Symmetry energy from electromagnetic properties of exotic nuclei

International Workshop XLVIII on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Austria, January 12-18, 2020 Dominic Rossi

Outline

- Introduction
 - EOS, symmetry energy and observables
- Dipole polarizability and how to measure it
- Influence of decay and detector response
- Dipole polarizability of ^{68,70}Ni (above n threshold)
- E1 strength of ¹³²Sn below n threshold
- Outlook:
 - Improving setup response
 - Using charge radii to constrain the symmetry energy

Nuclear Equation of State

50

neutron matter

20

10

E_{bind} [MeV]

-10

100

<mark>₀- -</mark>0 var AV₁₈+3-BF

NL3

DD-TW

ChPT

• Two extremes:

ဂ

Fuchs

and H.H. Wolter,

EPJA

- $\alpha = 0$: symmetric matter
- $\alpha = 1$: neutron matter
- Symmetry energy: difference between symmetric and neutron matter, at a given density
- Good experimental constraints for symmetric nuclear matter exist (experiments with stable nuclei)

Nuclear symmetry energy parameters

- Symmetry energy J (at saturation density) is reasonably well constrained (masses, reactions, giant resonances, n-stars) between 30 and 35 MeV
- Slope parameter L still elusive
- 20 MeV ≤ L ≤ 120 MeV

Choosing the "right" observable

- Calculations provide correlation matrices of various EOS parameters and observable quantities
- Identify parameter/observable pairs with strongest possible correlations

- Reduced model dependence by considering multiple interaction families at same time
- Provides theoretical uncertainty in addition to experimental one

Choosing the "right" observable

TECHNISCHE UNIVERSITÄT DARMSTADT

Why use unstable isotopes for EOS studies?

- Possibility to change asymmetry $\left(\frac{N-Z}{A}\right)$ over a much smaller mass range
- Study isotopic or isotonic chains (only change either N or Z)

- Some nuclear effects only appear beyond a certain asymmetry
- ➔ Add a second degree of freedom in choice of nucleus

TECHNISCHE

UNIVERSITÄT DARMSTADT

Dipole polarizability

$$\alpha_D^{\rm DM} \approx \frac{\pi e^2}{54} \frac{A \langle r^2 \rangle}{J} \left[1 + \frac{5}{3} \frac{L}{J} \epsilon_A \right]$$

- Dipole polarizability and n-skin thickness of various interaction families each have own linear correlation
- The product α_D^*J reveals a less modeldependent correlation

Dipole polarizability of ²⁰⁸Pb

TECHNISCHE UNIVERSITÄT DARMSTADT

PRL 107, 062502 (2011) PHYSICAL REVIEW LETTERS sweek ending 5 AUGUST 2011

Complete Electric Dipole Response and the Neutron Skin in ²⁰⁸Pb

A. Tamii,¹ I. Poltoratska,² P. von Neumann-Cosel,^{2,*} Y. Fujita,³ T. Adachi,^{3,4} C. A. Bertulani,⁵ J. Carter,⁶ M. Dozono,⁷ H. Fujita,¹ K. Fujita,⁷ K. Hatanaka,¹ D. Ishikawa,¹ M. Itoh,⁸ T. Kawabata,⁹ Y. Kalmykov,² A. M. Krumbholz,² E. Litvinova,^{10,11} H. Matsubara,¹² K. Nakanishi,¹² R. Neveling,¹³ H. Okamura,¹ H. J. Ong,¹ B. Özel-Tashenov,¹⁰ V. Yu. Ponomarev,² A. Richter,^{2,14} B. Rubio,¹⁵ H. Sakaguchi,¹ Y. Sakemi,⁸ Y. Sasamoto,¹² Y. Shimbara,^{3,16} Y. Shimizu,¹⁷ F. D. Smit,¹³ T. Suzuki,¹ Y. Tameshige,¹⁸ J. Wambach,² R. Yamada,¹⁶ M. Yosoi,¹ and J. Zenihiro¹

- Short lifetime of projectile → requires experiment in inverse kinematics
- Heavy-ion-induced **electromagnetic excitation**, *via* the virtual photon approach
- Reconstruction of excitation energy (using invariant mass) of each event requires detection of ALL participating species (identification and momentum):
 - → Requires high-efficiency and high-resolution neutron and gamma detectors (for n-rich nuclei)

