Tetra-neutron system populated by nuclear reactions using RI-beam

- Motivation
- Idea for populating $4 n$ system at rest
- Exothermic double-charge exchange (${ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}$)
- Experimental result
- Analysis
- Continuum spectrum with correlation
- A simple picture of the reaction
- Remarks (my personal picture on reaction)

S. Shimoura

CNS, University of Tokyo

Historical Review

~ search for a bound state of $4 n \sim$

1960s

fission of Uranium

- No evidence for particle stable state of tetra-neutron

$$
\begin{aligned}
& \text { J. P. Shiffer Phys. Lett. 5, 4, } 292 \text { (1963) } \\
& \text { • Only upper limit of cross section was decided. } \\
& \text { J. E. Unger, et al., Phys. Lett. B 144, } 333 \text { (1984) }
\end{aligned}
$$

Bound state: No clear evidence.

Dieaiup Oi

- Candidates of bound tetra-neutron were observed.
F. M. Marques, et al, Phys. Rev. C 65, 044006 (2002)

2000s

* Theoretical work
- ab-initio calculation NN, NNN interaction

S. C. Piper, Phys. Rev. Lett. 90, 252501 (2003)
- Bound ${ }^{4}$ n cannot exist
- Possible resonance stete $\sim 2 \mathrm{MeV}$

Resonance state : Possibility of the state is still an open and fascinating question.

$\left(\pi^{-}, \pi^{+}\right)$reaction @ $165 \mathrm{MeV} ; \theta_{\pi^{+}}=0$ degree

The peak is due primarily to the transition to the ${ }^{12} \mathrm{Be}$ ground state, with some contribution from the first two excited states as well.

We have measured the momentum spectrum of π^{+} produced at 0° by $165 \mathrm{MeV} \pi^{-}$on ${ }^{4} \mathrm{He}$. A $\Delta P / P=$ 1% beam of $10^{6} \pi^{-}$per second was provided by the P^{3} line of the Los Alamos Meson Physics Facility, and a cell of $910 \mathrm{mg} / \mathrm{cm}^{2}$ liquid ${ }^{4} \mathrm{He}$ with windows of $18 \mathrm{mg} / \mathrm{cm}^{2}$ Kapton served as the target [15]. An

Fig. 3. The experimental results are plotted against the excitation of the final four-neutron state. The solid curve corresponds to the pure four-neutron phase space, while the dotdashed and dashed curves are the four-neutron phase space curves with singlet state interactions in, respectively, one and both of the final state neutron pairs.

[^0]
NS Double charge exchange (DCX) reaction of HI

Tetra-neutron system produced by exothermic double-charge exchange reaction

Almost recoil-less condition with ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ reaction at 200 A MeV (0.63 c)

$\mathrm{n}+\mathrm{p}$ elastic
(a) 200 MeV

SP40 0-400 MEV PP=4459/3452 NP= 6827/4680 RAA 571
NN091 Nucleon-Nucleon 05/09 Arndt[INIJM] 04/26/16

Level diagrams

$q_{\min } \sim 10 \mathrm{MeV} / \mathrm{c}$

Reaction Mechanism

${ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}$

${ }^{4} \mathrm{He} \rightarrow 4 n$

RI Beam Factory at RIKEN

3 injectors + cascade of 4 cyclotrons
\Rightarrow several to $345 \mathrm{MeV} /$ nucleon
A variety of primary beams ($\mathrm{d}(\mathrm{pol})$ to U)

SHARAQ spectrometer

T. Uesaka et al., NIMB B 266 (2008) 4218.
PTEP 2012, 03 C 007 (2012)

Maximum rigidity
Momentum resolution
Angular resolution
Momentum acceptance Angular acceptance

6.8 Tm

$\mathrm{d} p / p=1 / 14700$
$\sim 1 \mathrm{mrad}$
$\pm 1 \%$
~ $\mathbf{5} \mathbf{~ m s r}$

