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Motivation

� QCD at nonzero baryon chemical potential cannot be simulated on

the lattice, but phase quenched QCD, also known as QCD at

nonzero isospin chemical potential, can be simulated by

probabilistic methods.

� Large pion densities may occur in neutron stars and heavy ion

collisions.

� A better understanding of discretization errors helps us to

extrapolate to the continuum limit.

� Nuclear matter as a theory of pions.
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I. QCD at Nonzero Isospin Chemical Potential

Basic physics

Dirac spectra

Chiral Lagrangian

Phases, Hirschegg 2016 – p. 6/36



QCD at Nonzero Isospin Chemical Potential

ZQCD(m,µI , T ) =
∑

k

e−β(Ek−nkµI),

where nk is the isospin charge of state k .

� The lightest states are the pions with Ek/nk = mπ/2 .

� When µI < mπ/2 only states with nk = 0 contribute to the low

temperature partition function, and the partition function does not

depend on µI .

� The chiral condensate does not depend on µI for µI < mπ/2 .

� The pion masses are µI -dependent. The pole mass of the

charged pions follows from −(p0 − µI)
2 +m2

π = 0 , so that the

charged pions behave as mπk
(µ) = mπk

+ qkµI .
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Bose Condensed Phase

� For µ > mπ/2 it is advantageous to create as many pions as

possible, and they Bose condense.

� With a repulsive two-body interaction we have

Evac =
nI
2
mπ +

cI
2
n2I ,

so that

µI =
dEvac

dµI

=
1

2
mπ + cInI .
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QCD at Nonzero Isospin Chemical Potential

QCD at nonzero isospin chemical potential is the same as QCD at

nonzero baryon chemical potential with the fermion determinant

replaced by its absolute value (the phase quenched QCD partition

function),

ZQCD(µI) = 〈det(D +m+ µIγ0) det(D +m− µIγ0)〉

= 〈| det(D +m+ µIγ0)|
2〉.

Alford-Kapustin-Wilczek-1999

Therefore this partition function can be simulated on the lattice using

probabilistic methods. A phase transition to a Bose condensed phase

takes place at µ = mπ/2 .

KSTVZ-2000, Toublan-JV-2000, Son-Stephanov-2000
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Phase Diagram at Nonzero Isospin Chemical
Potential
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Phase diagram of QCD at nonzero isospin chemical potential (de

Forcrand-Stephanov-Wenger-2007).

Agrees with earlier work by Kogut and Sinclair.
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Lattice QCD Dirac Spectra at µI 6= 0

The absolute value of the the fermion determinant does not affect the

eigenvalue density of the Dirac operator very much, and behaves the

same as the eigenvalue density of the quenched Dirac operator.

The Dirac operator at nonzero chemical potential D = γνDν + µγ0 is

nonhermitian with eigenvalues scattered in the complex plane.

Scatter plot of Dirac eigenvalues
Barbour et al. 1986
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Interpretation of the Condensation Phase
Transition in Terms of Dirac Spectra

quark mass m

Scatter plot of Dirac eigenvalues

mc

µ2 =
1

4
m2

π =
mΣ

2F 2
,

can also be written as

m =
2µ2F 2

Σ
.

= 2µ2F 2

Σ

The same result is obtaied from a mean field analysis of the phase

quenched partition function.

Toublan-JV-2000
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Spontaneous Symmetry Breaking Pattern

� Normal phase: SUL(2)× SUR(2) → SUV (2)

� The Isospin chemical potential occurs as µIτ3 and breaks

SUV (2) → UV (1) .

� In the condensed phase, the chiral condensate becomes charged

under isospin and spontaneously breaks UV (1) . This gives rise to

one exactly massless Goldstone boson.
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Chiral Lagrangian

In the limit of light quark masses, QCD at nonzero isospin chemical

potential reduces to a theory of pions interacting by a chiral

Lagrangian.