GSI and FAIR complex

R³B Overview

20.01.2020 | Nuclear equation of state and neutron stars, Hirschegg 2020 | Dominic Rossi | 14

R³B

Influence of decay properties

TECHNISCHE UNIVERSITÄT DARMSTADT

1.0 Acceptance / efficiency mm 1n Total LAND efficiency + acceptance Nominal efficiency 0.8 0.8 2n 3n 0.6-0.6 **Experiment-specific** 4n efficiency 0.4 0.4 Acceptance 0.2 0.2 0.0 10 5 10 20 15 Neutron Ekin in rest frame [MeV] Neutron E_{trin} sum [MeV] Experimental data can be corrected for LAND Total efficiency + acceptance curves for 1n to 4n channels acceptance and efficiency Nominal efficiency: determined by ²H experiment Sum of neutron kinetic energies sufficiently good • Experiment-specific efficiency: depends on dead observable • and semi-dead paddles Loss of detection efficiency at low E due to Acceptance: depends on the kinetic energy of the overlapping hit distributions Experimental data corrected with these functions neutrons

Influence of neutron detection

Influence of gamma detection

Experimental setup response function

TECHNISCHE

Fitting experimental data

20.01.2020 | Nuclear equation of state and neutron stars, Hirschegg 2020 | Dominic Rossi | 20

Bin-wise deconvolution (68Ni)

20.01.2020 | Nuclear equation of state and neutron stars, Hirschegg 2020 | Dominic Rossi | 21

- Head towards more exotic systems → greater proton/neutron asymmetry
- Will require efficient multi-neutron detection capabilities
- Example for ¹³⁶Sn@1 GeV/nucleon using NeuLAND, assuming 100% calorimetric efficiency of gamma detector (full CALIFA detector)

Experimental challenges: multiple photon detection

CALIFA: CALorimeter for In Flight detection of gamma rays and high-energy charged pArticles

CALIFA barrel:

- Total of 1952 CsI(Tl) crystals (1152 in front half)
- Barrel mounted in Cave C for 2020 beam

- CEPA (CsI(TI)) and iPhos (LaBr₃/LaCl₃) in testing phase
- Completion expected >2020

NeuLAND

Design goals:

>90% efficiency for 0.2-1.0 GeV neutrons
multi-hit capability for up to 5 neutrons
invariant mass resolution down to ΔE < 20 keV at 100 keV above thr.

NeuLAND detector parameters:

- full active detector using RP/BC408
- face size 250x250 cm²
- active depth 300 cm
- 3000 scintillator bars + 6000 PMTs
- 32 tons
- $\sigma_{x,y,z} \approx 1$ cm & $\sigma_t < 150$ ps

double plane 11 during bar mounting

Tracking Detectors: TOF Wall

- Size: 120 x 100 cm²
- Total of 176 paddles, arranged into 4 layers
- No light guide, PMT R8619 coupled directly to scintillator
- Movable holding structure to sweep TOF wall across beam

BECOLA experimental setup

SFB 1245

BECOLA facility 2 60 KeV19 Beam -100-150 MeVIA thermalization area A1900 fragment separator K500 www.nscl.msu.edu/interactivemap K1200

Coupled cyclotron facility layout

Connection to nuclear symmetry energy

$\Delta R_{np} \equiv R_n(Z, N) - R_p(Z, N) \xrightarrow{\text{c.s.}} R_p(N, Z) - R_p(Z, N) \equiv \Delta R_{ch}$

- Correlations of 48 Skyrme functionals between neutronskin thickness $\Delta R_{n,p}$, mirror charge radius difference ΔR_{ch} and L
- In perfect charge symmetry, the neutron radius of a given nucleus equals the proton radius of its mirror nucleus
- Theoretical challenge to correctly include Coulomb corrections
- Measurement of charge radii of radioactive nuclei to the order of 0.001 fm
- → Error on isotope shift in MHz range (feasible)
- → Error on mass and field shift parameters (atomic theory) often larger (up to 1 order of magnitude)

