Photons from partonic transport Hirschegg workshop

Moritz Greif

with Kai Zhou, Florian Senzel, Hendrik v. Hees, Carsten Greiner, Zhe Xu

Dynamical photon production in the QGP

Overview:

1)Photons from Heavy Ion Collisions

Physical motivation, open questions, usual approaches

2) BAMPS: 3 + 1d, $N_f = 3$ transport code

Solving of the Boltzmann equation

3) QGP Photon production from BAMPS

Diagrams, problems, results, future projects

A PHOTON CHECKS INTO A HOTEL AND IS ASKED IF HE NEEDS ANY HELP WITH HIS LUGGAGE.

"NO, I'M TRAVELLING LIGHT."

If you have any ideas or questions, feel free to interrupt! :-) Moritz Greif (Frankfurt University)

Light in heavy ion collision

Direct photons come from:

- In Nucleus-Nucleus scattering
- QGP: nonequilibrium
- **QGP:** equilibrium
- photons from hot hadron gas

Interests:

- Photon p_T -spectra from different phases
- Photon momentum anisotropies
- Contribution of weights in average anisotropy
- ⇒ (Non)-Thermal production mechanisms?
 - \Rightarrow Spacetime evolution well understood?
 - \Rightarrow Role of
 - chemical/kinetical nonequilibrium?

How to study dynamical direct (\neq decay) photons

Usual approach to study photons from heavy ion collisions:

- A **model** (e.g. hydro, fireball,...) gives temperature & velocity evolution for the full collision
- **2** Theory: analytic equilibrium γ production rate R
- Integrate: Spectrum = $E \frac{dN}{d^3p} = \int_{\text{spacetime evolution}} d^4x (R)_{\text{Local rest frame}}$

Other possibility: microscopic parton collisions make photons (our approach)

- Partonic cascade: Boltzmann Approach to Multi Parton Scatterings BAMPS
- Spacetime evolution and γ -production in common framework
- Microscopic γ production using pQCD matrix elements
- QCD effects: LPM eff. modelled, (+ Debye masses from lattice?)

Elliptic Flow of Photons

Elliptic flow for photons: Transfer of anisotropy from quarks to photons

Elliptic Flow of Photons

Elliptic flow for photons: Transfer of anisotropy

Our approach (in short): BAMPS

Boltzmann Approach to Multi Parton Scatterings

Moritz Greif (Frankfurt University)

 $p^{\mu}\partial_{\mu}f(x,p) = \mathcal{C}_{22}[f] + \mathcal{C}_{23}[f]$

Zhe Xu & Carsten Greiner, 2005. Phys. Rev. C 71 (2005) 064901.

Many people have contributed to BAMPS: ...,Oliver Fochler, Jan Uphoff, Florian Senzel, MG, Kai Zhou + the Bejing group

BAMPS: Boltzmann Approach To Multi-Parton Scatterings

$$p^{\mu}\partial_{\mu}f(x,p) = \mathcal{C}_{22}[f] + \mathcal{C}_{23}[f]$$

Stochastic collision probability, Total cross sections $\sigma_{22}(s), \sigma_{23}(s)$, Fully Lorentz-invariant formulation

$$P_{22} = v_{rel} \frac{\sigma_{22}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$$

$$P_{23} = v_{\rm rel} \frac{\sigma_{23}}{N_{test}} \frac{\Delta t}{\Delta^3 x}, \ P_{32} = \dots$$

$$v_{\rm rel} = \frac{1}{2E_1E_2}$$

Moritz Greif (Frankfurt University)

BAMPS: run as a fixed box

Scattering in **cells**:

Baseline: $\frac{dN}{NE^2 dE} = \frac{1}{T^3} e^{-E/T}$ Box calculations useful:

- Test and compare effect of cross sections
- Extract Rates
- Extract transport coefficients

BAMPS: expanding Heavy-Ion collision

Can be used as fixed box, or expanding system Steps:

