Fluctuations in effective models

Gábor Almásia ${ }^{a}$, Bengt Friman ${ }^{a, b}$, Krzysztof Redlich ${ }^{b, c}$

${ }^{a}$ GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
${ }^{b}$ ExtreMe Matter Institute (EMMI), 64291 Darmstadt, Germany
${ }^{c}$ University of Wrocław - Faculty of Physics and Astronomy, PL-50-204 Wrocław, Poland

QCD phase diagram

Table of Contents

Coming up:

- Calculation of baryon number cumulants (thermal equilibrium)
- General structure of cumulants
- Freeze-out line in effective models
- Consistency of data with model predictions
- Effect of the repulsive vector interaction

Polyakov-Quark-Meson model

$\mathcal{L}=\bar{q}\left[i D_{\mu} \gamma^{\mu}-g\left(\sigma+i \gamma_{5} \vec{\tau} \vec{\pi}\right)\right] q+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \pi\right)^{2}-U(\sigma, \vec{\pi})-U_{P}(T, \phi, \bar{\phi})$
with the mesonic potential

$$
U(\sigma, \vec{\pi})=\frac{\lambda}{4}\left(\sigma^{2}+\vec{\pi}^{2}-v^{2}\right)^{2}-H \sigma
$$

- Degrees of freedom: light quarks, pions, sigma meson (2 flavors)
- Low energy effective theory of QCD
- Describes chiral symmetry breaking
- Polyakov-loop: suppression of single quark fluctuations at low temperatures
- Same universality class as QCD

Functional Renormalization Group

- Nonperturbative method
- Calculates the quantum effective action which translates to the pressure
- Wetterich equation:
$\partial_{k} \Gamma_{k}[\Phi, \bar{\psi}, \psi]=\frac{1}{2} \operatorname{STr}\left[\left(\Gamma^{(2)}+R_{k}\right)^{-1} \partial_{k} R_{k}\right]$
- Equation is solved on a grid

Application of the model

- Qualitative fit to vacuum physics
- Use the remaining freedom to change the CEP location
- Calculate the baryon number cumulants χ_{B}^{n}
- Plot cumulant ratios on different lines

Baryon number cumulants - an overview (MF)

TECHNISCHE UNIVERSITÄT DARMSTADT

Baryon number cumulants - an overview (MF)

TECHNISCHE UNIVERSITÄT DARMSTADT

Hirschegg, 18 January 2016 | GSI Theory Department | G. Almási, B. Friman, K. Redlich | 7

Baryon number cumulants - an overview (MF)

TECHNISCHE UNIVERSITÄT DARMSTADT

Hirschegg, 18 January 2016 | GSI Theory Department | G. Almási, B. Friman, K. Redlich | 7

Freeze-out condition

Baryon number cumulants: $\chi_{B}^{n}=\frac{1}{T^{4}} \frac{\partial^{n} P\left(T, \mu_{B}\right)}{\partial\left(\mu_{B} / T\right)^{n}}$

$$
\chi_{B}^{1} / \chi_{B}^{2} \leftrightarrow M / \sigma^{2} \quad \chi_{B}^{3} / \chi_{B}^{1} \leftrightarrow S \sigma^{3} / M \quad \chi_{B}^{4} / \chi_{B}^{2} \leftrightarrow \kappa \sigma^{2}
$$

Freeze-out condition

Baryon number cumulants: $\chi_{B}^{n}=\frac{1}{T^{4}} \frac{\partial^{n} P\left(T, \mu_{B}\right)}{\partial\left(\mu_{B} / T\right)^{n}}$

$$
\chi_{B}^{1} / \chi_{B}^{2} \leftrightarrow M / \sigma^{2} \quad \chi_{B}^{3} / \chi_{B}^{1} \leftrightarrow S \sigma^{3} / M \quad \chi_{B}^{4} / \chi_{B}^{2} \leftrightarrow \kappa \sigma^{2}
$$

General behavior of the cumulant ratios

General behavior of the cumulant ratios

No CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$

No CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$

Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$

CEP scenario

TECHNISCHE UNIVERSITÄT DARMSTADT

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$

Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$

CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$ $\chi_{B}^{1} / \chi_{B}^{2}$ has a maximum

Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$
$\chi_{B}^{4} / \chi_{B}^{2}$ decreases monotonously

CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$
Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$

CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$
Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$

CEP scenario

Black line: $\chi_{B}^{3} / \chi_{B}^{1}=0.9$
Blue (dashed) line: $\chi_{B}^{3} / \chi_{B}^{1}=0.8$

Comparision of different "freeze-out" lines

TECHNISCHE UNIVERSITÄT DARMSTADT

Comparision of different "freeze-out" lines

Hirschegg, 18 January 2016 | GSI Theory Department | G. Almási, B. Friman, K. Redlich | 16

Effect of vector interaction - condensate

Rescaling of the μ axis: $\mu=\mu_{\text {eff }}+G_{v}\langle n\rangle_{\mu_{\text {eff }}}$

Effect of vector interaction $-\chi_{B}^{3} / \chi_{B}^{1}$

No vector interaction

Significant vector interaction

Effect of vector interaction $-\chi_{B}^{4} / \chi_{B}^{2}$

No vector interaction

Significant vector interaction

Effect of vector interaction - Curves

Effect of vector interaction - Curves

Effect of vector interaction - Curves

Vector interaction decreases the signal of the CEP at fixed small chemical potentials

Summary

- Baryon number cumulants up to χ_{B}^{4} obtained in the FRG framework
- Consistent freeze-out line determination is important
- The CEP does influence the behavior of the cumulants
- Correlation between $\chi_{B}^{4} / \chi_{B}^{2}$ and $\chi_{B}^{3} / \chi_{B}^{1}$
- Vector interaction decreases the effect of the CEP

Backup

Ising model in Landau-theory

gap equation: $M^{3}+a\left(T-T_{c}\right) M-H=0$ susceptibility: $\chi=\frac{\chi_{0}}{a\left(T-T_{c}\right)+3 M^{2}}$

$$
T=T c \text { limit: } \quad H=0 \text { limit: }
$$

$$
M \sim H^{1 / 3}
$$

$$
M \sim\left(T-T_{c}\right)^{1 / 2}
$$

$$
\chi \sim H^{-2 / 3} \quad \chi \sim\left(T-T_{c}\right)^{-1}
$$

Order Parameter

Magnetic susceptibility

