Baryon-baryon interactions from lattice QCD

Noriyoshi Ishii RCNP, Osaka Univ.

Hadrons to Atomic nuclei	RCNP, Osaka Univ: Univ. Tsukuba:	N.Ishii, K.Murano H.Nemura, K.Sasaki, M.Yamada, F.Etminan,
	RIKEN:	T.Miyamoto T.Doi, T.Hatsuda, Y.Ikeda, V.Krejcirik
	Nihon Univ:	T.Inoue
from Lattice QCD	Univ. Tokyo:	B.Charron
	YITP(Kyoto):	S.Aoki, T.Iritani

There is a deep gap between QCD and Traditional/Hyper Nucl. Phys.⁽²⁾

The gap may begin to be filled by recent developments of lattice QCD.

- Lattice QCD at physical point PACSCS, BMW
- Lattice QCD calculations of atomic nuclei PACSCS, NPLQCD
- Lattice QCD calculations of nuclear/hyperon forces HALQCD

Lattice QCD at physical point

Lattice QCD simulation at Physical point

Lattice QCD simulation at Physical point is now possible.

Fig. from PACSCS, Phys.Rev.D81,074503(2010). [L = 3 fm] "Physical point simulation in 2+1 flavor lattice QCD"

See also:

- BMW, Science 322, 1224(2008)
- BMW, Phys.Lett.B701(2011)265. [L = 6fm]

Lattice QCD simulation at Physical point

To study multi-baryon systems at physical point, spatial volume should be as huge as possible.

Such a physical point simulation is going on on K computer at AICS, RIKEN.

 96^{4} lattice, a = 0.1 fm, L = 9 fm, m_{pi}=135 MeV

The aims of the project:

- ◆ 2+1 flavor QCD → 1+1+1 flavor QCD+QED
- ◆ Various physical quantities
- Investigation of resonances
- Direct construction of light nuclei

Determination of baryon-baryon potentials

Nuclear Physics by LQCD

5

K computer (the 4th fastest in the world)

11.28 PFLOPS

Light Nuclei from Lattice QCD

There are several obstacles in LQCD calculation of atomic nuclei

- Signal to Noise
- Ground state saturation (at large volume)
- Careful volume extrapolation (Bound state $\leftarrow \rightarrow$ scattering state)
- Computational cost for Wick contraction

Obstacle (1)

Signal to Noise

$$G(t) = \left\langle 0 \left| O(t) \cdot \overline{O}(t=0) \right| 0 \right\rangle$$
$$= \sum_{n} \left| \left\langle 0 \left| O \right| n \right\rangle \right|^{2} e^{-E_{n}t}$$
$$\rightarrow \left| \left\langle 0 \left| O \right| \text{G.S.} \right\rangle \right|^{2} \times e^{-E_{\text{G.S}}t} \text{ for } t \rightarrow \text{large}$$

For large nuclei, quality of the signal becomes bad quite rapidly.

Obstacle (2)

The ground state saturation is important in many LQCD calculations.

$$\left\langle 0 \left| O(t) \cdot \overline{O}(t=0) \right| 0 \right\rangle$$
$$= \sum_{n} \left| \left\langle 0 \left| O \right| n \right\rangle \right|^{2} e^{-E_{n}t}$$
$$\rightarrow \left| \left\langle 0 \left| O \right| \text{G.S.} \right\rangle \right|^{2} \times e^{-E_{\text{G.S}}t} \text{ for } t \rightarrow \text{large}$$

♦ For multi-hadron systems, the ground state saturation becomes difficult as V → large.

♦ For L → large, energy gap shrinks as

$$\Delta E = E_{n+1} - E_n \sim \frac{1}{m_N} \left(\frac{2\pi}{L}\right)^2$$

	L=3 fm	L=6 fm	L=9 fm	L=12 fm
ΔE	181.5 MeV	45.3 MeV	20.2 MeV	11.3 MeV

If L becomes twice as large, ΔE becomes 4 times as small.