- Same behavior observed with RMF calculations
- Strong linear correlation between mirror charge difference and L leads to exploration of correlations with neutron-star radii

20.01.2020 | Nuclear equation of state and neutron stars, Hirschegg 2020 | Dominic Rossi | 30

Summary

- Dipole polarizability data analysis still ongoing for n-rich Sn and Ni isotopes
- Extraction of E1 strength below neutron threshold in ¹³²Sn in progress
- Multiple experimental challenges to be overcome for future α_{D} measurements
- Key detectors for polarizability studies will be finalized and commissioned in the near future
- New approach using mirror charge radii of ⁵⁴Ni-⁵⁴Fe to constrain symmetry energy

The R³B Collaboration

TECHNISCHE UNIVERSITÄT DARMSTADT

Aksouh, Farouk; Al-Khalili, Jim; Algora, Alejandro; Alkhasov, Georgij; Altstadt, Sebastian; Alvarez, Hector; Atar, Leyla; Audouin, Laurent; Aumann, Thomas; Pellereau, Eric; Martin, Julie-Fiona; Gorbinet, Thomas; Seddon, Dave; Kogimtzis, Mos; Avdeichikov, Vladimir; Barton, Charles; Bayram, Murat; Belier, Gilbert; Bemmerer, Daniel; Michael Bendel; Benlliure, Jose; Bertulani, Carlos; Bhattacharya, Sudeb; Bhattacharya, Chandana; Le Bleis, Tudi; Boilley, David; Boretzky, Konstanze; Borge, Maria Jose; Botvina, Alexander; Boudard, Alain; Boutoux, Guillaume; Boehmer, Michael; Caesar, Christoph; Calvino, Francisco; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Cederwall, Bo; Chapman, Robert; Alexandre Charpy; Chartier, Marielle; Chatillon, Audrey; Chen, Ruofu; Christophe, Mayri; Chulkov, Leonid; Coleman-Smith, Patrick; Cortina, Dolores; Crespo, Raquel; Csatlos, Margit; Cullen, David; Czech, Bronislaw; Danilin, Boris; Davinson, Tom; Paloma Diaz; Dillmann, Iris; Fernandez Dominguez, Beatriz; Ducret, Jean-Eric; Duran, Ignacio; Egelhof, Peter; Elekes, Zoltan; Emling, Hans; Enders, Joachim; Eremin, Vladimir; Ershov, Sergey N.; Ershova, Olga; Eronen, Simo; Estrade, Alfredo; Faestermann, Thomas; Fedorov, Dmitri; Feldmeier, Hans; Le Fevre, Arnaud; Fomichev, Andrey; Forssen, Christian; Freeman, Sean; Freer, Martin; Friese, Juergen; Fynbo, Hans; Gacsi, Zoltan; Garrido, Eduardo; Gasparic, Igor; Gastineau, Bernard; Geissel, Hans; Gelletly, William; Genolini, B.; Gerl, Juergen; Gernhaeuser, Roman; Golovkov, Mikhail; Golubev, Pavel; Grant, Alan; Grigorenko, Leonid; Grosse, Eckart; Gulvas, Janos; Goebel, Kathrin; Gorska, Magdalena; Haas, Oliver Sebastian; Haiduc, Maria; Hasegan, Dumitru; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Ana Henrigues; Hoffmann, Jan; Holl, Matthias; Hunyadi, Matyas; Ignatov, Alexander; Ignatyuk, Anatoly V.; Ilie, Cherciu Madalin; Isaak, Johann; Isaksson, Lennart; Jakobsson, Bo; Jensen, Aksel; Johansen, Jacob; Johansson, Hakan; Johnson, Ron; Jonson, Bjoern; Junghans, Arnd; Jurado, Beatriz; Jaehrling, Simon; Kailas, S.; Kalantar, Nasser; Kalliopuska, Juha; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Kezzar, Khalid; Khanzadeev, Alexei; Kissel, Robert; Kisselev, Oleg; Klimkiewicz, Adam; Kmiecik, Maria; Koerper, Daniel; Kojouharov, Ivan; Korsheninnikov, Alexei; Korten, Wolfram; Krasznahorkay, Attila; Kratz, Jens