Spectral Functions and Transport Coefficients with the Functional Renormalization Group

TECHNISCHE UNIVERSITÄT DARMSTADT

Ralf-Arno Tripolt¹, Lorenz von Smekal², Jochen Wambach^{1,3}

¹ ECT*, Trento, Italy
 ² Justus-Liebig-Universität Gießen, Germany
 ³ TU Darmstadt, Germany

International Workshop XLIV on Gross Properties of Nuclei and Nuclear Excitations - QCD matter: dense and hot Hirschegg, January 21, 2016

Outline

I) Introduction and motivation

II) Theoretical setup

- Functional Renormalization Group (FRG)
- quark-meson model
- analytic continuation procedure

III) Results

- quark and meson spectral functions
- \blacktriangleright mesonic contributions to the shear viscosity and to η/s

IV) Summary and outlook

I) Introduction and motivation

[courtesy L. Holicki]

Why are spectral functions interesting?

Spectral functions determine both real-time and imaginary-time propagators,

$$D^{R}(\omega) = -\int d\omega' \frac{\rho(\omega')}{\omega' - \omega - i\varepsilon}$$

$$D^{A}(\omega) = -\int d\omega' \frac{\rho(\omega')}{\omega' - \omega + i\varepsilon}$$

$$D^{E}(p_{0}) = \int d\omega' \frac{\rho(\omega')}{\omega' + ip_{0}}$$

and thus allow access to many observables, e.g. transport coefficients like the shear viscosity:

[B. Mueller, arXiv: 1309.7616]

Calculation of dilepton excess spectra requires in-medium spectral function:

 $\frac{dN_{ll}}{d^4xd^4q} = -\frac{\alpha^2}{3\pi^3}\frac{L(M)}{M^2} \ {\rm Im}\Pi^{\mu\mu}_{{\sf EM}}(M,q) \ f_{\sf B}(q_0;T),$

 $f_{\rm B}(q_0; T)...$ thermal Bose function, $\alpha = e^2/4\pi...$ EM coupling constant, L(M)... final-state lepton phase space factor, $M = \sqrt{q_0^2 - \vec{q}^2}...$ dilepton invariant mass,

and the EM spectral function ($M \leq 1 \text{GeV}$):

$$\mathrm{Im}\Pi^{\mu\nu}_{\mathrm{EM}}\sim\mathrm{Im}D^{\mu\nu}_{\rho}+\frac{1}{9}\mathrm{Im}D^{\mu\nu}_{\omega}+\frac{2}{9}\mathrm{Im}D^{\mu\nu}_{\phi}$$

Why are spectral functions interesting?

II) Theoretical setup

[courtesy L. Holicki]

Functional Renormalization Group

Flow equation for the effective average action Γ_k :

$$\partial_{k}\Gamma_{k} = \frac{1}{2}\mathrm{STr}\left(\partial_{k}R_{k}\left[\Gamma_{k}^{(2)} + R_{k}\right]^{-1}\right)$$

[C. Wetterich, Phys. Lett. B 301 (1993) 90]

[wikipedia.org/wiki/Functional_renormalization_group]

- ► Γ_k interpolates between bare action *S* at $k = \Lambda$ and effective action Γ at k = 0
- ▶ regulator R_k acts as a mass term and suppresses fluctuations with momenta smaller than k
- ▶ the use of 3D regulators allows for a simple analytic continuation procedure

Quark-meson model

Ansatz for the scale-dependent effective average action:

$$\Gamma_{k}[\overline{\psi},\psi,\phi] = \int d^{4}x \left\{ \overline{\psi} \left(\partial \!\!\!/ + h(\sigma + i\vec{\tau}\vec{\pi}\gamma_{5}) - \mu\gamma_{0} \right) \psi + \frac{1}{2} (\partial_{\mu}\phi)^{2} + U_{k}(\phi^{2}) - c\sigma \right\}$$

- effective low-energy model for QCD with two flavors
- describes spontaneous and explicit chiral symmetry breaking
- flow equation for the effective average action:

$$\partial_k \Gamma_k = \frac{1}{2} \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right) - \left(\begin{array}{c} \bullet \\ \bullet \end{array} \right)$$

Flow of the Effective Potential

at μ = 0 and T = 0

Flow equations for two-point functions

- quark-meson vertices are given by $\Gamma_{\overline{\psi}\psi\sigma}^{(3)} = h$, $\Gamma_{\overline{\psi}\psi\pi}^{(3)} = ih\gamma^5 \vec{\tau}$
- ► mesonic vertices from scale-dependent effective potential: U⁽³⁾_{k,φi,φi,φm}, U⁽⁴⁾_{k,φi,φi,φm}
- one-loop structure and 3D regulators allow for a simple analytic continuation!