Obstacle (3)

Careful volume extrapolation.

- $\Delta E < 0$ in finite V means
- i. bound state
- ii. attractive interaction in finite volume.

Need to use several spatial volumes to extrapolate the results to V=∞ carefully.

volume extrapolation of deuteron: from NPLQCD, PRD85,054511(2012) (2+1 flavor QCD on anisotropic lattice. m_{pi}=390 MeV, L=2.0,2.5,2.9,3.9 fm)

Obstacle (4)

Computational cost for Wick contraction: grows with factorial.

Number of Wick contraction:

$$\propto \left(2N_n + N_p\right)! \times \left(N_n + 2N_p\right)!$$

	¹ H	² H	³ H/ ³ He	⁴He	⁶ Li	•••
#(Wick contraction)	2	36	2880	518400	131681894400	

→ Naïve contraction algorithm will soon go into trouble.

```
T.Yamazaki et al., PRD81,111504(2010) reduced these numbers as
```

- ³H/³He: 360 → 93
- ⁴He: 518400 → 1107

and gave the first LQCD results of bound light atomic nuclei. (quenched QCD. m_{pi}=0.8 GeV, L=3.1-12.3 fm)

Light Nuclei from lattice QCD

Systematic reduction method is proposed by T.Doi, M.G.Endres, CPC184,117(2013).

 $N_{\alpha}(x;\xi_1,\xi_2,\xi_3) \equiv \left\langle N_{\alpha}(x) \cdot \overline{q}(\xi_1) \overline{q}(\xi_2) \overline{q}(\xi_3) \right\rangle$ $\langle N_{\alpha}(x)N_{\beta}(y)\cdot \overline{N}_{\alpha'}(f)\overline{N}_{\beta'}(f)\rangle$ f :smearing function $\xi = (c, \alpha) \in \text{color} \times \text{Dirac}$ $= \sum_{\sigma} \operatorname{sign}(\sigma) \cdot \sum_{\xi_1, \dots, \xi_6} N_{\alpha}(x; \xi_{\sigma(1)}, \xi_{\sigma(2)}, \xi_{\sigma(3)}) N_{\beta}(y; \xi_{\sigma(4)}, \xi_{\sigma(5)}, \xi_{\sigma(6)}) \cdot C(\xi_1, \dots, \xi_6)$ relabeling of summation var.: $\xi'_1 \equiv \xi_{\sigma(1)}, \dots, \xi'_6 \equiv \xi_{\sigma(6)}$ $=\sum_{\xi'} N_{\alpha}(x;\xi'_{1},\xi'_{2},\xi'_{3})N_{\beta}(y;\xi'_{4},\xi'_{5},\xi'_{6})\left\{\sum_{\sigma} C(\xi'_{\sigma^{-1}(1)},\cdots,\xi'_{\sigma^{-1}(6)})\operatorname{sign}(\sigma)\right\}$

 $\xi'_{1}, \dots, \xi'_{6}$

Permutation sum associated with Wick contraction can be carried out before the LQCD calculations.

Efficiency is significantly improved:

- ³H/³He: **x 192**
- ⁴He: **x 20736**

See also:

W. Detmold, K.Orginos, PRD87,114512(2013)

J.Gunter, B.C.Toth, L.Varnhorst, PRD87,094513(2013)

Several bound multi-baryon states are reported in heavy quark mass region ($m_{pi} > 390$ MeV). (Some agree, the others not.)

H-dibaryon

NPLQCD: NF=2+1: PRL106,162001(2011)

NF=3:★

- HALQCD: NF=3: PRL106,162002(2011)
- ♦ ³H/³He, ⁴He
 - PACSCS: both bound
 - NF=0: PRD81,111504(R)(2010)
 - NF=2+1: PRD86,074514(2012)
 - ♦ NPLQCD: NF=3: ★

HALQCD: NF=3: NPA881,28(2012). Only ⁴He bound at m_{PS}=469MeV

Deuteron, dineutron

- NPLQCD: NF=2+1: PRD85,054511(2013)
 (also H-dibaryon and Ξ⁻Ξ⁻ bound)
 NF=3: ★
- PACSCS: both bound
 - NF=0: PRD84,054506(2011)
 - NF=2+1: PRD86,074514(2013)
- HALQCD: No bound states for both.
- ♦ Many others, light (hyper)nuclei
 ♦ NF=3: ★

★ NPLQCD, PRD87,034506(2013)

Lattice QCD calculation of nuclear forces

HALQCD method (naïve introduction)

Suppose it is possible to generate "NN wave functions" by LQCD.