Volker; Kresan, Dima; Anatoli Krivchitch; Kroell, Thorsten; Krupko, Sergey; Kruecken, Reiner; Kulessa, Reinhard; Kurz, Nikolaus; Kuzmin, Eugenii; Labiche, Marc; Langanke, Karl-Heinz; Langer, Christoph; Lapoux, Valerie; Larsson, Kristian; Laurent, Benoit; Lazarus, Ian; Le, Xuan Chung; Leifels, Yvonne; Lemmon, Roy; Lenske, Horst; Lepine-Szily, Alinka; Leray, Sylvie; Letts, Simon; Li, Songlin; Liang, Xiaoying; Lindberg, Simon; Lindsay, Scott; Litvinov, Yuri; Lukasik, Jerzy; Loeher, Bastian; Mahata, Kripamay; Maj, Adam; Marganiec, Justyna; Meister, Mikael; Mittig, Wolfgang; Movsesyan, Alina; Mutterer, Manfred; Muentz, Christian; Nacher, Enrique; Najafi, Ali; Nakamura, Takashi; Neff, Thomas; Nilsson, Thomas; Nociforo, Chiara; Nolan, Paul; Nolen, Jerry; Nyman, Goran; Obertelli, Alexandre; Obradors, Diego; Ogloblin, Aleksey; Oi, Makito; Palit, Rudrajyoti; Panin, Valerii; Paradela, Carlos; Paschalis, Stefanos; Pawlowski, Piotr; Petri, Marina; Pietralla, Norbert; Pietras, Ben; Pietri, Stephane; Plag, Ralf; Podolyak, Zsolt; Pollacco, Emanuel; Potlog, Mihai; Datta Pramanik, Ushasi; Prasad, Rajeshwari; Fraile Prieto, Luis Mario; Pucknell, Vic; Galaviz -Redondo, Daniel; Regan, Patrick; Reifarth, Rene; Reinhardt, Tobias; Reiter, Peter; Rejmund, Fanny; Ricciardi, Maria Valentina; Richter, Achim; Rigollet, Catherine; Riisager, Karsten; Rodin, Alexander; Rossi, Dominic; Roussel-Chomaz, Patricia; Gonzalez Rozas, Yago; Rubio, Berta; Roeder, Marko; Saito, Takehiko; Salsac, Marie-Delphine; Rodriguez Sanchez, Jose Luis; Santosh, Chakraborty: Savajols, Herve; Savran, Deniz; Scheit, Heiko; Schindler, Fabia; Schmidt, Karl-Heinz; Schmitt, Christelle; Schnorrenberger, Linda; Schrieder, Gerhard; Schrock, Philipp; Sharma, Manoj Kumar; Sherrill, Bradley; Shrivastava, Aradhana; Shulgina, Natalia; Sidorchuk, Sergey; Silva, Joel; Simenel, Cedric; Simon, Haik; Simpson, John; Singh, Pushpendra Pal; Sonnabend, Kerstin; Spohr, Klaus; Stanoiu, Mihai; Stevenson, Paul; Strachan, Jon; Streicher, Brano; Stroth, Joachim; Syndikus, Ina; Suemmerer, Klaus; Taieb, Julien; Tain, Jose L.; Tanihata, Isao; Tashenov, Stanislav; Tassan-Got, Laurent; Tengblad, Olof; Teubig, Pamela; Thies, Ronja; Togano, Yasuhiro; Tostevin, Jeffrey A.; Trautmann, Wolfgang; Tuboltsev, Yuri; Turrion, Manuela; Typel, Stefan; Udias-Moinelo, Jose; Vaagen, Jan; Velho, Paulo; Verbitskaya, Elena; Veselsky, Martin; Wagner, Andreas; Walus, Wladyslaw; Wamers, Felix; Weick, Helmut; Wimmer, Christine; Winfield, John; Winkler, Martin; Woods, Phil; Xu, Hushan; Yakorev, Dmitry; Zegers, Remco; Zhang, Yu-Hu; Zhukov, Mikhail; Zieblinski, Miroslaw; Zilges, Andreas;

BECOLA Collaboration

20.01.2020 | Nuclear equation of state and neutron stars, Hirschegg 2020 | Dominic Rossi | 33