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:

The analytic continuation problem

Analytic continuation problem: How to get back to real energies?

Two-step analytic continuation procedure

1) Use periodicity in external imaginary energy $ip_0 = i2n\pi T$:

$$n_{B,F}(E+ip_0) \rightarrow n_{B,F}(E)$$

2) Substitute p_0 by continuous real frequency ω :

$$\Gamma^{(2),R}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma^{(2),E}(ip_0 \to -\omega - i\epsilon,\vec{p})$$

Spectral function is then given by

$$\rho(\omega, \vec{p}) = -\mathrm{Im}(1/\Gamma^{(2),R}(\omega, \vec{p}))/\pi$$

Quark spectral function is parametrized as

$$\rho_{k,\psi}(\omega,\vec{p}) = -i\vec{\gamma}\vec{p}\;\rho_{k,\psi}^{(A)}(\omega,\vec{p}) - \rho_{k,\psi}^{(B)}(\omega,\vec{p}) - \gamma_0\rho_{k,\psi}^{(C)}(\omega,\vec{p})$$

[R-A.T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)] [J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)] [N. Landsman and C. v. Weert, Physics Reports 145, 384 (1987) 141]

III) Results

[courtesy L. Holicki]

Phase diagram of the quark-meson model

- chiral order parameter σ₀
 decreases towards higher T and μ
- a crossover is observed at $T \approx 175$ MeV and $\mu = 0$
- ► critical endpoint (CEP) at µ ≈ 292 MeV and T ≈ 10 MeV
- ▶ we will study spectral functions along µ = 0 and T ≈ 10 MeV

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Phase diagram of the quark-meson model

- chiral order parameter σ₀
 decreases towards higher T and μ
- a crossover is observed at $T \approx 175$ MeV and $\mu = 0$
- ► critical endpoint (CEP) at $\mu \approx 292$ MeV and $T \approx 10$ MeV
- ▶ we will study spectral functions along µ = 0 and T ≈ 10 MeV

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Masses and Order Parameter vs. T

[R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Screening masses determine thresholds in spectral functions, e.g. at T = 10 MeV:

$$\sigma^*
ightarrow \pi$$
 + π , $\omega \ge 2 m_\pi pprox 280 \text{ MeV}$

Masses and Order Parameter vs. μ

[R.-A. T., N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D 89, 034010 (2014)]

Screening masses determine thresholds in spectral functions, e.g. at $\mu = 0$:

$$\sigma^*
ightarrow ar{\psi}$$
 + ψ , $\omega \ge$ 2 $m_\psi pprox$ 600 MeV

Decay channels of the sigma mesons

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Decay channels of the pions

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Decay channels of the (anti-)quarks

Flow of Sigma and Pion Spectral Function at $\mu = 0$, T = 0 and $\vec{p} = 0$

(Loading movie...)

Flow of Quark Spectral Function $\rho_{\psi}^{(\mathrm{C})}$

at μ = 0, T = 0 and \vec{p} = 0

Sigma and Pion Spectral Function with increasing T at $\mu = 0$ and $\vec{p} = 0$

(Loading movie...)

Sigma and Pion Spectral Function with increasing μ at T \approx 10 MeV and \vec{p} = 0

(Loading movie...)

Towards the shear viscosity

Applying the Green-Kubo formula for the shear viscosity

$$\eta = \frac{1}{24} \lim_{\omega \to 0} \lim_{|\vec{p}| \to 0} \frac{1}{\omega} \int d^4 x \ e^{ipx} \left\langle \left[T_{ij}(x), T^{ij}(0) \right] \right\rangle$$

to the quark-meson model with energy-momentum tensor

$$T^{ij}(x) = \frac{i}{2} \left(\overline{\psi} \gamma^i \partial^i \psi - \partial^j \overline{\psi} \gamma^i \psi \right) + \partial^j \sigma \partial^i \sigma + \partial^j \vec{\pi} \partial^i \vec{\pi}$$

gives (dominant contribution)

$$\eta \propto \int \frac{d\omega}{2\pi} \int \frac{d^3p}{(2\pi)^3} p_x^2 p_y^2 n_B'(\omega) \left(\rho_\sigma^2(\omega, \vec{p}) + 3\rho_\pi^2(\omega, \vec{p})\right)$$

