Hyperons in Neutron stars and supernova Cores

Micaela Oertel

micaela.oertel@obspm.fr

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris/ Université Paris Diderot

QCD matter: dense and hot, Hirschegg, January 18 - 22, 2016

Collaborators: A. Fantina, F. Gulminelli, J. Novak, B. Peres, C. Providencia, A. Raduta

< □ > < ^[] >

bservatoire

Some general remarks on the EoS of hot and dense matter

- Some general remarks on the EoS of hot and dense matter
- **2** Constraints on the EoS

< 🗇 🕨

- Some general remarks on the EoS of hot and dense matter
- **2** Constraints on the EoS
- **3** Why wondering about "exotic" matter?

- Some general remarks on the EoS of hot and dense matter
- **2** Constraints on the EoS
- **3** Why wondering about "exotic" matter?
- **4** The hyperon puzzle in Neutron stars

- Some general remarks on the EoS of hot and dense matter
- **2** Constraints on the EoS
- ³ Why wondering about "exotic" matter?
- **4** The hyperon puzzle in Neutron stars
- **6** Hyperons in hot and dense matter

- Some general remarks on the EoS of hot and dense matter
- **2** Constraints on the EoS
- ³ Why wondering about "exotic" matter?
- **4** The hyperon puzzle in Neutron stars
- **6** Hyperons in hot and dense matter
- 6 SUMMARY

MATTER COMPOSITION AND EQUATION OF STATE

Large domains in density, temperature and asymetry have to be covered and matter composition changes dramatically throughout !

- 1. Core-collapse supernovae
 - Starting point : onion like structure with iron/nickel core+ degenerate electrons
 - Upon compression (+deleptonisation) : heavier and more neutron rich nuclei
 - For $n_B \gtrsim n_0/2$: nuclei disappear in favor of free nucleons
 - Composition of matter above n_0 and at $T\gtrsim 10~{\rm MeV}$ relatively unknown

MATTER COMPOSITION AND EQUATION OF STATE

Large domains in density, temperature and asymetry have to be covered and matter composition changes dramatically throughout !

2. Neutron star mergers

- Starting point : two (intermediate mass) neutron stars with core +crust
- Close to merger matter is heated up
- Very high densities reached in post-merger supermassive neutron star

Some general remarks on the EoS

The equation of state (EoS) thermodynamically relates different quantities to close the system of hydrodynamic equations. The number of parameters depends on equilibrium conditions :

- For a cold neutron star in β -equilibrium :
 - EoS is $P(n_B)$ (or equivalent)
- For core collapse and NS mergers (β -equilibrium not always acheived) :
 - EoS is $P(n_B, T, Y_L)$ (or equivalent)

Status some years ago :

NS EoS

- Many models
 - different nuclear interactions
 - different approaches (many-body, phenomenological,...)
 - different compositions (+ mesons, hyperons, quarks)

Core collapse EoS

• Few models (Hillebrandt&Wolff A&A 1984,

Lattimer & Swesty NPA 1991, H. Shen et al. NPA 1998)

- single nucleus approximation
- only nucleons (+ e[±], γ) at high densities/temperatures
- only three different phenomenological models

CONSTRAINTS ON THE EOS

Basic assumption : the same (effective) interaction can be used in the whole (T,n_B,Y_L) range $_{\rm (e.g.\ Fedoseew,\ Lenske\ '15)}$

1. Constraints related to nuclear experiments and theoretical developments

- Extracting parameters of symmetric nuclear matter around saturation (n₀, E_B, K, S, L)
- Data from heavy ion collisions (flow constraint, meson production, ...)
- Data on nucleon-nucleon interaction fixing startpoint of many-body calculations
- Experimental data on hyperonic interactions scarce
- Low density neutron matter : Monte-Carlo simulations and EFT approaches
- Lattice QCD simulations (but not possible for high densities)

