

HIRSCHEGG2015 NUCLEAR STRUCTURE AND REACTIONS : WEAK, STRANGE AND EXOTIC 14TH JANUARY 2015

Study of Lambda hypernuclei with electron beams

Satoshi N Nakamura, Tohoku University

JLab HKS-HES Mainz A1 hypernuclear Collaborations

JLab E05-115 collaboration, 2009, JLab Hall-C

Quantum Many-body System bound by the Strong Int.

Spectroscopy of Hypernuclei

Obs. 2 M_{\odot} Hyperon Puzzle

LQCD

Baryon Interaction

Lattice QCD Modarn baryon Interaction models

Production of Hypernuclei

s-quark exchange s,sbar pair creation

(K⁻,π⁻) (π⁺,K⁺), (e,e'K⁺)

Characteristics of (e,e'K) HY study

- Electromagnetic production
- Convert Proton to Lambda : Mirror to well studied HY by (π,K), (K, π)
 Absolute energy calibration with p(e,e'K+)Λ, Σ⁰
- High quality primary beam
 High energy resolution (< 1MeV)
 Thin enriched target

Challenge of (e,e'K) HY Study

 Huge e' Background due to Bremsstrahlung and Møller scattering Signal/Noise, Detector

 Less Hypernuclear Cross Section
 Coincidence Measurement (e', K⁺) Limited Statistics
 DC beam is necessary

High Quality Electron Beam is Essential !

Three generation experiments at Hall-C

E89-009 (2000) : Existing spectrometers, SOS + Enge Proof of Principle

E01-011 (2005) : Construction of HKS, Tilt Method $\Lambda, \Sigma^{0}, {}^{7}_{\Lambda}$ He, ${}^{12}_{\Lambda}$ B, ${}^{28}_{\Lambda}$ Al Light Hypernuclei

E05-115 (2009) : HKS+HES, new Beamline, Splitter $\Lambda, \Sigma^{0}, {}^{7}_{\Lambda}$ He , ${}^{12}_{\Lambda}$ B, ${}^{52}_{\Lambda}$ V Light to medium-heavy Hypernuclei

Facilities for (e,e'K⁺) HY study

JLab Hall-C HNSS (2000) HKS (2005) HKS+HES (2009)

JLab Hall-A HRS+HRS (2004)

Mainz MAMI-C A1 KaoS (2008-)

JLab E05-115 (Hall-C) setup

JLab E05-115 (Hall-C) setup

$p(e,e'K^+)\Lambda$, Σ^0 : Elementary Process

$^{12}C(e,e'K^{+})^{12}{}_{\Lambda}B$

0.54 MeV (FWHM)

Absolute MM calibration

0.71 MeV (FWHM)

L.Tang, C.Chen, T.Gogami *et al.* Phys. Rev. C **90** (2014) 034320.

 ${}^{12}C(\Pi^+, K^+){}^{12}_{\Lambda}C$ 1.45 MeV (FWHM) ${}^{12}_{\Lambda}C_{gs}$ energy

from emulsion

$^{12}{}_{\Lambda}C$ emulsion data

Nuclear Physics A484 (1988) 520-524

TABLE 1 ^a)					
Decay mode	Range of the hypernucleus (µm)	$B_A (as {}^{12}_{A}C) (MeV)$	Ref.		
1. ${}^{12}_{\Lambda}C \rightarrow \pi^- + {}^{12}N(g.s.)$		11.14±0.57	4)		
2. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{4}He + {}^{7}Be$	3.0 ± 0.8	10.45 ± 0.33	3)		
3. ${}^{12}_{\Lambda}C \rightarrow \pi^- + p + {}^{11}C$	4.3 ± 0.7	10.50 ± 0.47	3)		
4.	3.5 ± 0.4	10.65 ± 0.33	1,2)		
5.	3.5 ± 0.5	10.85 ± 0.44	1.2)		
6.	3.4 ± 0.5	11.59 ± 0.45	^{1,2})		
7.	3.2 ± 0.4	15.67 ± 0.50	1,2)		

¹¹C (3/2-) : Ex = 4.8MeV

situation is not the case for π^- mesonic decay modes of ${}^{12}_{A}C$: $(\pi^{-12}N)$, $(\pi^-p^{11}C)$, $(\pi^-p^3He^4He^4He)$ and $(\pi^-p^4He^7Be)$. Every one of these decay topologies is easily confused with those of other hypernuclei.

