac{\partial F}{\partial \lambda_1} = \frac{\partial F}{\partial \lambda_2} = 0$$
(9)

gives

$$2 \cdot 4\pi r^2 \left[\sigma_0 - \sigma (1 - 2x)^2 \right] - \frac{3}{5} \frac{Z^2 e^2}{r} = 0, \tag{10}$$

$$\frac{4\pi r^3}{3}n = A, \quad \left(x = \frac{Z}{A}\right). \tag{11}$$

Nuclear matter properties	Numerical Methods	Summary	Backup
	000000000000000000000000000000000000000		

• Nuclear mass table from LDM ($S_v = 32 \text{ MeV}, L = 50 \text{ MeV}$)

Nuclear matter properties	Numerical Methods	Summary	Backup
	000000000000000000000000000000000000000		

 Neutron drip line study using LDM, Calcium (Z=20); without shell effect (left), with shell effect(right)

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	0000000000000000		0000000000000000

Probability of bound nuclei for $Z \leq$ 22 constructed by LDM

24/54

Nuclear matter properties	Numerical Methods	Summary	Backup
	0000●000000000000000	O	000000000000000000000000000000000000
Het Donoo Metter			

For hot dense matter equation of state,

- Realistic nuclear force model Bulk energy $(-B + S_v \delta^2)$ should be replaced. Energy density functional (n, x, T)
- Wigner Seitz Cell method + Liquid drop approach

- Heavy nuclei at the center, *n*,*p*, α , *e*, exist outside + *d*, *t*, *h*.

$$\langle A \rangle \simeq \sum_{A,Z} An_{A,Z}, \quad \langle Z \rangle \simeq \sum_{A,Z} Zn_{A,Z}.$$
 (12)

Nuclear matter properties	Numerical Methods	Summary	Backup
	00000000000000000		

(1) Bulk energy

Nuclear Energy density functional

$$E_{\text{bulk}}(n,\delta,T) = \sum_{t} \frac{\hbar^2 \tau_t}{2m_t^*} + \delta^2 V_{\mathcal{N}}(n) + (1-\delta^2) V_{\mathcal{S}}(n), \tag{13}$$

$$V_{\mathcal{N}}(n) = \sum_{i=0}^{l_{\max}} a_i n^{(2+i/3)}, \quad V_{\mathcal{S}}(n) = \sum_{i=0}^{l_{\max}} b_i n^{(2+i/3)}.$$
(14)

$$\frac{\hbar^2}{2m_n^*} = \frac{\hbar^2}{2m_n} + \alpha_L n_n + \alpha_U n_p , \quad \frac{\hbar^2}{2m_p^*} = \frac{\hbar^2}{2m_p} + \alpha_L n_p + \alpha_U n_n .$$
(15)

$$\langle M_{S}^{*}/M_{N} \rangle = 0.774, \quad \langle M_{N}^{*}/M_{N} \rangle = 0.9$$

• M* plays important role in proton-neutron stars; See Luke, Sabrina's talk

Nuclear matter properties	Numerical Methods	Summary	Backup
	0000000000000000		

 M^* from Greens function approach (Carbone & Schwenk, PRC (2019)) and AFDMC (Buraczynski *et al.* PRL (2019))

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

$$B = \frac{E_{\text{bulk}}}{n} \Big|_{n=n_0}, \qquad S_v = E_{\text{sym}}(n_0), \qquad E_n = E_{\text{pnm}}(n_0), \qquad (16)$$

$$P = n^2 \frac{\partial}{\partial n} \left(\frac{E_{\text{bulk}}}{n}\right) \Big|_{n=n_0} = 0, \qquad L = 3n^2 \frac{\partial^2}{\partial n^2} \left(\frac{E_{\text{bulk}}}{n}\right) \qquad P_n = n^2 \frac{\partial E_{\text{pnm}}}{\partial n} \Big|_{n=n_0}, \qquad (17)$$

$$K = 9n^2 \frac{\partial^2}{\partial n^2} \left(\frac{E_{\text{bulk}}}{n}\right) \Big|_{n=n_0} \qquad K_{\text{sym}} = 9n^2 \frac{\partial^2 E_{\text{sym}}}{\partial n^2} \Big|_{n=n_0}, \qquad K_n = 9n^2 \frac{\partial^2 E_{\text{pnm}}}{\partial n^2} \Big|_{n=n_0}, \qquad (18)$$

$$Q = 27n^3 \frac{\partial}{\partial n^3} \left(\frac{E_{\text{bulk}}}{n} \right) \Big|_{n=n_0}, \quad Q_{\text{sym}} = 27n^3 \frac{\partial E_{\text{sym}}}{\partial n^3} \Big|_{n=n_0}, \quad Q_n = 27n^3 \frac{\partial E_{\text{pym}}}{\partial n^3} \Big|_{n=n_0}.$$
(19)

Nuclear matter properties	Numerical Methods	Summary	Backup
00000000000000000	00000000000000000		000000000000000000000000000000000000000

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

Nuclear models for supernova EOSs

 S_v and L of nuclear models for supernova EOSs and neutron matter energy per baryon in case of each model.

