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Massive stars with masses                         :              

CCSNe, among the strongest explosions 

in the universe

Source of heavy elements

Driving force of cosmic cycle of matter

Crab nebula: eso.org

Core-Collapse Supernovae

Onion-shell structure 

Iron core approaches

Collapse → CCSNe

At the end of a massive star‘s life:
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CCSNe: n-driven Mechanism
Collapse releases gravitational binding energy: 

Explosion energy: ~

n-driven mechanism: 
convection and multi-D instabilities 
(e.g. Bethe&Wilson85, Janka12)
 

 Prompt shock stagnation

 Core bounce → Prompt shock
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Core-Collapse Supernovae
Questions:

Progenitor-remnant connection, explosion properties?
Conditions for explosive nucleosynthesis?
Explosion properties, remnant properties and
yields as a function of                 and Z? 

Required:

Progenitor models (mainly 1D)
Properties of shock wave (e.g.           )
Matter properties of innermost ejecta (      )
Explosion mechanism (energy injection), mass cut
SN EOS
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Ideal case:
Self-consistent, detailed, long term, converging 3D models 
that match observables, for many progenitors

But:
Multi-D and detailed physics require large resources

Realistic strategy: efficient parametrized exploding models

Models where a part of the problem is simplified

Computationally efficient and physically reliable models

 

CCSN Modeling
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Traditional Methods
(Piston/thermal bomb) 
(Woosley&Weaver95, Chieffi & Limongi13, 
Thielemann+96, Umeda & Nomoto08)

CCSN Modeling in 1D
Efficiently study broad range of CCSN progenitors in 1D: 

Induced explosion with different methods

Limitations:
Physics of collapse, bounce, 
and onset of explosion
Neutrinos, PNS
Remnant mass / mass cut
Explosion energy and nickel

Using Neutrinos:
Light bulb models (      )     (e.g. Yamamoto+13)

Enhanced n reaction rates    (e.g. Fröhlich+06, Fischer+10)       
Parametrized      , excised core region
                                       (Ugliano+12, Ertl+16, Sukhbold+16)
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CCSN Modeling in 1D: PUSH

PUSH method introduced in  ApJ 806, 275 (2015)  
Perego, Hempel, Fröhlich, Ebinger, Eichler, Casanova, Liebendörfer, Thielemann

Efficiently study broad range of CCSN progenitors in 1D: 
Induced explosion with different methods

Updated PUSH method, solar metallicity progenitor stars, 
explosion & remnant properties and nucleosynthesis 
yields in  ApJ 870, 1 & 2 (2019)  
Ebinger, Curtis, Fröhlich+  and Curtis, Ebinger, Fröhlich+

Extending study to low and zero metallicity progenitor 
stars in  ApJ (accepted) 
Ebinger, Curtis, Ghosh, Fröhlich, Hempel, Perego, Liebendörfer, Thielemann
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CCSN Modeling in 1D: PUSH

Parametrization of n-driven mechanism: n's determine explosion 

properties (                      , nucleosynthesis yields)

Preserve consistent       evolution (no modification of            - transport) 

Nuclear EOS and proto-neutron star evolution included 

Efficiently study broad range of CCSN progenitors in 1D: 
Induced explosion with different methods

Aim:
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Basic idea:  Mimic in 1D simulations the increased heating 
efficiency of     ,      (due to convection and accretion) present  
in multi-D simulations by parametrizing the heating of        , 

CCSN Modeling in 1D: PUSH

General relativistic hydrodynamics (AGILE (Liebendörfer+02))

EOS:  nuclear EOS HS(DD2) (Hempel&Schaffner-Bielich+02,Typel+10)

Neutrino transport: IDSA and advanced spectral leakage
                                                           (Liebendörfer+09, Perego+16)

Nucleosynthesis yields (Tracer, nuclear network)
                                                      (for details see Curtis+19,KE+19)       

Progenitor models: 1D  (Woosley+02, Woosley&Heger07)
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CCSN Modeling in 1D: PUSH

PhD Ebinger 2017

Uncertainties introduced by differences in the pre-explosion 
stellar evolution (e.g. WHW02, WH07)
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CCSN Modeling in 1D: PUSH

PhD Ebinger 2017
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CCSN Modeling in 1D: PUSH

A crucial property of CCSN progenitors is their compactness 

Introduced by O'Connor&Ott11

Calibration of PUSH heating
with dependence in 
compactness to fulfill 
constraints
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Calibration of PUSH
Reproducing SN 1987A

Weaker SNe for lower ZAMS masses

Possible BH formation

Seitenzahl+ 14, Fransson & Kozma 02, Blinnikov+ 00, Boggs+15, KE+19 

SN1987A is used 
as constraint in the investigation
of large progenitor samples

Produced well in 
multi-D modeling of
ejected high entropy
blobs, e.g. 