CONSTRAINTS ON THE EOS

- 2. Main present constraint on supra-saturation density : neutron star masses
 - Observed masses in binary systems (NS-NS, NS-WD, X-ray binaries) with most precise measurements from double neutron star systems.
 - $\bullet~{\rm Many}~{\rm NS-NS}$ systems give masses close to $1.4M_{\odot}$
 - Two precise mass measurements in NS-WD binaries
 - $M = 1.97 \pm 0.04 M_{\odot}$ (PSR J1614-2230)

(Demorest et al, Nature 2010)

• $M = 2.01 \pm 0.04 M_{\odot}$ (PSR J0348+0432)

(Antoniadis et al, Science 2013)

• 2 M_{\odot} perhaps not the end of the story (e.g. indications for a 2.4 M_{\odot} NS in B1957+20 (van Kerkwijk et al., ApJ 2011))

• • • • • • • • • • • • •

CONSTRAINTS ON THE EOS

3. Other NS observations

- Measurements of rotational frequency
 - ▶ f = 716 Hz (PSR J1748-2446ad)

(Hessels et al, Science 2006)

- ► f = 1122 Hz not confirmed! (XTE J1739-285) (Kaaret et al. ApJ 2007)
- Theory : Kepler frequency $f_K = 1008 \,\mathrm{Hz} \, (M/M_\odot)^{1/2} \, (R/10 \,\mathrm{km})^{-3/2}$

(Haensel et al. A&A 2009)

 \rightarrow A measured frequency of 1.4 kHz would constrain $R_{1.4} < 9.5$ km !

Image: A match the second s

- Radius determinations so far model dependent (atmosphere model, distance, ...)
- Moment of inertia, asteroseismology, . . . model dependent, too \to no stringent constraint so far

WHY WONDERING ABOUT "EXOTICS"?

There is nothing "exotic", particles are known for a long time from experiments!

- Classical example : hyperons can appear in cold dense matter if μ_Y becomes large enough to make the conversion of N into Y energetically favorable.
- In compact stars strangeness changing weak equilibrium assumed $\rightarrow \mu_S = 0$ (e.g. $\mu_{\Lambda} = \mu_n$)
- The order in which the different hyperons appear depends on the interaction
- Most models predict that they appear at $n_{B} \sim 2 - 3n_{0}$

Similar result for different types of models

- Phenomenological mean field models (Glendenning ApJ '85, Balberg & Gal NPA '98, ...)
- Microscopic many body calculations (Baldo et al. PRC '98, Vidaña et al. PRC '00, Djapo et al. PRC '08 ...)
- Similar arguments for other particles, much dependent on interaction

9 / 19

The hyperon puzzle

- 1. The problem
 - Most models predict hyperons at $n_B\gtrsim 2-3n_0$ but give maximum neutron star masses of $\sim 1.4M_\odot \rightarrow$ need short-range repulsion to stiffen the EoS
- 2. Different solutions
 - Let quark matter appear early (very early !) enough : Phenomenological quark models can be supplemented with the necessary repulsion (Armen's talk, Weissenborn et al., '11, Alford et al. '07,...)
 - Modify the interaction
 - In microscopic models (BHF) this seems to be a problem (Vidaña et al., '11, Schulze & Rijken '11)
 - ► In phenomenological models not difficult (Bednarek et al. '12, Bonanno & Sedrakian '12, Weissenborn et al. '12, MO et al. '12,...), high density repulsion mainly via *YY* interaction

• Large variety in different radii and strangeness contents R < 10 km would be difficult !

Hyperons in hot and dense matter

(Nakazato et al. '12, Sumiyoshi et al. '09, Ishizuka et al. '08, H. Shen et al. '11, M.O. et al. '12, F. Gulminelli et al. '13, ...)

