Nuclear matter from an effective lattice theory of heavy QCD

A 3d effective theory for heavy QCD: Strong coupling + hopping expansions

- Simulation results

Solution by analytic linked cluster expansion
The nuclear equation of state in the continuum

The lattice-calculable region of the phase diagram

μ

Sign problem prohibits direct simulation, circumvented by approximate methods: reweigthing, Taylor expansion, imaginary chem. pot., need $\mu / T \lesssim 1 \quad\left(\mu=\mu_{B} / 3\right)$

- No critical point in the controllable region, some signals beyond
- Complex Langevin: lots of progress, but not in all parameter space, no "guarantees"

New computational avenues in LQCD:

"(Wall)Time is Money (CPU hrs)"

CPU

GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities? Effective theories!

Effective lattice theory for heavy and dense QCD

with M.Fromm, J.Langelage, S.Lottini, M.Neuman, J.Glesaaen

Two-step treatment:
I. Calculate effective theory analytically
II. Simulate effective theory

Step I.: split temporal and spatial link integrations:

$$
Z=\int D U_{0} D U_{i} \operatorname{det} Q e^{S_{g}[U]} \equiv \int D U_{0} e^{-S_{e f f}\left[U_{0}\right]}=\int D L e^{-S_{e f f}[L]}
$$

Spatial integration after analytic strong coupling and hopping expansion

Truncation valid for heavy quarks on reasonably fine lattices, $a \sim 0.1 \mathrm{fm}$

Step II.: Mild sign problem, complex Langevin, Monte Carlo Check in SU(2): Scior, von Smekal I5

New Step II.: Analytic solution by cluster expansion!

Starting point: Wilson's lattice Yang-Mills action

Partition function; link variables as degrees of freedom

$$
Z=\int \prod_{x, \mu} d U(x ; \mu) \exp \left(-S_{g}[U]\right) \equiv \int D U \exp \left(-S_{g}[U]\right)
$$

Wilson's gauge action

$$
S_{g}[U]=\sum_{x} \sum_{1 \leq \mu<\nu \leq 4} \beta\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{p}\right) \equiv \sum_{p} S_{p} \quad \beta=\frac{2 N}{g^{2}}
$$

Plaquette: $\quad \square \rightarrow 1+i a^{2} g F_{\mu \nu}-\frac{a^{4} g^{2}}{2} F_{\mu \nu} F^{\mu \nu}+O\left(a^{6}\right)+\ldots$

$$
U_{\mu}(x)=\mathrm{e}^{-\mathrm{i} \operatorname{ig} A_{\mu}(x)}
$$

$$
T=\frac{1}{a N_{t}} \quad \text { continuum limit } \quad a \rightarrow 0, N_{t} \rightarrow \infty
$$

Small $\beta(a) \Rightarrow$ small T

LO 3d effective theory for lattice YM

What remains is an interaction between Polyakov Loops

$$
-S_{1}=u^{N_{\tau}} \sum_{\langle i j\rangle} \operatorname{tr} W_{i} \operatorname{tr} W_{j}
$$

Character expansion:

$$
u=\frac{\beta}{18}+O\left(\beta^{2}\right)<1
$$

- larger distances between loops, higher power of loops
- higher representations of loops
decorations of LO graphs by additional plaquettes

Effective one-coupling theory for $\mathrm{SU}(3) \mathrm{YM}$

Langelage, Lottini, O.P. IO

$$
(\mathrm{L}=\mathrm{Tr} \mathrm{~W})
$$

$$
\begin{aligned}
Z= & \int[d L] \exp \left[-S_{1}+V_{S U(3)}\right] \\
= & \int[d L] \prod_{\langle i j\rangle}\left[1+2 \lambda_{1} \operatorname{Re}\left(L_{i} L_{j}^{*}\right)\right] * \\
& * \prod_{i} \sqrt{27-18\left|L_{i}\right|^{2}+8 \operatorname{Re} L_{i}^{3}-\left|L_{i}\right|^{4}}
\end{aligned}
$$

