Measurement of the Total Neutron-Removal Cross Section of ¹²⁰Sn at R³B to Determine Constraints on the Equation of State

TECHNISCHE UNIVERSITÄT DARMSTADT

Ashton Falduto

International Workshop XLVIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria

13.01.20 | AG Aumann | Institut für Kernphysik | TU Darmstadt | A. Falduto | 1

Motivation

- Why do we need an Equation of State (EoS) for neutron rich matter?
 - Understand properties of neutron stars, core-collapse supernova, and neutron-star mergers
- The atomic nucleus is the only environment we can study in a laboratory
- Exotic nuclei- atomic nuclei with shorter lifetimes and have an imbalanced ratio between proton and neutron number
- Constraints on the EoS can be obtained from measurements of bulk properties of neutron-rich matter

The L Parameter

- Around saturation density, the EoS for asymmetric nuclear matter is usually characterized by the symmetry energy at saturation J and its slope L
 - Experimentally, L is very poorly constrained
- Two observables that can potentially put better constraints on L are the neutron skin thickness of neutron-rich nuclei and the ground-state dipole polarizabilty

Neutron Skin Thickness

- If a nuclei is neutron-rich, it is expected to form a neutron rich surface layer called the neutron skin
- The difference of the root mean square (rms) radii of neutron and proton distributions

$$\Delta r_{np} = \langle r_n^2 \rangle^{\frac{1}{2}} - \langle r_p^2 \rangle^{\frac{1}{2}}$$

Affects the neutron-removal cross section

T. Aumann et al., Phys. Rev. Letters 119.26, 262501 (2017)

Glauber Multiple Scattering Method

- Scattering model of nucleon-nucleon interactions
 - Cross section for the production of a fragment (Z,N) from a projectile (Z_p,N_p): $\sigma = {\binom{Z_P}{Z}} {\binom{N_P}{N}} \int d^2b \left[1 - P_p(b)\right]^{Z_P - Z} P_p^Z(b) \times [1 - P_n(b)]^{N_P - N} P_n^N(b)$
 - The probability a proton survives:

$$P_p(b) = \int dz d^2 s \rho_p^P(\boldsymbol{s}, z) exp\left[-\sigma_{pp} Z_T \int d^2 s \rho_p^T(\boldsymbol{b} - \boldsymbol{s}, z) - \sigma_{pn} N_T \int d^2 s \rho_n^T(\boldsymbol{b} - \boldsymbol{s}, z)\right]$$

- $\sigma_{pp}, \sigma_{pn} \rightarrow$ proton-proton and proton-neutron cross sections
- $\rho_{n(p)}^{P(T)} \rightarrow$ projectile (target), proton (neutron) densities
- $\sigma_{\Delta Z}$, $\sigma_{\Delta N}$, & σ_R are obtained from the summation of all corresponding fragments

Cross-Sections

- Cross Sections are calculated using theoretical density distributions from relativistic mean-field calculations
- $\sigma_{\Delta Z} \rightarrow$ total charge-changing cross section
 - at least one proton is removed from the projectile
- $\sigma_{\Delta N} \rightarrow$ neutron-removal cross section
 - at least one neutron is removed from the projectile
 - charge number does not change
- $\sigma_R = \sigma_{\Delta Z} + \sigma_{\Delta N} \rightarrow \text{total reaction cross section}$
- Goal: measure within 1% accuracy
 - experimentally and theoretically
 - ±10 MeV constraint on L

Reaction Theory Challenges

- Energy point at 950 is overestimated by 2%
- Experimental data is missing between 400 and 800

Experimental Challenges

- Precise knowledge of response functions- risk of nongaussian distribution
- Large resolution is helpful
- Detectors with high efficiency and acceptance
- Determine the collective cross section with ≤5% uncertainty
 - More precise neutron detection and reconstruction (3n channel)
- Previous experiment with ¹²⁴Sn projectile on ¹²C target:
 - $\sigma_{\Delta N} \approx 550 \text{ mb}$ (F. Schindler, Ph.D. Thesis)
 - σ_{ΔN(coll)}≈ 100 mb

Experimental Setup

FAIR Phase 0 R³B setup, February 2019

Experiment	Beam	Energies (AMeV)	Targets
s444	¹² C	400, 550, 650, 800, 1000	C, CH ₂ , Pb, empty
s473	¹²⁰ Sn	400, 550, 650, 800, 900	C, CH ₂ , Pb, empty
		*Different thickne	esses for C and CH ₂ were used

Experimental Setup- Detectors

TECHNISCHE UNIVERSITÄT DARMSTADT

• LOS- incoming beam velocity, start time for TOFD

Experimental Setup- Detectors

TECHNISCHE UNIVERSITÄT DARMSTADT

- LOS- incoming beam velocity, start time for TOFD
- TOFD- Time of Flight, beam trajectory

Experimental Setup- Detectors

TECHNISCHE UNIVERSITÄT DARMSTADT

- LOS- incoming beam velocity, start time for TOFD
- TOFD- Time of Flight, beam trajectory
- ROLU- collimator for incoming beam

Tracking Detectors

• PSP X5- Position Sensitive Pin diode

Tracking Detectors

- PSP X5- Position Sensitive Pin diode
- Fiber Detectors- 1,024 500 µm fibers

GLAD Vacuum chamber ROLU 4x AMS NeuLAND DSSSD y-Detector Target Ion beam neutrons LOS PSP X5 fragments Fiber detectors Fiber detectors TOFD Credits: Kathrin Göbel / R³B

- NeuLAND- New Large Area Neutron Detector •
- Fully active plastic scintillator, time resolution of 150 pico • seconds, 1 neutron detection efficiency of >95% from 100 to 1000 MeV, multi-hit capabilities (more than 2 neutrons, up to 5),

13.01.20 | AG Aumann | Institut für Kernphysik | TU Darmstadt | A. Falduto | 15

Neutron Detector

Analysis

Calibration is in 3 steps- position, energy, and conversion

Position/arb.u.

Position Calibration

Position Calibration

Energy Calibration

Final "Conversion" Calibration

Previous R³B Constraints

Coulomb Excitation Cross Section

¹³²Sn on Pb target at 514 MeV

Conclusion

- What we've done so far
 - Experiments ran with ¹²C and ¹²⁰Sn Beams
 - Nearly calibrated the PSPs from ¹²⁰Sn data
- Next Steps:
 - Charge Changing Cross section
 - Calibration of the remaining detectors
 - Calculate Neutron-Removal and Total Reaction cross sections
 - Determine ratios from different targets

Questions?

This work is supported by the BMBF project 05P15RDFN1 and the GSI-TU Darmstadt cooperation.