LQCD
$$\Rightarrow \psi(\vec{r})$$

NN potential can be obtained by inversely solving Schrodinger eq. for V(r) as

$$(H_0 + V(r))\psi(\vec{r}) = E\psi(\vec{r}) \longrightarrow V(\vec{r}) \equiv E - \frac{H_0\psi(\vec{r})}{\psi(\vec{r})}$$

If the potential has a more complicated structure

$$V = V_{\rm C}(r) + V_{\rm T}(r)S_{12} + V_{\rm LS}(r)\vec{L}\cdot\vec{S} + O(\nabla^2)$$

We have to do a more complicated inversion

$$\begin{pmatrix} H_0 + V_{\rm C}(r) + V_{\rm T}(r)S_{12} + V_{\rm LS}(r)\vec{L}\cdot\vec{S} \end{pmatrix} \psi_n(\vec{r}) = E_n\psi_n(\vec{r}) \quad (n = 0, 1, 2)$$

$$\begin{bmatrix} (E_0 - H_0)\psi_0(\vec{r}) \\ (E_1 - H_1)\psi_1(\vec{r}) \\ (E_2 - H_2)\psi_2(\vec{r}) \end{bmatrix} = \begin{bmatrix} \psi_0(\vec{r}) & S_{12}\psi_0(\vec{r}) & \vec{L}\cdot\vec{S}\psi_0(\vec{r}) \\ \psi_1(\vec{r}) & S_{12}\psi_1(\vec{r}) & \vec{L}\cdot\vec{S}\psi_1(\vec{r}) \\ \psi_2(\vec{r}) & S_{12}\psi_2(\vec{r}) & \vec{L}\cdot\vec{S}\psi_2(\vec{r}) \end{bmatrix} \cdot \begin{bmatrix} V_{\rm C}(\vec{r}) \\ V_{\rm T}(\vec{r}) \\ V_{\rm LS}(\vec{r}) \end{bmatrix}$$

Now, what is a suitable object in LQCD for "NN wave function" ? Our answer is equal-time Nambu-Bethe-Salpeter(NBS) wave function.

 $H_0 \equiv -\frac{V^2}{2}$

Nambu-Bethe-Salpeter (NBS) wave function

 $\langle 0 | T [N(x)N(y)] N(+k)N(-k), in \rangle$

Relation to S-matrix by reduction formula

 $\langle N(p_1)N(p_2), out | N(+k)N(-k), in \rangle$

[Aoki,Hatsuda,Ishii,PTP123(2010)89] (16)

Bosonic notation is to avoid lengthy notations.

 $= \operatorname{disc} + \left(iZ_{N}^{-1/2}\right)^{2} \int d^{4}x_{1}d^{4}x_{2} e^{ip_{1}x_{1}} \left(\Box_{1} + m_{N}^{2}\right) e^{ip_{2}x_{2}} \left(\Box_{2} + m_{N}^{2}\right) \left\langle 0 \left| T \left[N(x_{1})N(x_{2}) \right] N(+k)N(-k), in \right\rangle \right\rangle$