The value obtained for B_A of ${}^{12}_A$ C, (10.80 ± 0.18) MeV

Statistical errors quoted, systematic errors (~0.04 MeV) reduced by measuring M_A in same emulsion stack.

Nuclear Physics A547 (1992) 369

¹²∧

Reference for all (π , K) B_A data: B_A (¹²_ACg.s.) = 10.76 +-0.19MeV

Statistical error only

 10.76 ± 0.19

^{12}AB emulsion data

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

 B_{Λ} (¹²_{Λ}Bg.s.) = 11.45 +-0.07 MeV Emulsion Result (M.Juric et al.)

 $B_{\Lambda} ({}^{12}_{\Lambda}Bg.s.) = 11.38 + 0.02 \text{ (stat) MeV} \text{ (JLab E05-115)}$

Totally independent measurement

Possible shift of $^{12}{}_\Lambda C_{gs}~B_\Lambda$

 $^{12}_{\Lambda}$ C: 6 events, $^{12}_{\Lambda}$ B: 87 events present data for $^{12}_{\Lambda}$ B

T. Gogami, Doctor thesis, (2014) Tohoku U.

Charge Symmetry Breaking Effect of ΛN interaction

Coulomb effect is small.

- $-\Delta B_c = 0.050 \pm 0.02 \text{ MeV}$,
- $-\Delta B_c^* = 0.025 \pm 0.015$ MeV

Charge Symmetry Breaking cf) B(³H)-B(³He)- Δ B_c = 764-693 = 71 keV

Three-body ΛNN force

Modern ChPT-NLO calculation predicts 3NF effect is < 100keV but NLO calculation cannot explain experimental results for A=4, T=1/2, hypernuclei. (Nogga, HYP2012)

A.R.Bodmer&Q.N.Usmani, PRC 31(1985)1400.

 $V^{\text{CSB}} = -\tau_3 T_{\pi^{-1}}^{2\frac{1}{8}} [(0.568\Delta B_{\Lambda} + 0.756\Delta B_{\Lambda}^*) + (0.568\Delta B_{\Lambda} - 0.756\Delta B_{\Lambda}^*)\sigma_{\Lambda} \cdot \sigma_{\text{N}}]$

B_{Λ} of light hypermultiplets

$^{7}_{\Lambda}$ He = 6 He + Λ

⁶He : 2n halo

E.Hiyama et al. PRC 80, 054321 (2009)

$^{7}_{\Lambda}$ He Density Distributions

Juric et al., Nucl. Phys. A484 (1988) 520

No B_{Λ} was obtained.

$^{7}_{\Lambda}$ He spectrum of E01-01

SNN et al., PRL 110, 012502 (2013)

$^{17}_{\Lambda}$ He spectrum of E05-115

CSB interaction test in A=7 iso-triplet comparison

SNN et al., PRL 110, 012502 (2013)

Assumed CSB potential may be too naïve.

New measurements on A=4 systems are necessary.

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

CSB interaction test in A=7 iso-triplet comparison

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

 $^{10}B(e,e'K^{+})^{10}{}_{\Lambda}Be$

${}^{10}{}_{\Lambda}B$ and ${}^{10}{}_{\Lambda}Be$

T.Gogami, Doctor Thesis (2014) Tohoku Univ.

Comparison of the ground states (A=10)

 $B_{\Lambda}(^{10}_{\Lambda}\mathrm{Be}) - B_{\Lambda}(^{10}_{\Lambda}\mathrm{B})$

- $= 0.45 \pm 0.12$ (stat.) ± 0.61 (sys.) MeV (JLab KEK),
 - -0.27 ± 0.07 (stat.) ± 0.23 (sys.) MeV (JLab emulsion),

CSB(even) on : 20 keV CSB off: -180 keV

A=4 system CSB ΛN potential

${}^{4}_{\Lambda}H$, ${}^{4}_{\Lambda}He$ emulsion data

Nuclear Physics B52 (1973) 1-30.

A NEW DETERMINATION OF THE BINDING-ENERGY VALUES OF THE LIGHT HYPERNUCLEI ($A \le 15$)

Emulsion Result (M.Juric et al.)

