Fluctuations and correlations from lattice QCD: What have we learned?

Swagato Mukherjee
BRODKRENEN
NATIONAL LABORATORY

January 2016, Hirschegg, Austria

Fluctuations and correlations: conserved charges

$$
\chi_{m n}^{X Y}=\left.\frac{\partial^{m+n} \ln \mathbb{Z}}{\partial^{m} \hat{\mu}_{x} \partial^{n} \hat{\mu}_{Y}}\right|_{u_{x}=u_{r}=0} \quad \chi_{n}^{Y} \equiv \chi_{0 n}^{\times Y}
$$

for example:
B ... net baryon
Q ... net electric charge
S ... net strangeness
C ... net charm number
$\hat{\mu}_{x}=\mu_{x} / T$
number density: n_{x}

$$
\begin{aligned}
& \chi_{2}^{\times}=\left\langle n_{x}^{2}\right\rangle \\
& \chi_{4}^{\times}=\left\langle n_{x}^{4}\right\rangle-3\left\langle n_{x}^{2}\right\rangle^{2} \\
& \chi_{11}^{\times Y}=\left\langle n_{x} n_{Y}\right\rangle
\end{aligned}
$$

Deconfinement: appearance of fractional charges

hadron gas: $\quad P^{s}=P_{M}^{S} \cosh \left[\hat{\mu}_{s}\right]+\sum_{s=1,2,3} P_{B}^{S=k} \cosh \left[\hat{\mu}_{\mathrm{B}}-S \hat{\mu}_{\mathrm{s}}\right]$

$$
\begin{aligned}
& \chi_{11}^{\mathrm{BS}}=-1^{1}\left(P_{\mathrm{B}}^{\mathrm{S}=1}+\mathrm{P}_{\mathrm{B}}^{\mathrm{S}=2}+\mathrm{P}_{\mathrm{B}}^{\mathrm{S}=3}\right) \\
& \chi_{31}^{\mathrm{BS}}=-1^{3}\left(P_{\mathrm{B}}^{\mathrm{S}=1}+\mathrm{P}_{\mathrm{B}}^{\mathrm{S}=2}+\mathrm{P}_{\mathrm{B}}^{\mathrm{S}=3}\right) \\
& \begin{array}{l}
\chi_{31}^{\mathrm{BS}}-\chi_{11}^{\mathrm{BS}}=\left(\mathrm{B}^{3}-\mathrm{B}\right) \times f\left(\mathrm{~m}_{\mathrm{s}}^{\text {had }}\right) \\
\\
=0 \text { for } \mathrm{B}=0,1 \\
= \\
=0 \text { for quark dof with } \mathrm{B}=1 / 3
\end{array}
\end{aligned}
$$

similarly: $\quad \chi_{4}^{\mathrm{B}}-\chi_{2}^{\mathrm{B}}=\left(\mathrm{B}^{4}-\mathrm{B}^{2}\right) \times \mathrm{f}\left(\mathrm{m}_{\mathrm{u}, \mathrm{d}, \mathrm{s}}^{\mathrm{had}}\right)$

BNL-Bi: Phys. Rev. Lett. 111, 082301 (2013)
appearance of fractional charges for $\mathrm{T}>$
$\mathrm{T}_{\mathrm{c}}=154 \pm 9 \mathrm{MeV}$
deconfinement of
light \& strange quarks

Flavor blind deconfinement?

$$
\begin{aligned}
\chi_{B X}^{n \mathrm{~m} /} \chi_{B X}^{\mathrm{km}}=B^{\mathrm{n}-k} & =1 \text { when DoF are hadronic } \\
& =/=1 \text { when DoF carries fractional } B
\end{aligned}
$$

flavor correlations: $\chi_{m n}^{f_{m}^{f} f_{2}} / \chi_{m+n}^{f_{2}}$
in deconfined phase gluon dominated interactions: flavor blind

$$
\mathrm{T}_{\mathrm{c}} \lesssim \mathrm{~T} \lesssim 2 \mathrm{~T}_{\mathrm{c}}
$$

strong flavor correlations, but almost flavor blind

Probing hadron spectrum using thermodynamics

 hadronic pressure: $\mathrm{P}^{\mathrm{c}}=\sum_{\mathrm{n} \text { all hadrons }} \mathrm{P}_{\mathrm{h}} \longleftrightarrow \begin{aligned} & \text { expt. observed hadrons } \\ & + \text { unobserved ones }\end{aligned}$Quark Model charm baryons