Analysis

- Selection of 4n Events
+ Extracting 2α events @SHARAQ
+ Multi-particle in high-intensity beam

Background process:

Breakup of two ${ }^{8} \mathrm{He}$ in the same beam bunch to two alpha particle Identified by multi-hit in F6-MWDC

- Background Estimation
- Shape in spectrum: random 2α
+ Number of events:

- failure of the multi-particle rejection at MWDC
- multi-particle in one cell of MWDC

Backgrounds after analysis:
Finite efficiency of multi-hit events at F6-MWDC

Experimental Results

Phase Space

$$
\begin{array}{rlr}
\rho(E) & \propto E^{1 / 2} & (2 \text { body }) \\
& \propto E^{2} & (3 \text { body }) \\
& \propto E^{7 / 2} & (4 \text { body })
\end{array}
$$

- Deviation from four-body phase space informs us the final state interaction(s) of subsystem

Transition Probabilities

$$
M_{i f}=\left\langle E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\|O(l s j \tau ; \xi)\| E_{i} J_{i} \pi_{i} T_{i} \xi_{i}\right\rangle
$$

if distortion is insensitive to ω
Cross Section $\propto\left|M_{i f}\right|^{2} ;$ Lifetime $\propto 1 /\left.M_{i f}\right|^{2}$
$O(l s j \tau ; \xi)$: Propety of Reaction / Aciton / Decay Processes

$$
\begin{array}{ll}
\text { sum of } \\
\text { sere-body operator } & O(l s j ; ; \vec{r})=\sum_{i} f\left(r_{i}\right) T\left(\tau_{i}\right)\left[S\left(\sigma_{i}\right) \otimes Y_{l}\left(\hat{r}_{i}\right)\right]_{j}
\end{array}
$$

$\left|E_{i} J_{i} \pi_{i} T_{i} ; \xi_{i}\right\rangle$ and $/$ or $\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle^{i}$ energy eigen functions
$O(l s j \tau ; \xi)\left|E_{i} J_{i} \pi_{i} T_{i} ; \xi_{i}\right\rangle=\oint_{f} M_{i f}\left(E_{f}\right)\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle$ Response
$\left|M_{i f}\left(E_{f}\right)\right|^{2}:$ Energy Spectrum
coherent sum of wave packets made by one-body action "Collective wave packet" (not always energy eigen state), e.g. coherent sum of $1 p-1 h$ for inelastic-type excitation

Reaction time \& excitation energy

 for intermediate-energy "inelastic-type scattering"$$
\omega \ll \mu c^{2}(\gamma-1) \simeq \frac{1}{2} \mu c^{2} \beta^{2}
$$

$$
\begin{aligned}
& \Delta E \cdot \Delta t \sim 2 \pi \hbar \\
& \omega_{\max } \sim \frac{2 \pi \hbar \cdot \beta c}{2 R} \simeq 100 \beta \mathrm{MeV}
\end{aligned}
$$

Off energy shell
$\mathrm{E} / \mathrm{A} \sim 200 \mathrm{MeV}: \beta \sim 0.6: \omega_{\max } \sim 60 \mathrm{MeV}$

$$
\overbrace{\left|M_{i f}\left(E_{f}\right)\right|^{2}: \text { Energy Spectrum }}^{O(l s j \tau ; \xi)\left|E_{i} J_{i} \pi_{i_{i}} T_{i} ; \xi_{i}\right\rangle}=\underset{T_{i f}\left(E_{f}\right)\left|E_{f} J_{f} \pi_{f} T_{f} ; \xi_{f}\right\rangle \text { Response }}{ }
$$

(NS NN case with FSI

Density of State

$$
\begin{aligned}
D\left(E_{\mathrm{nn}}\right) & =\frac{|A(k)|^{2}}{k} ; E_{\mathrm{nn}}=\frac{\hbar^{2} k^{2}}{m_{\mathrm{N}}} \\
A(k) & =\int d r r \Psi(r) \phi_{k}(r)
\end{aligned}
$$