Nuclear matter properties	Numerical Methods	Summary	Backup
	00000000000000000		

Mass and radius curves for selected models

Nuclear matter properties	Numerical Methods	Summary	Backup
	00000000000000000		

(2) Surface energy : Uniform nuclear matter with Finite Range force model

 Nuclear Surface tension for given temperature and proton fraction can be obtained from finite range force model

$$\sigma(x,T) = \sigma(x) \left[1 - \left(\frac{T}{T_c}\right)^2 \right]^\rho, \quad \sigma(x) = \sigma_0 \frac{2 \cdot 2^\alpha + q}{(1-x)^{-\alpha} + q + x^{-\alpha}}$$
(20)

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

(3) Coulomb energy

Free energy density from Liquid Drop Model without light nuclei

$$F = un_i f_i + \frac{\sigma(x_i, T) u d}{r} + 2\pi (n_i x_i e r_N)^2 u D_d(u) + (1 - u) n_{no} f_o, \qquad (21)$$

where

$$D_d(u) = \frac{1}{d+2} \left[\frac{2}{d-2} \left(1 - \frac{1}{2} du^{1-2/d} \right) + u \right],$$
 (22)

for each *d*, calculate energy density and find out lowest energy state (bubble phase $u \rightarrow (1 - u)$). spherical \rightarrow cylindrical \rightarrow slab \rightarrow cylindrical hole \rightarrow spherical hole \rightarrow uniform matter

 Quantum fluctuation allows the continuous dimension (Lattimer and Swesty, Nucl. Phys. A535, 331 (1991))

$$F_{S} + F_{C} = \beta \mathcal{D} \to \mathcal{D} = u \left[\frac{d^{2} D_{d}(u)}{9} \right]^{1/3}$$

Considering bubble phase,

$$\mathcal{D}(u) = u(1-u)\frac{(1-u)D_3^{1/3}(u) + uD_3^{1/3}(1-u)}{u^2 + (1-u)^2 + 0.6u^2(1-u)^2}.$$
(23)

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000
_			

Free energy

Total free energy density consists of

$$F = F_N + F_o + F_\alpha + F_d + F_t + F_h + F_e + F_\gamma$$
(24)

where F_N , F_o , F_o , F_e , and F_γ are the free energy density of heavy nuclei, nucleons out the nuclei, alpha particles, electrons, and photons.

•
$$F_N = F_{bulk,i} + F_{coul} + F_{surf} + F_{trans}$$

• α , *d*, *t*, *h* particles : Non-interacting Boltzman gas

• e, γ : treat separately

For $F_{bulk,i}$, $F_{bulk,o}$, and F_{surf} , we use the same force model. F_{surf} from the semi infinite nuclear matter calculation

The is the modification of LPRL (1985), LS (1991, No skin)

- Consistent calculation of surface tension
- Deuteron, triton, helion
- The most recent parameter set

Nuclear matter properties	Numerical Methods	Summary	Backup
	000000000000000000000000000000000000000		

Free energy minimization

For fixed independent variables (ρ , Y_{ρ} , T), we have the 11 dependent variables (ρ_i , x_i , r_N , z_i , u, ρ_o , x_o , ρ_α , ρ_d , ρ_t , ρ_h).

where *i* heavy nuclei, *o* nucleons outside, *x* proton fraction, *u* filling factor, and ν_n neutron skin density.

From baryon and charge conservation, we can eliminate x_o and ρ_o .