PYTHIA-Glauber

 $AA = pp \times N_{\text{binary}}$

noneq. QGP

- \bullet on shell massless particles q,\bar{q},g
- New feature: Photons
- radiative Gluons/Photons: LPM-suppression modelled
- Compton/Annihilation- $\gamma\text{-production}$
- Exact Bremsstrahlung $qq \longrightarrow qq\gamma$

BAMPS - many results in the past. Some highlights:

Many features and physical studys:

- Light quarks: up, down, strange; heavy quarks: charm, bottom, J/Ψ 's, Photons
- Running coupling, Debye-screening dynamically
- Improved gluon radiation ("Gunion-Bertsch") matrix elements
- Bose-Einstein condensate (Phys.Rev.Lett. 114,182301 (2015))√
- Jet quenching, energy loss \checkmark
- Elliptic flow v_2 , nuclear modification factor R_{AA}
- Mach cones, jet induced double-peak structure in $dN/d\phi \checkmark$
- Momentum imbalance A_i of reconstructed Jets \checkmark
- Shear viscosity, heat conductivity, electric conductivity \checkmark

Photons from the QGP

Photon production: which diagrams contribute?

Photon rate at order $\mathcal{O}(e^2 g_s^2 T^4)$ obtained via γ -self energy. Cutting rules give scattering matrix elements:

Photon production: which diagrams contribute?

Photon rate at order $\mathcal{O}(e^2 g_s^2 T^4)$ obtained via γ -self energy. Cutting rules give scattering matrix elements:

e.g. P. Arnold, G. D. Moore, and L. G. Yaffe, JHEP. 0111, 057 (2001) Moritz Greif (Frankfurt University) Photons from the QGP

How big is the influence of the diagrams?

 $2 \leftrightarrow 2 \text{ processes vs. } 2 \leftrightarrow 3 + \dots$ processes

- Blue line: Included in BAMPS
- Red line: Only approximately included in BAMPS
- Bremsstrahlung in QGP as important as Compton-Scattering/Quark-Antiquark photoproduction!

see also NLO corrections: J.Ghiglieri, A. Kurkela et al. JHEP 1305 (2013) 010

Compton/Annihilation (2 \leftrightarrow 2) photon production in BAMPS

Comparison with fixed IF-cutoff

Analytic γ rate equation = BAMPS result

see Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)

Also in boosted case perfect! (e.g. $u^{\mu} = (1, \beta_x, 0, 0))$

Compton/Annihilation photon production in BAMPS

...original treatment valid for high energies (neg. Log):

Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991) ...correct treatment valid for all energies:

Arnold, Moore, Yaffe, JHEP. 0111, 057 (2001)

BAMPS: Debye-screening of quark propagators:

Moritz Greif (Frankfurt University)

Photon Bremsstrahlung processes: Some details

Useful coordinates for radiated photon:

- Reference: incoming quark 1 $p_z > 0$
 - y: rapidity wrt incoming quark 1, $y = \frac{1}{2} \ln \frac{E + p_z}{E p_z}$
 - $k_{\perp}:$ transverse momentum of photon wrt to p_z
 - q_{\perp} : gluon momentum transfer
 - φ : $\measuredangle(\vec{q}_{\perp}, \vec{k}_{\perp})$
 - We use the exact pQCD computation of $|\mathcal{M}_{brems}|^2$ with screened quark and gluon propagators
 - Inelastic pair annihilation neglected

Inelastic cross section for radiated photons

Exact matrix element computed, coordinate transformation from $P_{\text{in 1}}, P_{\text{in 2}}, P_{\text{out 1}}, P_{\text{out 2}}, K \rightarrow \text{integrate cross section:}$

$$\sigma_{23} = \frac{1}{2s} \int_{p_1'} \int_{p_2'} \int_{p_3'} \int_{p_1} \int_{p_2} |\mathcal{M}_{12\to 1'2'3'}|^2 (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_1' - p_2' - p_3')$$

$$= \frac{1}{256\pi^4 s} \int d^2 q_\perp \int d^2 k_\perp \int dy \int d\phi \, |\mathcal{M}_{12\to 1'2'3'}|^2 \, \mathcal{J}(k_\perp, q_\perp, y, \phi)$$