Expand Ψ_{0} with correlated n-n scattering wave $\phi_{k}(r)$ $A(k)$'s are used instead of Fourier component

Effective Range Theory :

$$
\phi_{k}(r) \sim \sin \delta(k) \times f(r) \text { for small } r
$$

Picture of ${ }^{4} \mathrm{He}$ DCX reaction @ 200 A MeV

Direct Part

$$
\begin{aligned}
& \Phi_{0} \propto \mathcal{A}\left[\left(r_{\alpha}^{2}-r_{12}^{2}\right) \exp \left(-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right) \chi(1,2) \chi(3,4)\right] \\
& \propto\left(\frac{4 r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{a^{2}}-\frac{r_{34}^{2}}{a^{2}}\right) \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \chi(1,2) \chi(3,4) \\
& +\frac{4 \vec{r}_{12} \cdot \vec{r}_{34}}{a^{2}} \exp \left[-\frac{r_{\alpha}^{2}}{a^{2}}-\frac{r_{12}^{2}}{2 a^{2}}-\frac{r_{34}^{2}}{2 a^{2}}\right] \vec{X}(1,2) \cdot \vec{X}(3,4) \\
& \vec{r}_{\alpha}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2}-\frac{\vec{r}_{3}+\vec{r}_{4}}{2} \\
& \chi(i, j)=\frac{1}{\sqrt{2}}(\uparrow(i) \downarrow(j)-\downarrow(i) \uparrow(j)) \\
& \vec{X}(i, j)=\left(\begin{array}{c}
\uparrow(i) \uparrow(j) \\
\frac{1}{\sqrt{2}}(\uparrow(i) \downarrow(j)+\downarrow(i) \uparrow(j)) \\
\downarrow(i) \downarrow(j)
\end{array}\right) \\
& 4 n \text { wave packet just } \\
& \text { after DCX } \\
& \Phi_{0} \sim \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2} \Phi\left[(0 \mathrm{~s})^{4}\right]
\end{aligned}
$$

Fourier Transform: $\left(\boldsymbol{r}_{12}, \boldsymbol{r}_{34}, \boldsymbol{r}_{\alpha}\right) \rightarrow\left(\boldsymbol{k}_{12}, \boldsymbol{k}_{34}, \boldsymbol{k}\right)$

$$
\begin{array}{rl}
\int\left|\mathcal{A} \tilde{\Phi}_{0}\right|^{2} d^{3} k d^{3} k_{12} d^{3} k_{34} \delta\left(E-\epsilon-\epsilon_{12}-\epsilon_{34}\right) & \propto X^{11 / 2} \exp (-X) \\
\text { Peak at } X=11 / 2 ; E \sim 60 \mathrm{MeV} & X=E / \epsilon_{a} \quad \epsilon_{a}=\frac{\hbar^{2}}{m_{\mathrm{N}} a^{2}}=11 \mathrm{MeV}
\end{array}
$$

NN FSI

c.f. Continuum spectrum with n - n FSI
L.V. Grigorenko, N.K. Timofeyuk, M.V. Zhukov, Eur. Phys. J. A 19, 187 (2004)

Density of State

$$
\begin{aligned}
D_{n \mathrm{~s}}\left(\epsilon_{\mathrm{nn}}\right) & =\frac{\left|\hat{A}_{n \mathrm{~s}}(k)\right|^{2}}{k}(\text { for } n=1,2) ; \epsilon_{\mathrm{nn}}=\frac{\hbar^{2} k^{2}}{m_{\mathrm{N}}} \\
\hat{A}_{1 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{1 \mathrm{~s}}(r) \phi_{k}(r)=2\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{1 \mathrm{~s}}(k) \\
\hat{A}_{2 \mathrm{~s}}(k) & =\int_{0}^{\infty} d r r \psi_{2 \mathrm{~s}}(r) \phi_{k}(r)=2 \sqrt{\frac{2}{3}}\left(\frac{1}{\sqrt{\pi} a^{3}}\right)^{1 / 2} k A_{2 \mathrm{~s}}(k)
\end{aligned}
$$