- For the moment no complete models containing the full baryonic octet and compatible with a 2 M_{\odot} NS work in progress
- Here : comparison of different models
- Thermal effects increase hyperon fractions
- Hyperons are more abundant in models with hard symmetry energy
- Hyperons fractions increase with decreasing Y_q

DIFFERENT HYPERON FRACTIONS AS FUNCTION OF T FOR $n_B = 0.3$ and 0.15 Fm⁻³, $Y_e = 0.1$

▲ 同 → - ▲ 三

Hyperons in hot and dense matter

(Nakazato et al. '12, Sumiyoshi et al. '09, Ishizuka et al. '08, H. Shen et al. '11, M.O. et al. '12, F. Gulminelli et al. '13, ...)

- For the moment no complete models containing the full baryonic octet and compatible with a 2 M_{\odot} NS work in progress
- Here : comparison of different models
- Thermal effects increase hyperon fractions
- Hyperons are more abundant in models with hard symmetry energy
- Hyperons fractions increase with decreasing Y_q

"Exotic" matter in NS/SN

Hirschegg, January 19th, 2016 12 / 19

EFFECT OF HYPERONS ON THE EOS

- 1. Temperature for given entropy
 - More degrees of freedom

 → entropy distributed in more channels → lower temperature

2. Maximum mass at $s_B = 4k_B$

• Correlation proposed between time to BH formation and maximum mass of $s_B=4k_B~{\rm star}$ (Hempel

et al. '11, Steiner et al. '12)

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Strong dependence on EoS
 → good test of thermal
 effects on the EoS[→] separative - LU

Micaela Oertel (LUTH)

AND IN A SIMULATION...

Simulations are 1D GR (COCONUT-CODE) with a neutrino leakage scheme (Peres et al. 13), progenitors have $40M_{\odot}$ ZAMS (Woosley, Heger, Weaver '02, Woosley & Weaver '95), EoS is LS220 Λ

- Phase transition present in the LS220Λ EoS induces a "mini-collapse" followed by pronounced oscillations (~ 700 Hz)
- No second shock wave as in simulations with phase transition to QGP (Sagert et al. '09)
- Strong reduction of time until BH formation by including $\Lambda\text{-hyperons}$ in the EOS
- Qualitatively similar results with Shen+ hyperons (Nakazato et al. '12, Sumiyoshi et al. '09) and BHBA(Φ) (Char et al. '15)

Micaela Oertel (LUTH)

• • • • • • • • • • • •

AND IN A SIMULATION...

Simulations are 1D GR (COCONUT-CODE) with a neutrino leakage scheme (Peres et al. '13), progenitors have $40M_{\odot}$ ZAMS (Woosley, Heger, Weaver '02, Woosley & Weaver '95), EoS is LS220 Λ

- Phase transition present in the LS220Λ EoS induces a "mini-collapse" followed by pronounced oscillations (~ 700 Hz)
- No second shock wave as in simulations with phase transition to QGP (Sagert et al. '09)
- Strong reduction of time until BH formation by including $\Lambda\text{-hyperons}$ in the EOS
- Qualitatively similar results with Shen+ hyperons (Nakazato et al. '12, Sumiyoshi et al. '09) and BHBA(Φ) (Char et al. '15)

• • • • • • • • • • • •

SUMMARY AND OUTLOOK

1. Cold β -equilbrated matter in neutron stars

• Intensive discussion on composition of matter in the central part triggered by high mass NS observations : different solutions proposed without any definite conclusion

2. Hot and dense matter not necessarily in β -equilibrium

- Is the particle content sufficient at high density and temperature?
 - Thermal effects are in favor of additional particles (hyperons, ...), EoS are developped compatible with a two solar mass neutron star
 - Visible effect on the simulations for black hole formation and NS mergers due to softening of the EoS, e.g. collapse time to a black hole, GW emission from mergers

Important point : need more information to constrain the intreractions of those particles $\!\!\!\!\!\!\!\!\!$