Ebert et. al.: Eur. Phys. J. C66, 197 (2010);

Quark Model charm baryons

LQCD

Ebert et. al.: Eur. Phys. J. C66, 197 (2010);

Padmanath et.al.:
arXiv:1311.4806 [hep-lat]
hadronic pressure: $\mathrm{P}^{\mathrm{s}}=\sum_{\mathrm{n} \in \mathrm{al} \text { hadrons }} \mathrm{P}_{\mathrm{h}} \longleftrightarrow$
expt. observed hadrons + unobserved ones

Quark Model strange baryons

Capstick-Isgur: Phys. Rev. D34, 2809 (1986)

Probing hadron spectrum using thermodynamics

 hadronic pressure: $P^{s}=\sum_{n=a n} \sum_{\text {aratons }} P_{h} \ll$expt. observed hadrons + unobserved ones

Quark Model strange baryons LQCD

ム-391

JLab: Phys. Rev. D87, 054506 (2013)
Capstick-Isgur: Phys. Rev. D34, 2809 (1986)

significant contributions of these unseen states to the ratios of partial pressures of baryon to meson near the QCD crossover

LQCD: operators to identify separate thermodynamic contributions of strange/charm baryons/mesons
suitable combinations of up to 4th order baryon - charm/strangeness correlations
a simplified example:
hadron gas $\rightarrow \hat{\mathrm{P}}^{\mathrm{C}} \sim \mathrm{P}_{\mathrm{M}}^{\mathrm{C}} \cosh \left[\hat{\mu}_{\mathrm{C}}\right]+\mathrm{P}_{\mathrm{B}}^{\mathrm{C}} \cosh \left[\hat{\mu}_{\mathrm{B}}+\hat{\mu}_{\mathrm{C}}\right]$
partial pressure partial pressure
of $|C|=1$ mesons of $|C|=1$ baryons
neglect contributions of heavier $|C|=2,3$ baryons, x1000 suppressed

$$
\chi_{k}^{C} \simeq P_{M}^{C}+P_{B}^{C} \quad \chi_{m n}^{B C} \simeq P_{B}^{C}
$$

Signatures of additional charm baryons

BNL-Bi: Phys. Lett. B737 (2014) 210
relative contributions:
charm baryons to charmed mesons
$\chi_{13}^{\mathrm{BC}} /\left(\chi_{4}^{\mathrm{C}}-\chi_{13}^{\mathrm{BC}}\right)=P_{\mathrm{B}}^{\mathrm{C}} / P_{M}^{\mathrm{C}}$
charged charm baryons to charged charmed mesons
strange charm baryons to strange charmed mesons
signatures of additional, yet unobserved charm baryons from QCD thermodynamics

Signature of additional strange baryons

 relative contributions of strange baryons to strange mesons
partial pressure of strange mesons:

$$
\begin{aligned}
& \mathrm{M}_{1}^{\mathrm{S}}=\chi_{2}^{\mathrm{S}}-\chi_{22}^{\mathrm{BS}} \\
& \mathrm{M}_{2}^{\mathrm{S}}=\frac{1}{12}\left(\chi_{4}^{\mathrm{S}}+11 \chi_{2}^{\mathrm{S}}\right)+\frac{1}{2}\left(\chi_{22}^{\mathrm{BS}}+\chi_{13}^{\mathrm{BS}}\right)
\end{aligned}
$$

partial pressure of strange baryons:

$$
\begin{aligned}
& \mathrm{B}_{1}^{\mathrm{S}}=-\frac{1}{6}\left(11 \chi_{11}^{\mathrm{BS}}+6 \chi_{22}^{\mathrm{BS}}+\chi_{13}^{\mathrm{BS}}\right) \\
& \mathrm{B}_{2}^{\mathrm{S}}=\frac{1}{12}\left(\chi_{4}^{\mathrm{S}}-\chi_{2}^{\mathrm{S}}\right)+\frac{1}{3}\left(4 \chi_{11}^{\mathrm{BS}}-\chi_{13}^{\mathrm{BS}}\right)
\end{aligned}
$$