Equal-time restriction of NBS wave function behaves at long distance

$$[C.-J.D.Lin et al., NPB619,467(2001).]$$

$$\psi_{k}(\vec{x} - \vec{y}) \equiv \lim_{x_{0} \to +0} Z_{N}^{-1} \left\langle 0 \left| T \left[N(\vec{x}, x_{0}) N(\vec{y}, 0) \right] N(+k) N(-k), in \right\rangle$$

$$= Z_{N}^{-1} \left\langle 0 \left| N(\vec{x}, 0) N(\vec{y}, 0) \right| N(+k) N(-k), in \right\rangle$$

$$\approx e^{i\delta(k)} \frac{\sin\left(kr + \delta(k)\right)}{kr} + \cdots \text{ as } r \equiv \left| \vec{x} - \vec{y} \right| \rightarrow \text{ large}$$
(for S-wave)

Exactly the same functional form as that of scattering wave functions in quantum mechanics (equal-time NBS wave function is a good candidate of "NN wave function")

Def. of potential from equal-time NBS wave functions:

$$\left(k^2 / m_N - H_0\right) \psi_k(\vec{r}) = \int d^3 r' U(\vec{r}, \vec{r}') \psi_k(\vec{r}')$$

for
$$2\sqrt{m_N^2 + k^2} < E_{\rm th} \equiv 2m_N + m_{\pi}$$

 $2m_N + m_\pi$ $2m_N + m_\pi$ $2m_N$ $2m_N$ m_N

$$H_0 \equiv -\frac{\nabla^2}{m_N}$$

U(r,r') is demanded to be E-indep

so that the same U(r,r') can generate all the NBS wave functions in the Elastic region.

(Proof of existence of such U(r,r') is given in the next slide)

♦U(r,r') reproduces the scattering phase δ(k), together with equal-time NBS wave functions

 $\sin(kr + \delta(k))$

$$\psi_k(\vec{x} - \vec{y}) \simeq e^{i\delta(k)} \frac{\sin(kr + O(k))}{kr} + \cdots \text{ as } r \equiv |\vec{x} - \vec{y}| \rightarrow \text{large}$$

Existence of E-indep. U(r,r')

Assumption:

Linear independence of equal-time NBS wave func. for E < Eth.

 \rightarrow There exists dual basis:

$$\int d^3 r \widetilde{\psi}_{\vec{k}'}(\vec{r}) \psi_{\vec{k}}(\vec{r}) = (2\pi)^3 \delta^3(\vec{k}' - \vec{k})$$

$$K_{\vec{k}}(\vec{r}) \equiv \left(k^2 / m_N - H_0\right) \psi_{\vec{k}}(\vec{r})$$

$$K_{\vec{k}}(\vec{r}) = \int \frac{d^{3}k'}{(2\pi)^{3}} K_{\vec{k}'}(\vec{r}) \int d^{3}r' \widetilde{\psi}_{\vec{k}'}(\vec{r}) \psi_{\vec{k}}(\vec{r})$$
$$= \int d^{3}r' \left\{ \int \frac{d^{3}k}{(2\pi)^{3}} K_{\vec{k}'}(\vec{r}) \widetilde{\psi}_{\vec{k}'}(\vec{r}') \right\} \psi_{\vec{k}}(\vec{r}')$$

$$2m_{N} + m_{\pi}$$

$$2m_{N} + m_{\pi}$$
Elastic region
$$2m_{N}$$

$$H_{0} = -\frac{\nabla^{2}}{2m_{N}}$$

 $2m_N$

$$H_0 \equiv -\frac{\nabla^2}{m_N}$$

J(r,r') does not depend on E because of the intergration of k'.

[Ishii et al.,PLB712(2012)437]

 $\Delta W(k) \equiv 2\sqrt{m_N^2 + k^2} - 2m_N$

The ground state saturation is not needed to extract the potential.