Space-like processes of the sigma mesons

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Space-like processes of the pions

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

Space-like processes of the quarks

Sigma Spectral Function vs. ω and \vec{p} at μ = 0 and T = 0 MeV

► time-like region (ω > p) is Lorentz-boosted to higher energies

space-like region

 (ω
 is non-zero at finite T due to space-like processes

T = 0 MeV

Sigma Spectral Function vs. ω and \vec{p} at μ = 0 and increasing T

- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- ► space-like region (ω < p) is non-zero at finite T due to space-like processes

(Loading movie...)

Pion Spectral Function vs. ω and \vec{p} at μ = 0 and T = 0 MeV

- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- capture process $\pi^* + \pi \rightarrow \sigma$ is suppressed at large \vec{p}
- space-like region

 (ω
 is non-zero at
 finite T due to
 space-like processes

500 ω [MeV]

250

10-6

1000

750

T = 0 MeV

capture process

 $\begin{array}{l} \pi^* + \pi \rightarrow \sigma \text{ is} \\ \text{suppressed at large } \vec{p} \end{array}$

► time-like region (ω > p) is Lorentz-boosted to higher energies

► space-like region (ω < p) is non-zero at finite T due to space-like processes

January 21, 2016 | Ralf-Arno Tripolt | Spectral Functions and Transport Coefficients with the FRG | 37

Sigma Spectral Function vs. ω and \vec{p} at T \approx 10 MeV and increasing μ

- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- space-like region

 (ω < p) is non-zero at finite T due to space-like processes
- sigma becomes stable near the critical endpoint for small momenta

Pion Spectral Function vs. ω and \vec{p} at T \approx 10 MeV and increasing μ

- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- space-like region

 (ω < ρ) is non-zero at finite T due to space-like processes
- π^{*} → π + σ threshold moves to smaller energies due to decreasing sigma mass

Shear viscosity at μ = 0

η_{π,LKW}: result from chiral perturbation theory

[Lang, Kaiser, and Weise, Eur. Phys. J. A 48, 109 (2012)]

- Iarge shear viscosity at low temperatures due to small width of the pion peak → 4π processes missing
- stable-particle delta functions are regularized by a Breit-Wigner shape

$$\rho = \frac{1}{\pi} \frac{2\omega\gamma}{(\omega^2 - \gamma^2 - \omega_0^2)^2 + 4\omega^2\gamma^2}$$

Entropy density at μ = 0

 entropy density can be extracted from the effective potential:

$$s = \partial p / \partial T = -\partial U_{k \to 0} / \partial T$$

- it has been UV-corrected by taking quark fluctuations from higher scales into account
- Stefan-Boltzmann value is reproduced at high T:

$$s_{\rm SB}/T^3 = 14 \, \pi^2/15$$

Shear viscosity over entropy density η/s at μ = 0

η_{π,LKW}: result from chiral perturbation theory

[Lang, Kaiser, and Weise, Eur. Phys. J. A 48, 109 (2012)]

- entropy density s contains quarks and mesons
- $(\eta_{\pi} + \eta_{\sigma})/s$ large at low T due to large η_{π} and small s
- $(\eta_{\pi} + \eta_{\sigma})/s$ is always larger than the AdS/CFT limiting value of $\eta/s \ge 1/4\pi$

[Kovtun, Son, and Starinets, Phys. Rev. Lett. 94, 111601 (2005)]

Shear viscosity near the CEP

 stable-particle delta function is regularized by a Breit-Wigner shape

$$\rho = \frac{1}{\pi} \frac{2\omega\gamma}{(\omega^2 - \gamma^2 - \omega_0^2)^2 + 4\omega^2\gamma^2}$$

- shear viscosity strongly depends on the chosen value for γ
- at the CEP, shear viscosity of the sigma mesons η_σ diverges due to the massless σ excitation

Summary and outlook

We presented a new method to obtain real-time quantities like spectral functions and transport coefficients at finite T and μ from the FRG:

- our method involves an analytic continuation from imaginary to real frequencies on the level of the flow equations
- it is thermodynamically consistent and symmetry-structure preserving
- ► feasibility of the method demonstrated by calculating quark and meson spectral functions and η/s for the quark-meson model

Outlook:

- calculation of the shear viscosity of the quarks
- extending the model by including vector and axial-vector mesons and improving the truncations