- For each particle pair in cell: compute σ_{23}
- $|\mathcal{M}_{12\to 1'2'3'}|^2 (P_{\text{in }1}, P_{\text{in }2}, k_{\perp}, q_{\perp}, y, \phi)$
- VEGAS integration algorithm
- If collision happens: sample outgoing momenta with *Metropolis*-algorithm according to $|\mathcal{M}|^2$
- Numerically very demanding, needs Lookup-Tables.

Numerical sampling of the outgoing photon momenta

Moritz Greif (Frankfurt University)

First results from BAMPS for Bremsstrahlung

Interference can only be treated phenomenologically: $|\mathcal{M}_{23}|^2 \rightarrow |\mathcal{M}_{23}|^2 \Theta(\lambda_{\mathrm{mfp}} - X_{\mathrm{LPM}}\tau_{\mathrm{formation}}), \text{ we vary } X_{\mathrm{LPM}}. \ \tau_{\mathrm{f}} \sim k_T^{-1}.$

Bremsstrahlung: BAMPS vs AMY

Debye-screening uncertainty for Bremsstrahlung

Band: Debye-mass $\times 2^{\pm 1}$. Future: use Debye-mass from lattice.

Type of statistic more important for bremsstrahlung

Elastic and radiative photon production shows no $v_2^{\gamma, \rm QGP} \ldots$

Explanation: Quark/Gluon anisotropic flow builds up with time:

Quarks 0.1 RHIC, 20-40 % centrality Gluons Photons, Const. cross-section, isotropic photons Photons, Const. cross-section, only 0=90° scattering 80.0 Photons, Compton/Annihilation v_2 , (p_T integrated) 0.06 0.04 0.02 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 time t [fm/c]

BAMPS heavy ion collision

p_T -spectra from BAMPS

Still some problems: results not conclusive

- Radiative processes: 12 days on cluster
- Mean free path not yet correct
- No hadronic photons (Prompt photons not plotted)
- Need to include running coupling

p_T -spectra from BAMPS

p_T -spectra from BAMPS

What comes next? + Conclusions

Jet-Photon radiation

BAMPS perfectly suited for radiative $\gamma's$ from Jets + Analytic solution known (AMY-Kernel). Influence on observables?

Numerical improvements

Lookup-Tables for cross sections, Better LPM-tuning, Debye-masses

$\dots +$ some other ideas

Conclusions

- **9** Full leading order γ production in microscopic transport
- 2 Elastic: good
- Section 2 Constraints and a constraints of the section of the s
- **9** BAMPS shows no v_2^{γ} from QGP (independent on process!)
- **\bigcirc** Microscopic understanding of v_2 transfer

Thank you for your attention and Hals und Beinbruch!

APPENDIX

How anisotropy for photons gets lost

BAMPS results vs analytic expectation for anisotropys

Change of momentum anisotropy in individual collisions

$$\langle \text{anisotropy}_{\mathbf{in}} \rangle \xrightarrow{\mathbf{Boost}} \mathrm{CM} \text{ scattering } \frac{d\sigma}{d\Theta_{\mathrm{CM}}} \xrightarrow{\mathbf{Boost}} \langle \text{anisotropy}_{\mathbf{out}} \rangle (\Theta)$$

As an example, one **particular** momentum configuration:

Moritz Greif (Frankfurt University)