The chemical potential appears in the QCD Lagrangain as an

imaginary vector potential. The QCD partition function is invariant

under local gauge transformations of this vector potential, and the

chiral Lagrangian also should have this gauge invariance resulting in

L =
F 2
π

4
Tr∇µU∇µU

† −
1

2
mΣTr(U + U †),

∇0Σ = ∂0Σ−
1

2
µI [τ3,Σ].

Kogut-Stephanov-Toublan-1999, KSTVZ-2000, Toublan-JV-2000,

Son-Stephanov-2000

The important point is that the chemical potential does not introduce

extra parameters.
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Detmold-Orginos-Shi-2012, Kamikado-Strodthhof-von Smekal-Wambach-2012
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II. Phases of Wilson Fermions

Spectral Properties of Wilson Fermions

Aoki Phase

First Order Scenario
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Wilson Dirac operator

Wilson introduced the Wilson term to eliminate doublers

DW =
1

2
γµ(∇µ +∇∗

µ)−
1

2
a∇∗

µ∇µ ≡ D +W.

{DW , γ5} 6= 0.

DW = γ5D
†
W γ5.

Block structure

DW =

(

aA id

id† aB

)

with A†
= A, B†

= B.

W8a
2

m

D
W
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Gap of the Wilson Dirac Spectrum

Structure of the Wilson Dirac operator

DW =





aA C

−C† aB



 with A† = A, B† = B.

For a = 0 we have that ‘

γ5(DW +m) =





m C

C† m



 .

By diagonalizing C we find that the eigenvalues are given by

(m− λ)(−m− λ)− c∗kck = 0 =⇒ λ = ±
√

m2 + c∗kck

That is why γ5(DW +m) has a gap [−m,m] for a = 0 . For a 6= 0

states intrude inside the gap.
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Spectrum of the Hermitian Wilson Dirac
Operator

D5 ≡ γ5(DW +m) = D†
5.

3/2

λ0

ρ (λ)
5

D
5

m
2

(1−(8Wa /m)   )
2/3

The eigenvalues of D5 are NOT paired as ±λk .
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Lattice Results for the Wilson Dirac Spectrum
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Spectral density of γ5(DW +m) on a 48× 243 lattice. Lüscher-2007

� Dirac spectrum has a gap.

� A Gaussian tail intrudes inside the gap.
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Phase Transition for Wilson Fermions

� A phase transition occurs when the quark mass hits the cloud of

eigenvalues.

� Since detDW = det γ5DW , the gap of the Hermitian Dirac operator

has to close as well at this point.

� The new phase is known as the Aoki phase.
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Onset of the Aoki Phase

W

8a
2

m

W

D

W

λ0

ρ (λ)
5

D
5

m 2− 8a

(Used units where m2
π = m )

A second order phase transition to the Aoki phase occurs at

m2
π = 8Wa2 .
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Difference Between Spectra of the Wilson Dirac
Operator and the Dirac operator at µI 6= 0

� At nonzero chemical potential we still have that {γ5, D(µ)} = 0 so

that the complex eigenvalues of D(µ) occurs in pairs ±λk .

� Because D†
W = γ5DW γ5 , its complex eigenvalues occur in

complex conjugate pairs.

� The spectrum of DW is not constrained by the imaginary axis and

can fluctuate perpendicular to this axis.
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Spontaneous Breaking of Isospin and Parity

Since γ5DW is Hermitian, the two flavor partition function is positive

definite and can be simulated by probabilistic methods.

When the gap is closed, the condensate corresponding to γ5DW is

given by the discontinuity

Tr
1

γ5(DW +m) + is
− Tr

1

γ5(DW +m)− is

=
∑

k

−2is

λ2k + s2

= −2πiρ(0).

This corresponds to the chiral condensate

〈ψ̄γ5τ3ψ〉 6= 0.
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Symmetry Breaking Pattern

Therefore the vector symmetry is broken spontaneously according to

SUV (2) → UV (1).

Therefore, the Aoki phase has two massless Goldstone bosons with a

nonzero isospin charge.
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Caveats

� This argument assumes that the fermion determinant does not

affect the cloud of eigenvalues. Therefore, in the quenched case,

there always is a transition to the Aoki phase in the approach to

the chiral limit.