Resummations: $\quad \sum_{\langle i j\rangle}\left(\lambda_{1} L_{i} L_{j}-\frac{\lambda_{1}^{2}}{2} L_{i}^{2} L_{j}^{2}+\frac{\lambda_{1}^{3}}{3} L_{i}^{3} L_{j}^{3}-\ldots\right)=\sum_{\langle i j\rangle} \ln \left(1+\lambda_{1} L_{i} L_{j}\right)$

$$
\lambda\left(u, N_{\tau} \geq 5\right)=u^{N_{\tau}} \exp \left[N_{\tau}\left(4 u^{4}+12 u^{5}-14 u^{6}-36 u^{7}+\frac{295}{2} u^{8}+\frac{1851}{10} u^{9}+\frac{1055797}{5120} u^{10}\right)\right]
$$

Numerical results for $\mathrm{SU}(3)$, one coupling

Order-disorder transition =Z(3) breaking

Mapping back to 4d finite TYang-Mills

Inverting
$\lambda_{1}\left(N_{\tau}, \beta\right) \rightarrow \beta_{c}\left(\lambda_{1, c}, N_{\tau}\right)$
...points at reasonable convergence

SU(3)

Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.
-using non-perturbative beta-function ($4 \mathrm{~d} T=0$ lattice)
-all data points from one single 3d MC simulation!

One coupling: What does and does not work?

G.Bergner, J.Langelage, O.P. I4, I5

Correlation functions and spectrum:

couplings over large distances needed

Thermodynamics and critical coupling: YES
partition function needed, local!

Including dynamical Wilson fermions

Integrate the Grassmann variables $\psi, \bar{\psi}$:

$$
S=S_{\text {gauge }}-N_{f} \operatorname{Tr} \log (\mathbb{1}-\kappa H)
$$

Expand in the hopping parameter $\kappa=1 /(2 a M+8)$

$$
\begin{aligned}
Z_{\mathrm{eff}}\left(\lambda_{1}, h_{1}, \bar{h}_{1} ; N_{\tau}\right)= & \int[\mathrm{d} L]\left(\prod_{<i j>}\left[1+2 \lambda_{1} \operatorname{Re} L_{i} L_{j}^{*}\right]\right) \\
& (\prod_{x} \underbrace{\operatorname{det}\left[\left(1+h_{1} W_{x}\right)\left(1+\bar{h}_{1} W_{x}^{\dagger}\right)\right]^{2 N_{f}}}_{\equiv Q\left(L_{x}, L_{x}^{*}\right)^{N_{f}}})
\end{aligned}
$$

Corrections: exact expand in spatial hops

$$
\begin{aligned}
\operatorname{det}[Q] & \equiv \operatorname{det}\left[Q_{\text {stat }}\right] \operatorname{det}\left[Q_{\text {kin }}\right] \\
\operatorname{det}\left[Q_{\text {kin }}\right] & =\operatorname{det}\left[1-(1-T)^{-1}\left(S^{+}+S^{-}\right)\right] \\
& \equiv \operatorname{det}[1-P-M]=\exp [\operatorname{Tr} \ln (1-P-M)]
\end{aligned}
$$

Fromm, Langelage, Lottini, Neuman, Glesaaen, O.P. I2-I5

reabsorbed in gauge part: $\left\{\begin{array}{l}\beta \rightarrow \beta+\mathcal{O}\left(\kappa^{4}\right) \\ u(\beta) \rightarrow u(\beta, \kappa)\end{array}\right.$

LO Polyakov "magnetic" term ~

$$
\left\{\begin{array}{l}
\underbrace{\left(2 \kappa e^{+a \mu}\right)^{N_{\tau}}}_{h_{1}} L \\
\underbrace{\left(2 \kappa e^{-a \mu}\right)^{N_{\tau}}}_{h_{1}} L^{*}
\end{array}\right.
$$

higher corrections to the above:

$$
h_{1}=\left(2 \kappa e^{a \mu}\right)^{N_{\tau}}\left[1+\mathcal{O}\left(k^{2}\right) f(u)+\ldots\right]
$$

other (suppressed) terms, such as $h_{2}\left(L_{x} L_{x+i}\right)$,

$$
h_{2} \sim\left(2 \kappa e^{a \mu}\right)^{2 N_{\tau}} \kappa^{2} N_{\tau}
$$

Simplification for $\mathrm{T}=0$, only leading powers in Nt , fermion contribution:

$$
\begin{aligned}
-S_{\text {eff }} & =-\log \sum_{\vec{x}}\left(1+h_{1} \operatorname{Tr} W_{\vec{x}}+h_{1}^{2} \operatorname{Tr} W_{\vec{x}}^{\dagger}+h_{1}^{3}\right)^{2}-2 h_{2} \sum_{\vec{x}, i} \operatorname{Tr} \frac{h_{1} W_{\vec{x}}}{1+h_{1} W_{\vec{x}}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}+i}}{1+h_{1} W_{\vec{x}+i}} \\
& +2 \frac{\kappa^{4} N_{\tau}^{2}}{N_{c}^{2}} \sum_{\vec{x}, i} \operatorname{Tr} \frac{h_{1} W_{\vec{x}}}{\left(1+h_{1} W_{\vec{x}}\right)^{2}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}+i}}{\left(1+h_{1} W_{\vec{x}+i}\right)^{2}} \\
& +\frac{\kappa^{4} N_{\tau}^{2}}{N_{c}^{2}} \sum_{\vec{x}, i, j} \operatorname{Tr} \frac{h_{1} W_{\vec{x}}}{\left(1+h_{1} W_{\vec{x}}\right)^{2}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}-i}}{1+h_{1} W_{\vec{x}-i}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}-j}}{1+h_{1} W_{\vec{x}-j}} \\
& +2 \frac{\kappa^{4} N_{\tau}^{2}}{N_{c}^{2}} \sum_{\vec{x}, i, j} \operatorname{Tr} \frac{h_{1} W_{\vec{x}}}{\left(1+h_{1} W_{\vec{x}}\right)^{2}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}-i}}{1+h_{1} W_{\vec{x}-i}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}+j}}{1+h_{1} W_{\vec{x}+j}} \\
& +\frac{\kappa^{4} N_{\tau}^{2}}{N_{c}^{2}} \sum_{\vec{x}, i, j} \operatorname{Tr} \frac{h_{1} W_{\vec{x}}}{\left(1+h_{1} W_{\vec{x}}\right)^{2}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}+i}}{1+h_{1} W_{\vec{x}+i}} \operatorname{Tr} \frac{h_{1} W_{\vec{x}+j}}{1+h_{1} W_{\vec{x}+j}}
\end{aligned}
$$

Current state of the art for fermionic sector: $u^{5} \kappa^{8}$

The deconfinement transition for heavy quarks

NLO: $\sim \kappa^{2}$

eff. theory 4 d MC,WHOT 4 d MC, de Forcrand et al

N_{f}	M_{c} / T	$\kappa_{c}\left(N_{\tau}=4\right)$	$\kappa_{c}(4)$, Ref. [23]	$\kappa_{c}(4)$, Ref. [22]
1	$7.22(5)$	$0.0822(11)$	$0.0783(4)$	~ 0.08
2	$7.91(5)$	$0.0691(9)$	$0.0658(3)$	-
3	$8.32(5)$	$0.0625(9)$	$0.0595(3)$	-

Accuracy $\sim 5 \%$, predictions for $\mathrm{Nt}=6,8, \ldots$ available!

Fromm, Langelage, Lottini, O.P. II

Continuum:
Friman, Lo, Redlich 14
Fischer, Lücker, Pawlowski I5

The fully calculated deconfinement transition

"Heavy QCD" phase diagram

Fromm, Langelage, Lottini, O.P. II

Cold and dense QCD: static strong coupling limit

Fromm, Langelage, Lottini, Neuman, O.P., PRL I3

For T=0 (at finite density) anti-fermions decouple $N_{f}=1, h_{1}=C, h_{2}=0$

$$
\begin{aligned}
& C_{f} \equiv\left(2 \kappa_{f} e^{a \mu_{f}}\right)^{N_{\tau}}=e^{\left(\mu_{f}-m_{f}\right) / T}, \bar{C}_{f}\left(\mu_{f}\right)=C_{f}\left(-\mu_{f}\right) \\
& \left.Z(\beta=0) \xrightarrow{T \rightarrow 0} \prod_{f} \int \mathrm{~d} W\left(1+C_{f} L+C_{f}^{2} L^{*}+C_{f}^{3}\right)^{2}\right]^{N_{s}^{3}}
\end{aligned}
$$

$$
=\left[1+4 C^{N_{c}}+C^{2 N_{c}}\right]^{N_{s}^{3}} \quad \text { Free gas of baryons! }
$$