Normalized NN correlator

$$R(t, \vec{x} - \vec{y}) \equiv e^{2m_{N} \cdot t} \left\langle 0 \left| T \left[N(\vec{x}, t) N(\vec{y}, t) \cdot \overline{NN}(t = 0) \right] \right| 0 \right\rangle_{2m_{N} + m_{\pi}} \right|^{\text{Inelastic region}}$$
$$= \sum_{k} a_{k} \exp\left(-t\Delta W(k)\right) \cdot \psi_{k}(\vec{x} - \vec{y}) \qquad 2m_{N}$$

• All $\Psi_k(\vec{r})$ satisfy the Schrodinger eq. with the same U(r,r') in the elastic region:

$$(H_0 + U)\psi_k(\vec{r}) = \frac{k^2}{m}\psi_k(\vec{r})$$

→ R(t,r) satisfies "Time-dependent" Schrodinger-like equation in the large "t" region where inelastic contributions are negligible.

$$\left(\frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right)R(t,\vec{r}) = \int d^3r' U(\vec{r},\vec{r'}) \cdot R(t,\vec{r'})$$

Only Elastic saturation is required. (Gound state saturation is not needed.)
 Elastic saturation is much easier than single state saturation.

◆ Rough idea of derivation

$$R(t,\vec{x}-\vec{y}) = \sum_{\vec{k}} a_{\vec{k}} \exp\left(-t\left\{2\sqrt{m_{N}^{2}+\vec{k}^{2}}-2m_{N}\right\}\right) \cdot \psi_{\vec{k}}(\vec{x}-\vec{y})$$

$$= \sum_{\vec{k}} a_{\vec{k}} \exp\left(-t\left\{\frac{\vec{k}^{2}}{m_{N}}\right) \cdot \psi_{\vec{k}}(\vec{x}-\vec{y})$$

$$= \sum_{\vec{k}} a_{\vec{k}} \exp\left(-t\left\{H_{0}+U_{\text{HALQCD}}\right\}\right) \cdot \psi_{\vec{k}}(\vec{x}-\vec{y})$$

$$= \exp\left(-t\left\{H_{0}+U_{\text{HALQCD}}\right\}\right) \cdot R(t=0,\vec{x}-\vec{y})$$

$$-\frac{\partial}{\partial t} R(t,\vec{x}-\vec{y}) \approx \left(H_{0}+U_{\text{HALQCD}}\right) R(t,\vec{x}-\vec{y})$$

$$\Rightarrow$$

$$\left(-\frac{\partial}{\partial t}-H_{0}\right) R(t,\vec{r}) \approx \int d^{3}r' U_{\text{HALQCD}}(\vec{r},\vec{r}') R(t,\vec{r}')$$

$$= \exp\left(-t\left\{H_{0}+U_{\text{HALQCD}}(\vec{r},\vec{r}')R(t,\vec{r}')\right\} + \frac{1}{2} \exp\left(-\frac{\partial}{\partial t}\right) R(t,\vec{r}) \approx \frac{1}{2} \exp\left(-\frac{\partial}{\partial t}\right) R(t,\vec{r}) = \frac{1}{2} \exp\left(-\frac{$$

[Ishii et al., PLB712(2012)437]

Full derivation.

Assumption:

"t" is large enough so that elastic contributions can dominate intermediate states.

"Time-dependent" Schrodinger-like equation

to extract our potential. $\left(\frac{1}{4m_{w}}\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}\right)R(t,\vec{r}) = \sum_{k}a_{k}\frac{k^{2}}{m_{w}}\exp(-t\Delta W(k))\cdot\psi_{k}(\vec{r})$ $(H_0 + U)\psi_k(\vec{r}) = \frac{k^2}{m_{ss}}\psi_k(\vec{r})$ $\left(\frac{1}{4m_{u}}\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial}{\partial t}-H_{0}\right)R(t,\vec{r})=\int d^{3}r'\boldsymbol{U}(\vec{r},\vec{r}')\cdot R(t,\vec{r}')$

An identity $\frac{\Delta W(k)^2}{4m_{\rm M}} + \Delta W(k) = \frac{k^2}{m_{\rm M}}$

Only **Elastic saturation** is required to derive this equation. (Elastic saturation is much easier than single state saturation.)

Our potential is not affected by excited state contamination.

