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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.   

Motivation 

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination. 

The problem is that they generally fail when some control parameter in the 
Hamiltonian matrix exceeds some threshold value. 
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We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

A new strategy 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 
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Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 
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We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 
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Perturbation theory 

convergence	region	
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Bose-Hubbard model 

In order to illuminate our discussion with a concrete example, we consider 
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional 
cubic lattice. 

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be 
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Perturbation theory fails at strong attractive coupling 
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Restrict the linear space to the span of three vectors 
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analy-c	con-nua-on	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 
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We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 



16	

The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities. 



Let us define a monodromy transformation T (z) which corresponds to  
traversing a counterclockwise loop in c around the branch point z. 
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Suppose there are k eigenvectors of H(c) which comprise an irreducible 
representation of the monodromy transformation T (z).  Let us label these 
eigenvectors as 

with corresponding eigenvalues   

These eigenvalues will be degenerate at c = z.  The characteristic polynomial 
for H(c) is analytic everywhere.  Hence the monodromy transformation 
generates a cyclic permutation of the eigenvalues.  Without loss of generality,  

We can now define a new basis for the k eigenvectors   
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such that the action of the monodromy transformation is a cyclic 
permutation on the eigenvectors  

We now diagonalize the monodromy transformation and obtain a new basis 
where each basis state is analytic at z 

If we perform eigenvector continuation using these basis states there are no 
convergence problems due to the branch point at z. 

Of course, we don’t know a priori how to construct this new basis.  But if 
we perform eigenvector continuation for all k degenerate eigenvectors 
together, we remove convergence problems due to the branch point at z. 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 
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Network diagram for eigenvector continuation 
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Application: Neutron matter simulations 

We consider lattice effective field theory simulations of the neutron matter at 
the leading order. 

As a challenge to the eigenvector continuation technique, we use a lattice 
action for one-pion exchange that causes severe Monte Carlo sign oscillations. 

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,  
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421] 
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Solve the generalized eigenvalue problem by finding the eigenvalues and 
eigenvectors of 

Use Monte Carlo simulations to compute projection amplitudes 

Eigenvector continuation 
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Eigenvector continuation for fourteen neutrons (L = 8 fm) 
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Adiabatic projection method 

The adiabatic projection method consists of two parts.  In the first part, 
we use Euclidean time projection to derive an ab initio low-energy cluster 
Hamiltonian, called the adiabatic Hamiltonian. 

In the second part, we use the adiabatic Hamiltonian to compute 
scattering phase shifts or reaction amplitudes. 
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When working with states in the continuum, we can also combine 
eigenvector continuation with the adiabatic projection method. 
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Use projection Monte Carlo to propagate cluster wave functions in 
Euclidean time to form dressed cluster states 
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We then evaluate matrix elements of the full microscopic Hamiltonian 
with respect to the dressed cluster states, 

Since the dressed cluster states are in general not orthogonal, we  
construct a norm matrix given by the inner product 



The adiabatic Hamiltonian is defined by the matrix product 

We now treat the adiabatic Hamiltonian as an effective two-particle 
Hamiltonian for scattering and reaction calculations. 
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If we combine the adiabatic projection method with eigenvector 
continuation, then the dressed cluster states have the form 

We evaluate matrix elements of the full microscopic Hamiltonian at the 
target coupling using the dressed cluster states, 

The norm matrix is given by the inner product 
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The adiabatic Hamiltonian is given by the matrix product 

We had already been using this formalism in its simplest form for the 
Coulomb interaction.  We were setting the electromagnetic coupling for 
the dressed cluster states to zero and setting the target electromagnetic 
coupling to the physical value. 

But now the eigenvector continuation formalism provides a complete 
theoretical framework that can be systematically improved. 
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Summary 

When a control parameter in the 
Hamiltonian matrix is varied smoothly, the 
extremal eigenvectors do not explore the 
large dimensionality of the linear space. 
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The eigenvector trajectory lives on a low-
dimensional manifold and we can determine 
the desired eigenvector by “learning” a set 
of basis vectors for the manifold. 



Outlook 

Numerous applications to quantum Monte 
Carlo simulations for systems with sign 
oscillations.  Now being implemented in 
nuclear lattice effective field theory 
simulations of nuclear structure and 
reactions. 
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Possible applications to generate non-
perturbative correlations in many-body 
perturbation theory.  Possible applications 
to physical quark mass extrapolations in 
lattice quantum chromodynamics. 