Wongwathanarat+ (2017)
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Calibration of PUSH

HNe: very energetic explosions, driven by fast rotation and 
strong magnetic fields
n-driven SNe go into faint branch around ~25

→ Calibration of PUSH to observational properties of CCSNe for 
lower mass progenitors and faint branch for higher masses

For higher main-sequence masses: 
branching in Hypernovae and faint SNe 

Reproducing SN 1987A

Weaker SNe for lower ZAMS masses

Possible BH formation
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Compilation of observational data
mostly based on Nomoto+13, Bruenn+16 and references therein

SN Landscape: Explodability and Properties

Ebinger+19

Good agreement with the observational properties
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SN Landscape: Explodability and Properties

Explodability, BH formation (for WHW02 (green) and WH07 (blue))
Alternative calibration (remnant birth mass distribution) 

Ebinger+19
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Low Metallicity Stars

CCSN explosion energies for low metallicity stars (WHW02)

Lower explosion energies and more BH forming models

Ebinger+ApJ (accepted)
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Low Metallicity Stars

Ejected nickel vs explosion energy (WHW02)

Comparison with observations (Bruenn+16 and Nomoto+13) and fits (Müller+17)
Ebinger+ApJ (accepted)
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Low Metallicity Stars

CCSN explosion energies for low metallicity stars (WHW02)

Lower explosion energies and more BH forming models
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Global Properties of CCSN Simulations

Trends with compactness

Resulting properties of CCSNe
for all progenitors across the
ZAMS mass range

Postprocessing: nucleosynthesis
yields can be used for GCE

Ebinger+19
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Global Properties of CCSN Simulations

Trends with compactness

Resulting properties of CCSNe
for all progenitors across the
ZAMS mass range

Postprocessing: nucleosynthesis
yields can be used for GCE

Ebinger+ ApJ (accepted)
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NS and BH Birthmass Distribution
Predicted NS masses for ZAMS masses of stars 
→ Birth mass distribution 
Initial mass function from Salpeter55 (for massive stars heavier than 10      )

Progenitor range limit at 10.8/12 solar masses. Lighter models would
  reduce the lower limit of the predicted NS mass distribution range

 Similar distribution for second calibration Ebinger+19
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NS and BH Birthmass Distribution
Predicted NS masses for ZAMS masses of stars 
→ Birth mass distribution 
Initial mass function from Salpeter55 (for massive stars heavier than 10      )

Progenitor range limit at 10.8/12 solar masses. Lighter models would
  reduce the lower limit of the predicted NS mass distribution range

 Similar distribution for second calibration Ebinger+19
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NS and BH Birthmass Distribution

Predicted BH mass distribution (both calibrations) 

Broadly consistent with observationally determined BH mass distribution (7.8+-1.2       , 
Özel+10), when we assume that the helium core mass sets the BH mass (Kochanek14)
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NS and BH Birthmass Distribution

GW150914
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Conclusion and Outlook

Calibration of PUSH: observational constraints (SN1987A)
→ Explodability, Supernova landscape,  CCSN properties

Good agreement with observational properties of CCSNe 

Influence of progenitor models / EoS
 
Compare predicted neutron star and black hole masses to 
observations

Explosion/Nucleosynthesis properties can be used in GCE calculations 
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Second Calibration
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Progenitor uncertainties and EoS
have an non-negligible effect

Higher compactness values 
coincide with faster BH formation 

Black hole formation times of 
simulations without PUSH 
(indication of upper limit in time 
for succesful neutrino-driven 
mechanism)

Calibration of PUSH
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PUSH model (with and without, 15       star):
➔ Additional heating by      ,        mimics more efficient     ,       

heating
➔         does not suddenly decrease after the onset of explosion

 

CCSN Modeling in 1D: PUSH
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Temporal evolution

Typical neutrino cross section

Spectral energy flux

Location function

PUSH
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PUSH parameters inspired by enhanced n-heating in multi-D simulations

Free parameters:

50 ms                 500 ms

Fixed parameters:

       = 80 ms
                    = 1 s

Temporal Evolution of PUSH
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