Transfer of momentum anisotropy in equilibrium

Anisotropy of quark/gluon distribution

Fix
$$\frac{\mathrm{d}N}{\mathrm{d}^3\vec{p}} \sim \exp(-p^{\mu}u_{\mu}/T)$$
 equilibrium with boost: $\gamma > 1$
Analytic: $v_2 = \int \mathrm{d}^3\vec{p} \frac{\mathrm{d}N}{\mathrm{d}^3\vec{p}} \left(\frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}\right) / \int \mathrm{d}^3\vec{p} \frac{\mathrm{d}N}{\mathrm{d}^3\vec{p}}$
BAMPS: Average $\frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}$ over all partons

Anisotropy of produced photons

Photon production rate: $E \frac{\mathrm{d}R}{\mathrm{d}^3 \vec{p}} = \mathrm{function}(p^{\mu} u_{\mu}, T)$ same $\gamma > 1$ **Analytic:** $v_2 = \int \mathrm{d}^3 \vec{p} \frac{\mathrm{d}R}{\mathrm{d}^3 \vec{p}} \left(\frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}\right) / \int \mathrm{d}^3 \vec{p} \frac{\mathrm{d}R}{\mathrm{d}^3 \vec{p}}$ **BAMPS:** Average $\frac{p_x^2 - p_y^2}{p_x^2 + p_y^2}$ over all photons

Transfer of momentum anisotropy in equilibrium

BAMPS results vs analytic expectation for anisotropys

 γ in Juettner-distribution

Transfer of momentum anisotropy in equilibrium

BAMPS results vs analytic expectation for anisotropys

 γ in Juettner-distribution

Differential cross sections for radiative photon emission:

Trivial dependence on number of flavours...

" v_2 " (rather: momentum anisotropy) can be studied per particle:

$$"v_2" = \frac{1}{N} \sum_{i=1}^{\text{all particles } N} \frac{p_{i,x}^2 - p_{i,y}^2}{p_{i,x}^2 + p_{i,y}^2} = \left\langle \frac{p_{i,x}^2 - p_{i,y}^2}{p_{i,x}^2 + p_{i,y}^2} \right\rangle_{\text{all particles}}$$

Example: anisotropy can be *lost* after collision:

Moritz Greif (Frankfurt University)

Axis

$$v_2$$
" = $\left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle_{\text{all particles}}$

$$P_{22} = \sigma_{22} \frac{s}{2E_1 E_2} \frac{\Delta t}{\Delta V N_{\text{test}}}$$

Two effects:

- *Total* cross section: which particles *do* collide?
- Differential cross section: preferred scattering angle Θ

Specific process: ${\bf distribution}$ of scattering angles

• Total cross section and $v_{\rm rel}$ "select" collision partners

• v_2 of final particles depends on $d\sigma/dt = |\mathcal{M}|^2/16\pi s^2$

Specific process: distribution of scattering angles

• Total cross section and $v_{\rm rel}$ "select" collision partners

• v_2 of final particles depends on $d\sigma/dt = |\mathcal{M}|^2/16\pi s^2$

Photon Yield:

Explain difference to data:

- Only elastic leading order processes
- Only QGP contribution
- 1.5 2.5 GeV QGP window?

So far in the microscopic partonic transport model BAMPS:

$2 \leftrightarrow 2$	
gg ightarrow gg	
$qq \rightarrow q\bar{q}$	
$q\bar{q} \rightarrow gg$	$q\bar{q} \rightarrow q'\bar{q}'$
$qg \rightarrow qg$	$\bar{q}g \rightarrow \bar{q}g$
$q\bar{q} \rightarrow q\bar{q}$	
$qq \rightarrow qq$	$\bar{q}\bar{q} \to \bar{q}\bar{q}$
$qq' \rightarrow qq'$	$q\bar{q}' \rightarrow q\bar{q}'$