� For dynamical fermions there will be a feed back from the fermion

determinant. Configurations with eigenvalues close to the quark

mass are suppressed.

� However, the Wilson Dirac operator is nonhermitian and

eigenvalues are not constrained to the imaginary axis in any way.
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First Order Scenario and Dirac Spectra

� Because of the fermion determinant the eigenvalues will be

repelled from the quark mass.

� The eigenvalues of the Wilson Dirac operator can move

perpendicular to the imaginary axis.

� When the quark mass crosses zero the Dirac spectrum jumps to

the other side of the imaginary axis. This results in a first order

phase transition.

� This is known as the first order scenario.

Sharpe-Singleton-1998
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First Order Scenario and Collective Fluctuations

m m

The fuzzy string of eigenvalues cannot move through the mass

because the fermion determinant would vanish at this point. This gives

a first order phase transition.

Because the Dirac eigenvalues are at a finite distance from the quark

mass, the pion mass is always finite.
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Chiral Lagrangian for Wilson Fermions

Up to low-energy constants, the chiral Lagrangian for Wilson fermions

is uniquely determined by the transformation properties of QCD. Since

the Wilson term has the same invariance properties as the mass

matrix one easily finds

L =
F 2

4
Tr∂µU∂µU

† −
1

2
mV ΣTr(U + U †)

+a2VW8Tr(U
2 + U−2) + a2W6[Tr(U + U †)]2 + a2W7[Tr(U − U †)]2.

Sharpe-Singleton-1998, Rupak-Shoresh-2002,

Bär-Rupak-Shoresh-2004,Damgaard-Splittorff-JV-2011

� This Lagrangian is uniquely determined by the transformation

properties of the QCD partition function (spurion formalism).
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� III. Wilson Fermions at Nonzero Isospin
Chemical Potential

Chiral Lagrangian

Symmetries

Phase Diagram
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Wilson Fermions at Nonzero Isospin Chemical
Potential

� The Aoki phase has two Goldstone bosons with nonzero isospin

charge.

� They will condense for an infinitesimal isospin chemical potential.

� In the Aoki phase the Wilson QCD partition function is nonanlytic

at µI = 0 .
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Chiral Lagrangian

It is clear how to write down the chiral Lagrangian. Just replace the

derivatives in the Wilson chiral Lagrangian by covariant derivatives.

The phases of this Lagrangian can be determined by mean field theory.
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What Happens to the Aoki Phase?

At nonzero isospin chemical poten-

tial, the Dirac operator

γ5(DW c+m+ µγ0)

becomes nonhermitian.

i s

〈ψ̄γ5τ3ψ〉 = lim
s→0

lim
V→∞

∑

k

−2is

λ2k + s2
= 0.
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Critical Value of the Pion Mass

� A nonzero µI broadens the cloud of eigenvalues.

� The quark mass enters the cloud of eigenvalues at

m2
π = 4µ2

I + 16Wa2.

� Inside this phase the UV (1) symmetry is spontaneously broken

and we have one exactly massless Goldstone boson as is the case

for a = 0 .
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Phase Diagram
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Phase I : Condensed phase with one exactly massless Goldstone boson.

Phase III : Normal phase

Phase II : Phase with spontaneously broken parity and isospin,

but all pions are massive because µIτ3 breaks isospin.

An imaginary chemical potential does not change the width

of the strip of eigenvalues.

Janssen-Kieburg-Splittorff-JV-Zafeiropoulos-2015
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IV. Conclusions

� The phases of QCD at nonzero isospin chemical potential as well

as of QCD with Wilson fermions can be understood in terms of

Dirac spectra. This complements the use of chiral Lagrangians

and mean field theory.
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IV. Conclusions

� The phases of QCD at nonzero isospin chemical potential as well

as of QCD with Wilson fermions can be understood in terms of

Dirac spectra. This complements the use of chiral Lagrangians

and mean field theory.

� The Aoki phase is destroyed by an infinitesimally small isospin

chemical potential.

� In the chiral limit, the Wilson QCD partition function is nonanalytic

at µI = 0 .
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