Different mixture of NBS waves are generated by different α $f(x, y, z) = 1 + \alpha \left(\cos(2\pi x / L) + \cos(2\pi y / L) + \cos(2\pi z / L) \right)$

[Murano et al., PTP125(2011)1225] (23)

General nonlocal potential is intractable → We employ derivative expansion:

$$U(\vec{r}, \vec{r}') \equiv V(\vec{r}, \vec{\nabla}) \delta(\vec{r} - \vec{r}')$$

$$V(\vec{r}, \vec{\nabla}) \equiv V_{\rm C}(r) + \underbrace{V_{ll}(r)\vec{L}^2 + \{V_{pp}(r), \nabla^2\}}_{O(\nabla^2) \text{ term}} + O(\nabla^4)$$

Convergence of Derivative exp. can be checked by **E-dep. of potentials.** (Example) $V(\vec{r}, \vec{\nabla}) \equiv V_{\rm C}(r) + O(\nabla^2)$ case:

Comment: The current result is obtained based on an older method.

The result should be replaced by the new method. "time-dependent" Schrodinger-like eq.

Comparison of the HAL QCD method and Lueschcer's finite volume method.

[Kurth et al., JHEP **1312**(2013)015.]

Nuclear Force at LO (parity-even sector):

$$V_{NN} = V_{C;S=0}(r)\mathbb{P}^{(S=0)} + V_{C;S=1}(r)\mathbb{P}^{(S=1)} + V_{T}(r)S_{12} + O(\nabla)$$

2+1 flavor QCD result of nuclear forces at LO for m(pion)=570 MeV.

2+1 flavor config by PACS-CS Coll. m(pion) = 570 MeV, m(N)=1412MeV

[Ishii,PoS(CD12)(2013)025] (27)

¹S₀ phase shift from Schrodinger eq.

- Qualitatively reasonable behavior. (Attractive. No bound state.) But the strength is significantly weak.
- Attraction shrinks as m_{pion} decreases. <u>Reason:</u> The **repulsive core** grows more rapidly than the **attractive pocket** in the region m_{pion} = 411-700 MeV.
- It is important to go to smaller quark mass region.

Comparison with other collaborations (two-nucleon ΔE)

Comments:

YN/YY are also inconsistent between HAL and NPL

HAL: B.E.(H) = 37.8(3.1)(4.2) MeV NPL: B.E.(H) = 74.6(3.3)(3.3)(0.8) MeV

Three-nucleon force

- Few body calculations shows its relevance --- To understand qualitative trend, two-nucleon force is enough. For quantitative argument, three-nucleon force is needed.
- Important influence on neutron-rich nuclei. ---the magic number and the drip line.
- Important at higher density. → supernova explosion and neutron star.

Fig. 3. - GFMC computations of energies for the AV18 and AV18+IL2 Hamiltonians compared with experiment.

Experimental information is limited

12**C**

Three-nucleon potential (on the linear setup)

[T.Doi et al, PTP127,723(2012)] (30)

2 flavor gauge config by CP-PACS Coll. m(pion) = 1136 MeV, m(N) = 2165 MeV

Nuclear Force up to NLO

$$V^{(\pm)}(\vec{r},\vec{\nabla}) = \underbrace{V_{C;S=0}^{(\pm)}(r)\mathbb{P}^{(S=0)} + V_{C;S=1}^{(\pm)}(r)\mathbb{P}^{(S=1)} + V_{T}^{(\pm)}(r)S_{12}(\hat{r})}_{\text{LO:}O(\nabla^{0})} + \underbrace{V_{LS}^{(\pm)}(r)\vec{L}\cdot\vec{S}}_{\text{NLO:}O(\nabla^{1})} + O(\nabla^{2})$$

Spin orbit (LS) force is important in phenomenology.