$4 n$ wave packet just after DCX $\Phi_{0} \sim \boldsymbol{r}_{1} \cdot \boldsymbol{r}_{2} \Phi\left[(0 \mathrm{~s})^{4}\right]$

Two correlated neutron pairs with weakly correlated

Expand $\mathcal{A} \Phi_{0}$ with correlated n-n scattering wave $\phi_{k}(r)$ $A(k)$'s are used instead of Fourier component

Correlation is taking into account for $2 \mathrm{n}-2 \mathrm{n}$ relative motion by using scattering length

(10) Fit with direct component \& BG

Energy spectrum is expressed by the continuum from the direct decay and (small) experimental background except for four events at $0<E_{4 \mathrm{n}}<2 \mathrm{MeV}$ The Four events suggest a possible resonance at 0.83 ± 0.65 (stat.) ± 1.25 (sys.) MeV with width narrower than 2.6 MeV (FWHM). [4.9 σ significance]
Integ. cross section $\theta_{\mathrm{cm}}<5.4 \mathrm{deg}$:
$3.8^{+2.9}{ }_{-1.8} \mathrm{nb}$

+ likelihood ratio test

$$
\chi_{\lambda}^{2}=-2 \ln [L(\boldsymbol{y} ; \boldsymbol{n}) / L(\boldsymbol{n} ; \boldsymbol{n})]
$$

- Significance:

$$
\begin{gathered}
s_{i}=\sqrt{2\left[y_{i}-n_{i}+n_{i} \ln \left(n_{i} / y_{i}\right)\right]} \\
n_{i}: \text { num. of events in the } i \text { th bin } \\
y_{i}: \text { trial function in the } i \text {-th bin }
\end{gathered}
$$

$\mu^{n} e^{-\mu} / n!\simeq 10^{-6}$ for $\mu=0.07, n=4$

Further experimental approach

- ${ }^{29} \mathrm{~F}$ (knockout 1p) $\rightarrow{ }^{28} \mathrm{O} \rightarrow{ }^{24} \mathrm{O}+4 n$
- ${ }^{8} \mathrm{He}$ (knockout α by proton) $->4 n$
- ${ }^{8} \mathrm{He}$ (knockout proton by proton) $\rightarrow{ }^{7} \mathrm{H} \rightarrow 4 \mathrm{n}+\dagger$
- ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ again for more statistics

All of three can produce recoil-less condition
Three approaches produce different initial wave packets of $4 n$

- resonance/continuum will be different

(1S Experiment for confirmation (2016.6.16-25)

Better statistics and Better accuracy of energy than previous experiment $\left({ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},,^{8} \mathrm{Be}\right) 4 \mathrm{n}\right.$ @ $\left.186 \mathrm{MeV} / \mathrm{u}\right)$ 4 events
$\rightarrow 5$ times or more
Improve efficiencies (redundancy)
$E_{4 \mathrm{n}}=0.83 \pm 0.65$ (stat.) ± 1.25 (sys.) MeV
\rightarrow better than 0.3 MeV both for stat. and syst.
Calibration using ${ }^{1} \mathrm{H}\left({ }^{3} \mathrm{H},{ }^{3} \mathrm{He}\right) \mathrm{n}$ with same rigidity ${ }^{3} \mathrm{H}$ beam ($310 \mathrm{MeV} / \mathrm{u}$) as ${ }^{8} \mathrm{He}$ preliminary achievement : < 100 keV

On-line X image @ SHARAO corrected by beam momentum

Resolution \& Statistics are consistent with expected
\propto momentum ($\sim 6 \mathrm{~mm} / \%$)

(s) Summary (exp.)

