Discovery of the First Optical Counterpart to a Gravitational Wave Source and Neutron Star Equation of State

Ryan Foley (UC Santa Cruz) 1M2H Team

SSS17a

2017 August 17

2017 August 21 Swope & Magellan Telescopes

Adapted from Bartos, Brady, Marka 2013

"prompt collapse"

S. Rosswog

What are the EM Counterparts?

Metzger & Berger 2012

Neutron-Rich Ejecta

"Dynamical" $M_{ej} \sim 10^{-3} - 10^{-2} M_{\odot}$ t_{exp} ~ milliseconds v_{ei} ~ 0.3 c Disk Winds **M**_{ej} ~ 10⁻² - 10⁻¹ **M**_• t_{exp} ~ seconds v_{ej} ~ 0.1 c

Shock-Heated Ejecta

time

R-Process Network (neutron captures, photo-dissociations, α - and β -decays, fission)

Courtesy Gabriel Martinez-Pinedo

Lanthanides Have Very High Opacities

Kasen, Badnell, & Barnes 2013

Fast Blue and Slower Red Components

Metzger & Fernández 2014

One Meter, Two Hemispheres (1M2H)

Thu, Aug 17, 6:39 AM

Stop what you're doing and check your email.

Thu, Aug 17, 8:12 AM

I don't have email now. What's up?

NS NS merger at a false alarm rate as 1 in <u>10000</u> years

Coincident neutrinos and GRB

Position?

This sounds like a joke by the way

See who else is on Magellan, and ask

I might leave, but if you're joking and don't tell me now I will not be amused

Although, I keep fucking up my coordinates. One sec.

Well, it's a 11 degree radius for 1 sigma. So we have a big area.

If there is a grb, it would have a better coordinate

There should be booming x rays

I'M NOT JOKING. JESUS MAN, I WOULDN'T JOKE ABOUT THIS.

8:14 pm **46 Minutes After Sunset**

10 Hours, 33 Minutes After Trigger

 $12^{h}48^{m}$ **Right** Ascension

$12^{h}36^{m}$ $12^{h}24^{m}$ Coulter et al. 2017

Coulter et al. 2017

davecoulter 8:29 AM Yeah

I got Ryan on text

He's on his way. He recommended a Galaxy comparison too

davecoulter 8:35 AM

Charlie

Do you think using the White 2011 catalog would be a good place to start? I can make a distance cut, everything less than 50 Mpc, and then do a separation cut, where I got 12 degrees from the central point and then match

ckilpatrick 8:38 AM yes, use the white catalog

davecoulter 8:38 AM OK

I am working on that now

ckilpatrick 8:38 AM thanks

foley 8:51 AM im at my apartment

davecoulter 8:51 AM OK

foley 4:27 PM **@ckilpatrick** when you get a chance, please verify that i didnt completely mess up those pointings and that we have multiple galaxies in those first pointings

ckilpatrick 4:28 PM there are 4

galaxies

foley 4:28 PM great!

ckilpatrick 4:28 PM nothing im fields12

foley 4:29 PM no transients, right?

ckilpatrick 4:29 PM no transients

sorry, image is fine

foley 4:29 PM fantastic

ckilpatrick 4:29 PM but nothing I can see by eye

davecoulter 4:34 PM uploaded this file **•**

but nothing I can see by eye

davecoulter 4:34 PM uploaded this file •

ckilpatrick 4:38 PM ok, nothing in fields10

there was a bug in fields11 that we just fixed, but we're going back to that one

nothing in fields11

ckilpatrick 4:59 PM @foley found something

sending you a screenshot

foley 4:59 PM

wow!

davecoulter 4:59 PM

ckilpatrick 4:59 PM template

ckilpatrick 4:59 PM uploaded this image: Screen Shot 2017-08-17 at 4.59.27 PM.png -

ckilpatrick 4:59 PM template

ckilpatrick 4:59 PM

uploaded this image: Screen Shot 2017-08-17 at 4.59.27 PM.png -

ckilpatrick 5:00 PM

us

ckilpatrick 5:00 PM

us

ckilpatrick 5:00 PM

uploaded this image: Screen Shot 2017-08-17 at 4.59.53 PM.png -

NGC 4993 and SSS17a

Coulter et al. 2017

First Image of a Gravitational Wave

NGC 4993 April 28, 2017 Hubble Space Telescope

August 17, 2017 Swope & Magellan Telescopes

Coulter et al. 2017

Chandra

16.4d

12 Hours After Trigger

4.5 Days After Trigger

SSS17a

SSS17a Quickly Turned Blue to Red

2017 August 21

Swope & Magellan Telescopes

Drout et al. 2017

radioactive debris cloud

Neutron-Rich (Heavy r-Process, A >140)

veloc

Red vs. Blue Kilonovae

veloci

Red vs. Blue Kilonovae

Red vs. Blue Kilonovae

veloci

Outcomes of Neutron Star Mergers "prompt collapse" Mroi Shina. **EM Observations** LIGO/Virgo Ω_{i} "hypermassive NS" + torus NS (~0.1 M_☉) t ~ 100 ms inspiral merger $M_{tot} < 1.2 M_{max}$ NS "supramassive NS" () M_{tot} > M_{max}

Kinetic energy too low

(Margalit & BDM 17, Shibata+17, Ruiz+18, Rezzolla+18)

ιυι

Παλ

GW only **GW+EM**

> (⊙ ₩) Mass

Radius (km)

Mass Ratio of ~0.75 from EM Data

Kilpatrick et al. 2017

GW190425: 1.4+2.0 BNS

GW190425: 1.4+2.0 BNS

$M_{tot} \approx 3.35 \pm 0.07 M_{sun}$ $m_1 \approx 1.90 - 2.16 M_{sun}$ $m_2 \approx 1.26 - 1.38 M_{sun}$

$M_{tot} \approx 3.54 \pm 0.07 M_{sun}$ $m_1 \approx 2.15 - 2.44 M_{sun}$ $m_2 \approx 1.17 - 1.32 M_{sun}$

GW190425: Updated EOS

GW190425: Updated EOS

Coulter et al. in prep.

Right Ascension

- •We found the counterpart to a Gravitational Wave source!
- Huge improvements in EOS studies, especially when combining EM and GW • There is a population of high-mass BNS systems •GW190425 likely was a 1.3+2.0 BNS system, improving constraints
- •GW and Multi-messenger Astronomy is Taking Off Join the Revolution!
- •Images, Movies, and Papers at http://ziggy.ucolick.org/sss17a/

Some Thoughts

- •We found the counterpart to a Gravitational Wave source!
- Huge improvements in EOS studies, especially when combining EM and GW • There is a population of high-mass BNS systems •GW190425 likely was a 1.3+2.0 BNS system, improving constraints
- •GW and Multi-messenger Astronomy is Taking Off Join the Revolution!
- •Images, Movies, and Papers at http://ziggy.ucolick.org/sss17a/

Some Thoughts