Quarkyonic?

$$
n=\frac{T}{V} \frac{\partial}{\partial \mu} \ln Z=\frac{1}{a^{3}} \frac{4 N_{c} C^{N_{c}}+2 N_{c} C^{2 N_{c}}}{1+4 C^{N_{c}}+C^{2 N_{c}}} \quad \lim _{\mu \rightarrow \infty}\left(a^{3} n\right)=2 N_{c}
$$

Sivler blaze property + saturation!

$$
\lim _{T \rightarrow 0} a^{3} n=\left\{\begin{array}{cc}
0, & \mu<m \\
2 N_{c}, & \mu>m
\end{array}\right.
$$

$$
N_{f}=2
$$

$$
\begin{align*}
z_{0}= & \left(1+4 h_{d}^{3}+h_{d}^{6}\right)+\left(6 h_{d}^{2}+4 h_{d}^{5}\right) h_{u}+\left(6 h_{d}+10 h_{d}^{4}\right) h_{u}^{2}+\left(4+20 h_{d}^{3}+4 h_{d}^{6}\right) h_{u}^{3} \\
& +\left(10 h_{d}^{2}+6 h_{d}^{5}\right) h_{u}^{4}+\left(4 h_{d}+6 h_{d}^{4}\right) h_{u}^{5}+\left(1+4 h_{d}^{3}+h_{d}^{6}\right) h_{u}^{6} . \tag{3.11}
\end{align*}
$$

Free gas of baryons: complete spin flavor structure of vacuum states!

Cold and dense, interacting: onset to nuclear matter

Fromm, Langelage, Lottini, Neuman, O.P., PRL I3

$m_{\pi}=20 \mathrm{GeV}, T=10 \mathrm{MeV}, a=0.17 \mathrm{fm}$

Silver blaze property
no dependence on chem. pot. until onset

Lattice saturation

Pauli principle, strongly limits density!

Screening of Polyakov loop
But no deconfinement!
$\beta=5.7, \kappa=0.0000887, N_{\tau}=116$
$\lambda_{1}\left(\beta, \kappa, N_{\tau}\right) \sim 10^{-26}$

Continuum approach

- Continuum approach ~a as expected for Wilson fermions
- Cut-off effects grow rapidly beyond onset transition
- Finer lattice necessary for larger density to avoid saturation

Cold and dense, interacting: onset to nuclear matter

continuum extrapolated

$$
m_{\pi}=20 \mathrm{GeV}
$$

Effect of binding between baryons:

Binding energy per nucleon:

$$
\begin{aligned}
& \mu_{c}<m_{B} \\
& \epsilon=\frac{\mu_{c}-m_{B}}{m_{B}} \sim 10^{-3}
\end{aligned}
$$

Transition is smooth crossover:

$$
T>T_{c} \sim \epsilon m_{B}
$$

The equation of state for nuclear matter, $\mathrm{Nf}=2$

$$
n_{B} / m_{B}^{3}
$$

Binding energy per nucleon

Minimum: access to nucl. binding energy, nucl. saturation density!
$\epsilon \sim 10^{-3} \quad$ consistent with the location of the onset transition

Liquid gas transition: first order + endpoint

For sufficiently light quarks: $\kappa \sim 0.1$

- Coexistence of vacuum and finite density phase: 1st order
- If the temperature $T=\frac{1}{a N_{T}}$ or the quark mass is raised this changes to a crossover nuclear liquid gas transition!!!