Free energy minimization,

 $\frac{\partial F}{\partial \rho_i} = \frac{\partial F}{\partial x_i} = \frac{\partial F}{\partial r_N} = \frac{\partial F}{\partial z_i} = \frac{\partial F}{\partial u} = \frac{\partial F}{\partial \rho_{\alpha}} = \frac{\partial F}{\partial \rho_d} = \frac{\partial F}{\partial \rho_t} = \frac{\partial F}{\partial \rho_h} = 0.$

- Finally, we have 6 equations to solve and 6 unknowns. $z = (\rho_i, \ln(\rho_{no}), \ln(\rho_{po}), x_i, \ln(u), z_i).$
- The code (f90) is fast. $165(\rho) \times 101(T) \times 65(Y_{\rho})$ zones < 20 mins in single machine. ($1.0 \times 10^{-8} \le \rho \le 1.6 \text{ fm}^{-3}$, $0.1 \le T \le 100 \text{ MeV}$, $0.01 \le Y_{\rho} \le 0.65$) more grid points (maybe) needed
- Any Skyrme functionals (or any symmetric or neutron matter property EOSs) can be compared,

uclear matter properties	Numerical Methods	Summary	Backup
	000000000000000000000000000000000000000		

Results : Relative pressure difference bewteen the current code & LS SkM*

Nuclear matter properties	

Numerical Methods

Summary O

Phase Boundary

Nuclear matter properties

Numerical Methods

Summary O

Particle fraction

Summary

Nuclear Equation of State

- Nuclear Model : Energy density functional (Exp. + Theory + Obs.)
 - should be consistent with finite nuclei,
 - neutron matter calculation
 - maximum mass of neutron stars, MR (NICER) , moment of inertia in the future
- Numerical Method : Liquid Drop Model

- surface tension, critical temperature, effective charge (Screening from outside particles)

- deuteron, triton, helion
- The plan for improving
 - Effective mass constraints ($\chi \rm EFT$, perturbation, Green Function, Fermi Liquid Theory)
 - Speed of Sound in dense matter; (See Sabrina's talk)

Nuclear matter properties	Numerical Methods	Summary	Backup
00000000000000000	0000000000000000		•00000000000000

Backup : Bulk matter from Mean Field Models

- Bulk nuclear matter calculation by EFT has been done up to N3LO with two and three body interactions.
- Current potential model (non-relativistic) and relativistic mean field model

Figure: Left:energy per baryon of pure neutron matter in case of Skyrme force model. Right : the same plot but for the case of relativistic mean field model (figure from Rrapaj et al., PhysRevC.93.065801 (2015))

Nuclear matter properties	

Numerical Methods

Summary O Backup ○●○○○○○○○○○○○○

Backup SkT

SkT

Figure: Modification of SkT3 models to fit EFT calculation by Brown and Schwenk (PRC.89.011307). Figure from Rrapaj et al., PhysRevC.93.065801 (2015).

• It might need to find new parameter sets to fit χ EFT bulk matter calculation.

Nuclear matter properties	Numerical Methods	Summary	Backup
			000000000000000000000000000000000000000

Backup : Quadratic Expansion

- Nuclear matter?
 - Uniform or Non-uniform (inhomogeneous)
 - Nuclear matter properties : B, p₀, K, Q, S_V, L, K_{sym}, Q_{sym}

Figure: Nuclear matter energy per baryon for each δ^2 ($\delta = (n_n - n_p)/(n_n + n_p)$)

Nuclear matter properties	Numerical Methods	Summary O	Backup 000●00000000000

Backup : NICER

- Neutron star radii : ±5%
- Neutron star masses : ±10%
- First dedicated targets : PSR J0437-4715, PSR J0030+0451

Figure: NICER instrument

clear matter properties	Numerical Methods	Summary	Backup
			000000000000000000000000000000000000000

Backup :L

• Neutron Skin : L

Figure: neutron skin correlation with density derivative of symmetry energy

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

Backup : correlation

• Correlation between S_V and L, E_N and P_N

Figure: Two dimensional distribution plots for S_v and L, E_N and P_N

Nuclear matter properties	Numerical Methods	Summary	Backup
			000000000000000000000000000000000000000

Backup : moment of inertia

• J0737-3039(A) :

Radio timing \rightarrow measurement of periastron advance \rightarrow the effects of relativistic spin-orbit coupling \rightarrow second order post-Newtonian expansion \rightarrow moment of inertia

Figure: Mass and radii bands contrained from the moment of inertia of neutron star $M = 1.338 M_{\odot}$. Lim & Holt, PRC 100, 035802 (2019)

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000000000000000000000000	00000000000000000		000000000000000000000000000000000000000

Backup:pasta phase

- The transition to core happens when the uniform nuclear matter has the lowest energy state
- Nuclear pasta phase

- The ground state of nuclear shape is determined by the competition between Coulomb interaction and surface tension

Figure: Numerical calculation of nuclear pasta phase. Figure from the work of Okamoto et al., Phys. Rev. C 88, 025801 (2013).