		(# of events)	B_{Λ} (MeV)	
$^{4}_{\Lambda}$ H	$\pi^{-} + {}^{1}H + {}^{3}H \\ \pi^{-} + {}^{2}H + {}^{2}H \\ total$	56 11 67	$2.14 \pm 0.07 \\ 1.92 \pm 0.12 \\ 2.08 \pm 0.06$	
⁴ _A He	π^{-} + ¹ H + ³ He π^{-} + ¹ H + ¹ H + ² H total	83 15 98	$2.42 \pm 0.05 \\ 2.44 \pm 0.09 \\ 2.42 \pm 0.04$	
	2.14 ± 0).07	CSB = 0.35	MeV
	1.92 ± 0	0.12	$\Delta = 0.22$	MeV

A=4 system CSB ΛN potential

Future Plans at JLab

Possible Future Programs @ JLab & MAMI

1. Elementary Λ , Σ^0

Reliable data ¹H(e,e'K⁺) Λ , Σ^0 in low Q² 2. Few-body _{6,7}Li(e,e'K)⁶,He, ⁷,He $^{2}d(e,e'K^{+})[\Lambda N], \frac{^{3}t(e,e'K)[nn\Lambda]}{^{3}t(e,e'K)[nn\Lambda]}$ Exotic bound state, ΛN int. 4 He(e,e'K⁺) 4 _AH(1⁺) $\Lambda N CSB$ ¹⁹F(e,e'K)¹⁹,O 3. Medium-heavy 40,44,48Ca(e,e'K⁺) 40,44,48 K A's S.E., iso-spin ²⁷Al(e,e'K⁺)²⁷ Mg Tri-axial deformation 4. Heavy 208 Pb(e.e'K⁺) 208 , TI Λ in heaviest nucleus 5. Decay π Weak decay of light hyper-fragments

Few-body physics with strangeness

Search of $[n\Lambda]$ bound state and study of n- Λ interaction through FSI.

Established lightest hypernyclei = ${}^{3}_{\Lambda}$ H

Hyp-HI experiment at GSI a structure in d + π^{-} , t + π^{-} invariant mass

Indication of a nA , nnA bound state ? ${}^{2}d(e,e'K^{+})[n\Lambda]$ ${}^{3}t(e,e'K^{+})[nn\Lambda]$

Direct method to search these exotic systems.

C.Rappold et al. PRC88, 041001(R) (2013)

Totally new method to study shape of nucleus with *A*!

well understood. 30 $(e,e'K^+)$ ⁸⁹Υ (π⁺,K⁺) ⁸⁹_ΔΥ 250 gΛ KEK E369 (SKS) S_{Λ} 200 △E = 1.64 MeV (FWHM) 20 Counts / 0.25MeV $B_{\Lambda} (MeV)$ \boldsymbol{p}_{Λ} -25 -20 B_{Λ} (MeV) 10 d_{Λ} 0 0 D f_{Λ} \$ \boldsymbol{g}_{Λ} ESC08c 0 MPa 50 100 150 200 Mass number A

General tendency is

Lines: Calc. by Yamamoto & Rijken

EOS of nuclear matter with hyperons To solve hyperon puzzle

Microscopic nuclear force model @ $\rho_0 \rightarrow 2 \rho_0$

Density dependence with hyperons

Importance of 3B/4BF

Furumoto, Sakuragi, Yamamoto, PRC 79 (2009) 0011601(R)

EOS w/3B,4BF & Hyperon Puzzle

Yamamoto & Rijken

General tendency understood. Need more precise data.

Lines: Calc. by Yamamoto & Rijken

Present Status of Λ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.

Summary

- We have been developing large magnetic spectrometers (HKS, HES) and techniques in the last decade at JLab and (e,e'K⁺) HY spectroscopy is *now established*.
- Best spectroscopy of ${}^{12}{}_{\Lambda}B$ was performed and absolute binding energy calibration implies a shift (500-600 keV) of ${}^{12}{}_{\Lambda}C$ emulsion B_{Λ} which is the reference to all (π^+, K^+) spectrosopy binding energies.
- Binding energy of ${}^{7}_{\Lambda}He_{gs}$ was determined. Important input for ΛN CSB potential. Excited state of ${}^{7}_{\Lambda}He$ was clearly observed.
- New data on ${}^{10}{}_{\Lambda}Be_{gs}$ was obtained.

We are designing next programs at JLab. systematic study of B_A for wide A range up to 208, tri-axial deformed HY, CSB study with light HY and elementary study with exotics (nn Λ).

Λ , Σ^0 from polyethylene (CH₂)target

Λ, Σ^0 from CH₂ target