Convergence of the effective theory

hopping expansion

strong coupling expansion κ^{8}

Linked cluster expansion of effective theory

Consider spin model with 2-point interactions

$$
\mathcal{Z}=\int \mathcal{D} \phi e^{-S_{0}[\phi]+\frac{1}{2} \sum_{x, y} \sum_{i, j} \phi_{i}(x) v_{i j}(x, y) \phi_{j}(y)} \quad W=-\ln \mathcal{Z}
$$

Linked cluster expansion of "free energy":

$$
\begin{aligned}
W=W_{0} & +\frac{1}{2} \sum_{x, y} \sum_{i, j} M_{i}(x) v_{i j}(x, y) M_{j}(y) \\
& +\frac{1}{2} \sum_{i, j, k} \sum_{x, y, z} M_{i}(x) v_{i j}(x, y) M_{j k}(y) v_{k l}(y, z) M_{l}(z) \\
& +\frac{1}{4} \sum_{i, j} \sum_{x, y} M_{i j}(x) v_{i k}(x, y) v_{j l}(x, y) M_{k l}(y)+\mathcal{O}\left(v^{3}\right) \\
= & +\frac{1}{2} \bullet+\frac{1}{2}
\end{aligned}
$$

Required generalization: n-point interactions

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} \phi e^{-S_{0}[\phi]+\frac{1}{2} \sum v_{i j}(x, y) \phi_{i}(x) \phi_{j}(y)+\frac{1}{3!} \sum u_{i j k}(x, y, z) \phi_{i}(x) \phi_{j}(y) \phi_{k}(z)+\ldots} \\
W & =\bullet+\frac{1}{2} \bullet+\frac{1}{2}
\end{aligned}
$$

Mapping of the effective theory by embedding:

Fun with diagrams....

Compare continuum extrapolated results

through $u^{5} \kappa^{8}$

Equation of state of heavy nuclear matter, continuum

EoS fitted by polytrope, non-relativistic fermions!
Can we understand the pre-factor? Interactions, mass-dependence...

Resummations + reach in mass range

Resumming long range non-overlapping chains, gain in mass range "sobering"

Conclusions

- Nuclear matter directly from QCD in "one-parameter distortions":
- Heavy dense QCD near continuum with fully analytic methods
- Chiral dense QCD on coarse lattices (not shown here)

Larger than nuclear densities out of reach because of lattice saturation

Backup slides

Strong coupling expansion (pure gauge)

Wilson action: $\quad S_{g}[U]=\sum_{x} \sum_{1 \leq \mu<\nu \leq 4} \beta\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{p}\right) \equiv \sum_{p} S_{p} \quad$ Plaquette action
Character of rep. r: $\quad \chi_{r}(\underset{\uparrow}{U})=\operatorname{Tr} D_{r}(U)$ group element representation matrix of group element

Character expansion: $\quad \exp -S_{p}=c_{0}(\beta)\left[1+\sum_{r \neq 0} d_{r} c_{r}(\beta) \chi_{r}\left(U_{p}\right)\right]$, convergent inside radius of \mathbf{c}.

Expansion coefficients: combinations of modified Bessel fcns. for $\operatorname{SU}(\mathrm{N})$
$c_{f} \equiv u=\frac{\beta}{18}+O\left(\beta^{2}\right)<\mathbf{l}$, all others can be expressed by fundamental one

Wilson 74: static potential, string tension Münster, Seo 80-82: glueball masses,
Polonyi, Szachlanyi 82: strong coupling limit of free energy, effective action, Green 83: finite T string Langelage, Münster, O.P. 08: strong coupling series for finite T

Subleading couplings

Subleading contributions for next-to-nearest neighbours:

$$
\begin{aligned}
& \lambda_{2} S_{2} \propto u^{2 N_{\tau}+2} \sum_{[k]]}^{\prime} 2 \operatorname{Re}\left(L_{k} L_{l}^{*}\right) \quad \text { distance }=\sqrt{2} \\
& \lambda_{3} S_{3} \propto u^{2 N_{\tau}+6} \sum_{\{m n\}}^{\prime \prime} 2 \operatorname{Re}\left(L_{m} L_{n}^{*}\right) \quad \text { distance }=2
\end{aligned}
$$

as well as terms from loops in the adjoint representation:

$$
\lambda_{a} S_{a} \propto U^{2 N_{T}} \sum_{<i j>} \operatorname{Tr}^{(a)} W_{i} \operatorname{Tr}^{(a)} W_{j} \quad ; \quad \operatorname{Tr}^{(a)} W=|L|^{2}-1
$$

Comparison with 4d Monte Carlo

Relative accuracy for β_{c} compared to the full theory
SU(2)

Note: influence of additional couplings checked explicitly!