³P₂ neutron superfuluid (neutron star cooling)

Momentum wall source

Wall source:

$$\overline{\mathcal{J}}_{\alpha\beta} \equiv \sum_{\vec{x}_1,\cdots,\vec{x}_6} \overline{N}_{\alpha}(\vec{x}_1,\vec{x}_2,\vec{x}_3) \overline{N}_{\beta}(\vec{x}_4,\vec{x}_5,\vec{x}_6) \\ N_{\alpha}(x_1,x_2,x_3) \equiv \begin{cases} q_{abc} (u_a(x_1)C\gamma_5 d_b(x_2)) u_{c;\alpha}(x_3) & (\text{proton}) \\ q_{abc} (u_a(x_1)C\gamma_5 d_b(x_2)) d_{c;\alpha}(x_3) & (\text{neutron}) \end{cases}$$
accessible only to $J^P = A_1^+ (\sim 0^+)$ and $T_1^+ (\sim 1^+)$.

 \rightarrow Only LO potentials in even parity sector are calculable.

Momentum wall source:
(Non-vanishing momentum **p** is carried by "spectator quarks".)

$$\overline{\mathcal{J}}_{\alpha\beta}(\vec{p}) \equiv \sum_{\vec{x}_1, \dots, \vec{x}_6} \overline{N}_{\alpha}(\vec{x}_1, \vec{x}_2, \vec{x}_3) \overline{N}_{\beta}(\vec{x}_4, \vec{x}_5, \vec{x}_6) \cdot \exp\left(i \vec{p} \cdot (\vec{x}_3 - \vec{x}_6)\right)$$

$$\overline{\mathcal{J}}_{\alpha\beta}^{\Gamma}(|\vec{p}|) \equiv \frac{1}{48} \sum_{g \in O_h} \chi^{(\Gamma)}(g^{-1}) \cdot \overline{\mathcal{J}}_{\alpha'\beta'}(g \cdot \vec{p}) S_{\alpha'\alpha}(g^{-1}) S_{\beta'\beta}(g^{-1})$$

allows us to access varieties of **cubic group irreps**. J^P=**F**.

→ Potentials beyond NLO can be calculable.

L ~ 2.5fm

~ 500MeV

Our best target is hyperon force.

- Experimental information is limited due to the short life time of hyperons.
- Structure of hypernuclei

J-PARC

Exploration of multi-strangeness world

Eq. of state of hyperon matter

- Repulsive core is surrounded by attraction like NN case.
- Strong spin dependence of repulsive core.

Repulsive core grows with decreasing quark mass. No significant change in the attraction.

[Nemura,PoS(LAT2011)] (37)

2+1 flavor config by PACS-CS Coll. m(pion) = 570 MeV, m(N)=1412MeV

- Repulsive core is surrounded by attraction like NN case.
- These two potentials looks similar.
 (This may be due to small flavor SU(3) breaking.)

[Nemura, PoS(LAT2011)] (38)

🔶 N-Lambda

- Repulsive core is surrounded by attraction
- □ The attraction is deeper than 1S0
- □ Weak tensor force (no one-pion exchange is allowed)
- N-Sigma
 - □ Repulsive core at short distance
 - No clear attractive well

(Repulsive nature is consistent with the quark model)

2+1 flavor config by PACS-CS Coll.

[T.Inoue et al, PTP124,591(2010)]

Flavor SU(3) limit to understand a general trend.

These short distance behaviors are consistent with quark Pauli blocking picture.

 $m_{\Lambda\Lambda} = 2230 \text{MeV}$

 $\Lambda\Lambda - N\Xi - \Sigma\Sigma$

 In finite volume, it is not possible to impose incoming B.C.'s separately.

 $|n,in\rangle = |\Lambda\Lambda,in\rangle, |N\Xi,in\rangle, |\Sigma\Sigma,in\rangle$

→ Coupled ch. extension of the finite volume method is NOT straightforward.

• Coupled ch. extension of HAL QCD method is straightforward.

 \Box U(r,r') is state-independent, i.e.,

It works for any linear combinations $|n,in\rangle = |\Lambda\Lambda,in\rangle\alpha + |N\Xi,in\rangle\beta + |\Sigma\Sigma,in\rangle\gamma$.

 \rightarrow We can extract U(r,r') in the finite volume.

 \Box We use U(r,r') in the **inifinite** volume to obtain the NBS wave funcs. of these states separately. \rightarrow S-matrix.