$2 \leftrightarrow 3$	
$gg \leftrightarrow ggg$	
$qg \rightarrow qgg$	$\bar{q}g ightarrow \bar{q}gg$
$q\bar{q} ightarrow q\bar{q}g$	
$qq \rightarrow qqg$	$\bar{q}\bar{q} o \bar{q}\bar{q}g$
$qq' \rightarrow qq'g$	
$qq' \to qq'g$	$q\bar{q}' o q\bar{q}'g$

3 Flavours of quarks, antiquarks, gluons

New feature: Photons

- Compton/Annihilation Debye screened
- Exact $qq \longrightarrow qq\gamma$ in near future
- LPM-suppression needs to be modelled

Moritz Greif (Frankfurt University)

QGP in thermal equilibrium: Rates are known

These 4 diagrams are used by

Kapusta, Lichard, Seibert, Phys. Rev. D 44, 2774 (1991)

$$E \left. \frac{dR}{d^3 p} \right|_{\text{Compton}} = \left(\sum_i q_i^2 \right) \frac{2\alpha_{\text{EM}}\alpha_{\text{strong}}}{\pi^4} T^2 e^{-E/T} \ln\left(\frac{4ET}{k_c^2} + 0.5 - C_{\text{Euler}}\right)$$
$$E \left. \frac{dR}{d^3 p} \right|_{\text{Annih.}} = \left(\sum_i q_i^2 \right) \frac{2\alpha_{\text{EM}}\alpha_{\text{strong}}}{\pi^4} T^2 e^{-E/T} \ln\left(\frac{4ET}{k_c^2} - 1 - C_{\text{Euler}}\right)$$

Not complete leading order! Missing contribution of collinear singularities of

Inelastic Pair Annihilation and Bremsstrahlung

Leading Order pQCD Scattering in BAMPS

 $1+2 \rightarrow 3+4$ scattering:

Photon prod. channel: $q+\bar{q}\rightarrow g+\gamma$

$$|\mathcal{M}|^2 = \frac{128}{9} \alpha_{\rm EM} \alpha_s \pi^2 \left[\frac{ut}{t^2}\right] \qquad (3)$$

Debye-mass to screen infrared divergencies: $t^2 \rightarrow (t - m_D^2)^2$

Analytic study: momentum anisotropy in collisions

Leading Order pQCD Scattering in BAMPS

How the Debye-mass $m_{D,gluon}/m_{D,quark}$ can be calculated:

0 Boltzmann stat., thermal system $m_{\rm D}^2 = (3 + N_f) \frac{8}{\pi} \alpha_s T^2$

2 Implementation in BAMPS: Dynamically from the distribution reconstruct the momentum distribution from all particles at each timestep

$$m_{\rm D,gluons}^2 = 16\pi\alpha_s \int \frac{\mathrm{d}^3 p}{p(2\pi)^3} \left(N_{\rm color} f_{\rm gluon} + N_{\rm flavor} f_{\rm quark} \right)$$
$$m_{\rm D,quarks}^2 = 4\pi\alpha_s \frac{8}{6} \int \frac{\mathrm{d}^3 p}{p(2\pi)^3} \left(f_{\rm gluon} + f_{\rm quark} \right)$$

Inelastic Scattering

elastic scattering with additional gluon radiation:

$$|\mathcal{M}_{23}|^2 = |\mathcal{M}_{22}|^2 \cdot 48\pi\alpha_s(k_{\perp}^2)(1-\bar{x})^2 \left[\frac{\vec{k}_{\perp}}{k_{\perp}^2} + \frac{\vec{q}_{\perp} - \vec{k}_{\perp}}{(\vec{q}_{\perp} - \vec{k}_{\perp})^2 + m_{\rm D}^2(\alpha_s(k_{\perp}^2))}\right]$$

O.Fochler et al., Phys. Rev. D 88, 014018 (2013)

Radiative parton processes in perturbative QCD: An improved version of the Gunion and Bertsch cross section from comparisons to the exact result

LPM (Landau Pomeranchuk Migdal) effect is effectively modeled