+ undiscovered strange baryons
contributions of all expt. observed strange hadrons

Strangeness chemical potential in HIC

 medium formed in HIC is strangeness neutral:$$
\left\langle\mathbf{n}_{\mathrm{s}}\right\rangle=0
$$

a given value of $\mu_{\mathrm{S}} / \mu_{\mathrm{B}}$ is realized at a lower temperature
$\frac{\mu_{\mathrm{S}}}{\mu_{\mathrm{B}}}\left(\mathrm{T}, \mu_{\mathrm{B}} / \mathrm{T}\right) \simeq \frac{\chi_{11}^{\mathrm{BS}}(\mathrm{T})}{\chi_{2}^{\mathrm{S}}(\mathrm{T})}+\ldots$
relative contribution of strange baryons to mesons

LQCD results are reproduced by including additional Quark Model states

signature for unobserved strange baryons persists for RHIC BES-II

need accurate expt. measurements \& feed-down corrections

DoF at high temperatures

BNL: Phys. Rev. D93 (2016) 1, 014502
agreements with weak coupling calculations:
$\mathrm{T} \geqslant 200 \mathrm{MeV}$

Test possible charm dof in QGP

naive postulate: non-interacting gas of charm quark, meson \& baryon-like excitations in QGP
charm quark \& its possible bound states much heavy compared to T
\rightarrow can be treated as quasi-particles within classical/Boltzmann approximation

$$
\begin{gathered}
P^{C}=P_{q}^{C} \cosh \left[\frac{\hat{\mu}_{B}}{3}+\hat{\mu}_{C}\right]+P_{M}^{C} \cosh \left[\hat{\mu}_{C}\right]+P_{B}^{C} \cosh \left[\hat{\mu}_{B}+\hat{\mu}_{C}\right] \\
p_{q}^{C}=9\left(\chi_{13}^{B C}-\chi_{22}^{B C}\right) / 2 \\
p_{B}^{C}=\left(3 \chi_{22}^{B C}-\chi_{13}^{\mathrm{BC}}\right) / 2 \\
p_{M}^{C}=\chi_{2}^{C}+3 \chi_{22}^{\mathrm{BC}}-4 \chi_{13}^{\mathrm{BC}}
\end{gathered}
$$

naive postulate: non-interacting gas of charm quark, meson \& baryon-like excitations in QGP
charm quark \& its possible bound states much heavy compared to T
\rightarrow can be treated as quasi-particles within classical/Boltzmann approximation

strangeness sub-sector: charm quarks do not carry S, S-C correlations from possible bound states

$$
\begin{aligned}
& \mathrm{P}^{\mathrm{C}, \mathrm{~s}}=\mathrm{P}_{\mathrm{M}}^{\mathrm{C}, \mathrm{~s}=1} \cosh \left[\hat{\mu}_{\mathrm{S}}+\hat{\mu}_{\mathrm{C}}\right]+\sum_{\mathrm{k}=1,2} \mathrm{P}_{\mathrm{B}}^{\mathrm{C}, \mathrm{~s}=\mathrm{k}} \cosh \left[\hat{\mu}_{\mathrm{B}}-\mathrm{k} \hat{\mu}_{\mathrm{S}}+\hat{\mu}_{\mathrm{C}}\right] \\
& \mathrm{p}_{\mathrm{M}}^{\mathrm{C}, \mathrm{~s}=1}=\chi_{13}^{\mathrm{sC}}-\chi_{112}^{\mathrm{BSC}} \\
& \mathrm{p}_{\mathrm{B}}^{\mathrm{C}, \mathrm{~s}=1}=\chi_{13}^{\mathrm{sC}}-\chi_{22}^{\mathrm{sC}}-3 \chi_{112}^{\mathrm{BSC}} \\
& \mathrm{p}_{\mathrm{B}}^{\mathrm{C}, \mathrm{~s}=2}=\left(2 \chi_{112}^{\mathrm{BSC}}+\chi_{22}^{\mathrm{sc}}-\chi_{13}^{\mathrm{sC}}\right) / 2
\end{aligned}
$$

contributions of quark-like excitations dominant for $\mathrm{T} \succsim 200 \mathrm{MeV}$
contributions of meson- \& baryon-like excitations dominant for T $\lesssim 200 \mathrm{MeV}$
meson- \& baryon-like excitations are not vacuum hadrons