Nuclear matter properties	Numerical Methods	Summary	Backup
000000000000000000	00000000000000000		000000000000000000000000000000000000000

Backup : coexistence

Coexistence

- The coexistence curve shows the phase equilibrium bewteen dense and dilute phase.

- This is the simplified case of heavy nuclei with nucleon fluids.

$$p_{l} = p_{ll}, \quad \mu_{nl} = \mu_{nll}, \quad \mu_{pl} = \mu_{pll}$$
 (25)

- Under critical temperature coexistence is possible.

Figure: The left panel shows the coexistence curve for given Y_p and the right panel show the critical temperature as a function of Y_p .

Nuclear matter properties	Numerical Methods	Summary	Backup
			00000000000000000

Semi-infinite nuclear matter

The semi-infinite nuclear matter is important to provide the surface tension formula for given proton fraction and temperature.

Liquid droplet approach need surface tension information.

In general $\omega = \omega(x, T)$, and ω is given by

$$\omega = \int_{-\infty}^{\infty} \left[\mathcal{E} - T(S_n + S_p) - \mu_n \rho_n - \mu_p \rho_p + p_o \right] dz = -\int_{-\infty}^{\infty} \left[p(z) - p_o \right] dz.$$
(26)

Figure: Semi-infinite nuclear matter density profile

Nuclear matter properties	Numerical Methods	Summary	Backup
			000000000000000000000000000000000000000

• Liquid Drop Model provide analytic description of pasta phase

$$F = un_i f_i + \frac{\sigma(x_i) u d}{r} + 2\pi (n_i x_i e r_N)^2 u D_d(u) + (1 - u) n_{no} f_o, \qquad (27)$$

where

$$\sigma(x) = \sigma_0 \frac{2^{\alpha+1} + q}{(1-x)^{-\alpha} + q + x^{-\alpha}}$$
(28)

$$D_d(u) = \frac{1}{d+2} \left[\frac{2}{d-2} \left(1 - \frac{1}{2} du^{1-2/d} \right) + u \right],$$
(29)

for each *d*, calculate energy density and find out lowest energy state (bubble phase $u \rightarrow (1 - u)$).

 Quantum fluctuation allows the continuous dimension (Lattimer and Swesty, Nucl. Phys. A535, 331 (1991))

$$F_{S} + F_{C} = \beta \mathcal{D} \to \mathcal{D} = u \left[\frac{d^{2} D_{d}(u)}{9} \right]^{1/3}$$

Considering bubble phase,

$$\mathcal{D}(u) = u(1-u)\frac{(1-u)D_3^{1/3}(u) + uD_3^{1/3}(1-u)}{u^2 + (1-u)^2 + 0.6u^2(1-u)^2}.$$
(30)

Nuclear matter properties	Numerical Methods	Summary	Backup
			000000000000000000000000000000000000000

Pasta function as a function of *u*

• The continuous dimension gives the lowest energy state among all discrete dimension.

Figure: Shape functions and liquid drop model calculation with discrete dimension and shape function, Lim & Holt Physical Review C 95 (6), 065805

Figure: Mass and radius relation from various E.O.S. LS220, SFHo, and SFHx satisfies maximum mass of neutron star and allowed region for give neutron star's mass. (From Hempel's homepage)

Nuclear matter properties	Numerical Methods	Summary O	Backup 000000000000000000000000000000000000

Figure: Atomic number and mass number of heavy nuclei for given conditions using model C.

Nuclear matter properties	Numerical Methods	Backup
		000000000000000

Finite Range Force model

The interaction energy in finite range force is obtained by integration all over the phase space.

$$W = -\frac{8\pi^3}{\hbar^3} \int d^3 r_1 \int d^3 r_2 f(r_{12}/a)$$

$$\times \sum_{t} \left[\int \int C_L f_{t_1} f_{t_2} d^3 p_{t_1} d^3 p_{t_2} + \int \int C_U f_{t1} f_{t_2'} d^3 p_{t_1} d^3 p_{t_2'} \right],$$
(31)

 ${\it C}_{\it L}$ and ${\it C}_{\it U}$ are the density dependent and momentum dependent functionals between like particles and unlike particles.

ex)

$$C_{L,U} = \alpha_{L,U} + \beta_{L,U} p_{12} + \gamma_{L,U} (n_1^{1/3} + n_2^{1/3})$$
(32)