IDEA OF THE COMPOSE PROJECT WITHIN NEWCOMPSTAR

Provide data tables for different EoS ready for further use in astrophysics of compact objects and nuclear physics (core team : S. Typel, T. Klähn, MO) :

http://compose.obspm.fr

- CompOSE is a repository of EoS tables in a common format for direct usage with information on a large number of thermodynamic properties, on the chemical composition of dense matter and, if available, on microphysical quantities of the constituents.
- CompOSE allows to interpolate the provided tables using different schemes to obtain the relevant quantities, selected by the user, for grids that are tailored to specific applications.
- CompOSE can provide information on additional thermodynamic quantities, which are not stored in the original data tables, and on further quantities, which characterize an EoS such as nuclear matter parameters and compact star properties.

bservatoire — LUTH

CURRENT STATUS OF THE COMPOSE PROJECT

1. What has been done

- CompOSE is completely open access (Jean-Yves Giot, Thomas Klähn)
- Many new data, in particular full 3D models, but including 1D cold NS ones, too
- 1D NS EoS can be used directly within Lorene to obtain rotating/magnetised NS models

(Jérôme Novak)

2. Ongoing work

 Include polynomial fits in addition to tabulated EoS (F. Burgio, J. Margueron, D.

Davesne, A. Pastore)

Allow for a more flexible format to include for instance two-fluid EoS, magnetic field dependence, ... (s.

Typel)

С	ompOSE CompStar Online Supernovæ Equations of State
Home	
Manual	The online service CompCISE provides data tables for different state of the art equations of state (EoS) ready for further usage in astrophysical applications, nuclear physics and beyond.
EoS Overview EoS Details	If you decide to publish work using one or more of the here provided EoS we ask you to cite the given references and would be happy if you acknowledge CompCGE.
1 parameter EoS	
2 parameter EOS	
3 Parameter EOS	
Software (Interpolation, etc)	
About CompOSE	
Newsletter	

С	om	рC)5	SE		<u>S</u> uper	CompSt novæ <u>E</u>	ar <u>C</u> quat	0nlin ions	e of St	ate	ecomp star	
ome	Cold neut	ron star E	5oS										
lanual	-												
08	 Relativistic mean field models 												
EoS Overview	EoS	Particles	Tmin	Trrax	pts	nmin	птах	pts	Ymin	Ymax	phs		
EoS Details	DDHdelts	npe	(0)	(0)	(1)	7.92e-15	1.00e+00	428	XX.	XX	(1)	details	
1 parameter EoS	GM1	npe	(0)	(0)	(1)	7.92e-15	1.00e+00	247	**	XX	(1)	details	
2 parameter EOS	Relativistic	mean field	models	with hype	rons								
3 Parameter EOS	EoS	Particles	Tmin	Tmax	pts	nmin	omax	pts	Ymin	Ymax	p%		
Schware	OM1 Y4	npeBs	(0)	(0)	(1)	7.92e-15	1.19e+00	301	XX.	XX	(1)	details	
Interpolation, etc)	OM1 Y5	npeBs	(0)	(0)	(1)	7.92e-15	1.31e+00	345	3.8	88	(1)	details	
out CompOSE	GM1 Y6	npeBs	(0)	(0)	(1)	7.920-15	1.12e+00	358	11	3.1	(1)	details	
wsieber	DDHdelta Y4	npeBs	(9)	(0)	(1)	7.920-15	0.99e+00	305	ж	ж	(1)	details	
onlact	 Mcroscopi 	c calculation											
	EoS	Particles	Tmin	Tmex	pts	nmin	omax	pts	Ymin	Ymax	p/s		
	APR	npem	(9)	(0)	(1)	7,920-15	1,340+00	172	XX	XX	(1)	details	
	BHF-BBB2	npe	(0)	(0)	(1)	7.92e-15	1.50e+00	84	xx	xx	(1)	details	

Thanks to my collaborators,

A. Fantina, F. Gulminelli, J. Novak, B. Peres, C. Providencia, A. Raduta

And thanks to you for your attention !