BNL: Phys. Rev. D93 (2016) 1, 014502

Test possible charm dof in QGP: consistency

Equilibrium QCD baseline for BES

sketch: net-baryon kurtosis across the QCD critical point

not a fundamental QCD parameter: expt. input for a given colliding system, phase space cuts, $\sqrt{s} \ldots$ underlying assumption: expt. observables can be mapped into thermodynamic parameters T_{f}, μ_{B}^{f}
for consistency: estimate $T_{f}\left(\mu_{B}^{f}\right)$ by matching expt. lower cumulants $M_{Q} / \sigma_{Q}^{2}\left[M_{p} / \sigma_{p}^{2}\right]$ with equilibrium QCD $M_{Q} / \sigma_{Q}^{2}\left[M_{B} / \sigma_{B}^{2}\right]$ despite all known/unknown caveats
equilibrium QCD baseline for higher cumulants along this $T_{f}\left(\mu_{B}^{f}\right)$

$$
R_{12}^{P} \equiv \frac{M_{P}}{\sigma_{P}^{2}} \quad \text { monotonic functions of } \quad R_{12}^{Q} \equiv \frac{M_{Q}}{\sigma_{Q}^{2}}
$$

μ_{B} / T

$$
\frac{\mu_{B}}{T}=m_{1}^{B} R_{12}^{B}+m_{3}^{B}\left(R_{12}^{B}\right)^{3}+\mathcal{O}\left(\left(R_{12}^{B}\right)^{5}\right)
$$

$\mathrm{M}_{\mathrm{x}} / \sigma_{\mathrm{X}}$ along the freeze-out line: $\quad \boldsymbol{T}_{f}\left(\boldsymbol{\mu}_{B}\right)=T_{f, 0}\left(1-\kappa_{2}^{f}\left(\frac{\mu_{B}}{T}\right)^{2}\right)$
in practice: $\mathrm{M}_{\mathrm{s}}=0, \mathrm{M}_{\mathrm{Q}} / \mathrm{M}_{\mathrm{B}}=0.4 \longrightarrow \mu_{\mathrm{Q}}\left(\mathrm{T}, \mu_{\mathrm{B}}\right), \mu_{\mathrm{S}}\left(\mathrm{T}, \mu_{\mathrm{B}}\right)$
for simplicity of discussion:

$$
\begin{aligned}
& \mu_{Q}=\mu_{S}=0 \\
& \frac{M_{B}}{\sigma_{B}^{2}}=\frac{\mu_{B}}{T} \frac{1+\frac{1}{6}}{1+\frac{1}{2} \frac{\chi_{2}^{B}}{\chi^{B}}\left(\frac{\mu_{B}^{B}}{T}\right)^{2}}\left(\frac{\mu_{B}}{T}\right)^{2} \\
& \frac{M_{Q}}{\sigma_{Q}^{2}}=\frac{\mu_{B}}{T} \frac{\chi_{11}^{B Q}}{\chi_{2}^{Q}} \frac{1+\frac{1}{6} \frac{\chi_{31}^{B Q}}{\chi_{11}^{B Q}}\left(\frac{\mu_{B}}{T}\right)^{2}}{1+\frac{1}{2} \frac{\chi_{22}^{B Q}}{\chi_{2}^{B}}\left(\frac{\mu_{B}}{T}\right)^{2}} \\
& \chi\left(\mathrm{~T}_{\mathrm{f}}\right)=\chi\left(\mathrm{T}_{\mathrm{f}, 0}\right)-\kappa_{2}^{f}\left(\frac{\mathrm{~d} \chi}{\mathrm{dT}}\right)_{\mathrm{T}_{\mathrm{t}, 0}}\left(\frac{\mu_{\mathrm{B}}}{\mathrm{~T}}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
R_{12}^{Q B, 0}(T)=r \frac{\chi_{2}^{B}(T)}{\chi_{2}^{Q}(T)} \\
R_{12}^{Q B} \equiv \frac{M_{Q} / \sigma_{Q}^{2}}{M_{B} / \sigma_{B}^{2}}=a_{12}\left(1+c_{12}\left(R_{12}^{B}\right)^{2}\right) \\
c_{12}\left(T, \kappa_{2}^{f}\right) \equiv c_{12}^{0}(T)-\kappa_{2}^{f} D_{12}(T)
\end{gathered}
$$