- ${ }^{4} \mathrm{He}\left({ }^{8} \mathrm{He},{ }^{8} \mathrm{Be}\right) 4 \mathrm{n}$ has been measured at 190 A MeV at RIBFSHARAQ
- Missing mass spectrum with very few background
- Although statistics is low, spectrum looks two components (continuum + peak)
- Continuum is consistent with direct breakup process from $(0 s)^{2}(0 p)^{2}$ wave packe \dagger
- Four events just above $4 n$ threshold is statistically beyond prediction of continuum + background (4.9 σ significance)
\rightarrow candidate of $4 n$ resonance

$$
\text { at } 0.83 \pm 0.65 \text { (stat.) } \pm 1.25 \text { (sys.) } \mathrm{MeV} ; \Gamma<2.6 \mathrm{MeV}
$$

- Preliminary result of the new experiment looks consistent with the published result.

Recent theoretical works

E. Hiyama et al., PRC 93, 044004 (2016) A.M. Shirokov et al., PRL 117, 182502 (2016)

Too strong attraction is necessary for 4 n resonance, which makes 4 H bound!

FIG. 2. The $4 \rightarrow 4$ scattering phase shifts: parametrization with a single resonance pole (solid line) and obtained directly from the selected NCSM results using Eq. (2) (symbols). The dashed line shows the contribution of the resonance term.

FIG. 3. The same as Fig. 2 but for the parametrization with resonance and false state poles. The dashed-dotted line shows the contribution of the false state pole term.

NCSM calculation w/ DISP16 interaction: No NNN, Non-local

4-body phase shift (HH coordinate) shows resonance around o. 8 MeV .

As Old theoretical work on $\alpha-\alpha$ interaction

J. Hiura \& R. Tamagaki, PTP Suppl. 52, 25 (1972)

Fig. 3. Comparison of three binding forces; the binding potential for the ground state $\left({ }^{1} \Sigma_{g}\right)$ of H_{2}-molecule, the $\alpha-\alpha$ potential (nuclear only) for the ${ }^{8} \mathrm{Be}$ ground state and the two-nucleon potential (effective central) for the deuteron. Relative distance is given in units of the extent of short-range repulsion (R_{c}) and the energy unit is taken as $\hbar^{2} / M_{0} R_{0}{ }^{2}$, where M_{0} is the mass of subunits. For H_{2} and the deuteron, Fig. $2-36$ in Ref. 8) should be referred to. For ${ }^{8} \mathrm{Be}$, we show the S-state potential of Endo et al. shown in Fig. 2. φ^{2} are the resulting probability densities. These figures indicate the intermediate character of the two- α "molecular" states in ${ }^{8} \mathrm{Be}$, in comparison with the other two cases.
C.A. Bertulani \& V. Zelevinsky, JPG 29, 2431 (2003)

Effective core due to Pauli principle (local?)

Fig. 8. Energy dependence of the relative wave functions $\tilde{\chi}_{I}(R)$ and angular momentum and energy dependence of the effective $\alpha-\alpha$ potential $V_{\alpha \alpha}^{\text {(eff) }} . \widetilde{\chi}_{L}(R)$ and $V_{\alpha \alpha}^{\text {(eff) }}$ ($R ; L$) calculated at the two energies $\left(-; E_{\mathrm{cm}}=1 \mathrm{MeV}\right.$ and $\cdots ; E_{\mathrm{im}}=14.45$ MeV) are normalized at $R=1.5 \mathrm{fm}$ in part (a). The arrows at $R \sim 2 \mathrm{fm}$ indicate the equivalent core radius for $L=0$ and 2. Part (b) shows the L-dependences of the contributions to $V_{\alpha \alpha}^{\text {(efi) }}(R ; L)$ from the kinetic, potential and total exchange terms.
Effective repulsive core due to Pauli blocking
Direct potential is deeply attractive W.f. has nodes in the core region orthogonal to the Pauliforbidden state
simple Effective Range treatment may not be adequate

[^0]: J.E. Ungar et al., PLB 144 (1987) 333