$R_{12}^{Q B} \equiv \frac{M_{Q} / \sigma_{Q}^{2}}{M_{B} / \sigma_{B}^{2}}=a_{12}\left(1+c_{12}\left(R_{12}^{B}\right)^{2}\right)$
BNL-Bi-CCNU:
arXiv:1509:05786

$$
R_{12}^{Q B} \equiv \frac{M_{Q} / \sigma_{Q}^{2}}{M_{B} / \sigma_{B}^{2}}=a_{12}\left(1+c_{12}\left(R_{12}^{B}\right)^{2}\right)
$$

BNL-Bi-CCNU:

 arXiv:1509:05786$$
c_{12}\left(T, \kappa_{2}^{f}\right) \equiv c_{12}^{0}(T)-\kappa_{2}^{f} D_{12}(T)
$$

$$
\frac{S_{B} \sigma_{B}^{3}}{M_{B}}=R_{31}^{B, 0}+R_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}
$$

choosing for simplicity:

$$
\mu_{\mathrm{Q}}=\mu_{\mathrm{s}}=\kappa_{2}^{\mathrm{f}}=0
$$

$S_{B} \sigma_{B}=\frac{\chi_{4}^{B}}{\chi_{2}^{B}} \frac{M_{B}}{\sigma_{B}^{2}}+\frac{1}{6}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)\left(\frac{M_{B}}{\sigma_{B}^{2}}\right)^{3}+\ldots$

$$
\frac{S_{B} \sigma_{B}^{3}}{M_{B}}=R_{31}^{B, 0}+R_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}
$$

choosing for simplicity:

$$
\mu_{\mathrm{Q}}=\mu_{\mathrm{s}}=\kappa_{2}^{\mathrm{f}}=0
$$

$S_{B} \sigma_{B}=\frac{\chi_{4}^{B}}{\chi_{2}^{B}} \frac{M_{B}}{\sigma_{B}^{2}}+\frac{1}{6}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)\left(\frac{M_{B}}{\sigma_{B}^{2}}\right)^{3}+\ldots$

$$
\frac{S_{B} \sigma_{B}^{3}}{M_{B}}=R_{31}^{B, 0}+R_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}
$$

choosing for simplicity:

$$
\mu_{\mathrm{Q}}=\mu_{\mathrm{s}}=\kappa_{2}^{\mathrm{f}}=0
$$

$S_{B} \sigma_{B}=\frac{\chi_{4}^{B}}{\chi_{2}^{B}} \frac{M_{B}}{\sigma_{B}^{2}}+\frac{1}{6}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)\left(\frac{M_{B}}{\sigma_{B}^{2}}\right)^{3}+\ldots$
$R_{31}^{B} \equiv S_{B} \sigma_{B}^{3} / M_{B}$

$$
R_{31}^{B}=R_{31}^{B, 0}+R_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}
$$

$$
R_{42}^{B, 0} \simeq R_{31}^{B, 0}
$$

$$
R_{42}^{B, 2}=3 R_{31}^{B, 2}=\frac{1}{2}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)
$$

choosing for simplicity:
$\mu_{Q}=\mu_{S}=\kappa_{2}^{f}=0$

$$
\begin{aligned}
& R_{31}^{B} \equiv S_{B} \sigma_{B}^{3} / M_{B} \\
& R_{31}^{B}=R_{31}^{B, 0}+R_{31}^{B, 2}\left(R_{12}^{B}\right)^{2}
\end{aligned}
$$

$$
R_{42}^{B} \equiv \kappa_{B} \sigma_{B}^{2}
$$

$$
R_{42}^{B}=R_{42}^{B, 0}+R_{42}^{B, 2}\left(R_{12}^{B}\right)^{2}
$$

$$
R_{42}^{B, 0} \simeq R_{31}^{B, 0}
$$

$$
R_{42}^{B, 2}=3 R_{31}^{B, 2}=\frac{1}{2}\left(\frac{\chi_{6}^{B}}{\chi_{2}^{B}}-\left(\frac{\chi_{4}^{B}}{\chi_{2}^{B}}\right)^{2}\right)
$$