The numerical calculation is tough. But it is doable.

diagonal part

 $u = 16a \approx 1.9 \text{ fm}$

[K.Sasaki@Lattice2012, K.Sasaki et al., coming soon]

2+1 flavor gauge config by CP-PACS/JLQCD Coll. m(pion) = 875 MeV m(K) = 916 MeV m(N) = 1806 MeV m(Lambda) = 1835 MeV m(Sigma) = 1841 MeV m(Xi) = 1867 MeV

ΛN forces up to NLO

 $V_{\Lambda N} = V_{\mathrm{C};\mathrm{S}=0}(r)\mathbb{P}^{(S=0)} + V_{\mathrm{C};\mathrm{S}=1}(r)\mathbb{P}^{(S=1)} + V_{\mathrm{T}}(r)\left(3(\hat{r}\cdot\vec{\sigma}_{\Lambda})(\hat{r}\cdot\vec{\sigma}_{N}) - \vec{\sigma}_{\Lambda}\cdot\vec{\sigma}_{N}\right) + V_{\mathrm{LS}}(r)\vec{L}\cdot(\vec{s}_{\Lambda}+\vec{s}_{N}) + \underbrace{V_{\mathrm{ALS}}(r)\vec{L}\cdot(\vec{s}_{\Lambda}-\vec{s}_{N})}_{\mathrm{ALS}} + O(\nabla^{2})$

NEW TERM: Anti-symmetric LS

Spin-orbit puzzle in AN sector

Λ-spin dependent Spin-orbit force

$$V_{\rm LS}^{(\Lambda)}(r) \equiv V_{\rm LS}(r) + V_{\rm ALS}(r) \sim 0 \rightarrow \text{LS-ALS cancellation}$$

- ♦ Quark model → Strong cancellation
- \diamond Meson exch. Model \rightarrow Weak cancellation

<u>Hyperon Forces</u> Parity-odd hyperon potentials in the flavor SU(3) limit.

1000

500

0

-500

2000

1500

1000

500

0

0

V(r) [MeV]

n

V(r) [MeV]

Flavor 27 rep (Parity-odd Potentials) Flavor 10 rep (Parity-odd Potentials) $27 \operatorname{rep}(\sim NN)$ V_{SLS}(۵ V(r) [MeV] -50 $10 \operatorname{rep}(\sim \Sigma N(I = 3/2))$ V_C(r) -100 0.5 1.5 1 0.5 n 1.5 Flavor 10^{*} rep (Parity-odd Potentials) Flavor 8 rep (Parity-odd Potentials) 500 V_C(r) $\overline{10}$ rep(~NN) 8 rep V(r) [MeV] ۵ 0.5 1.5 0.5 1.5 Ο. 1 r [fm] r [fm]

- Repulsive core for irreps. 27 and 10^{*}(~NN). (consistent with quark model)
- ◆ Strong LS for irrep. 27 (∼NN). Weak LS for irrep. 8.
- Strong anti-symmetric LS (irrep. 8).

No repulsive core for irreps. 10 and 8.

(44)

[N.Ishii@Lattice 2013]

Parity-odd ΛN potential

Flavor SU(3) irreps.:8, 10^{*}, 27 → potential

- ΛN component in ΛN-ΣN coupled channel potential
- Strong symmetric LS potential It comes from 27 irrep. (90%), i.e., NN LS

$$V_{\rm LS}^{(\Lambda N)} = \frac{1}{10} V_{\rm LS}^{(8)} + \frac{9}{10} V_{\rm LS}^{(27)}$$

 Weak anti-symmetric LS potential SU(3) Clebsch-Gordan factor: 1/(2*sqrt(5))

$$V_{\rm ALS}^{(\rm AN)} = \frac{1}{2\sqrt{5}} V_{\rm ALS}^{(8)}$$

ΣN component in anti-symmetric LS potential large

$$\begin{split} \mathbf{A} \mathbf{A} \mathbf{N} - \mathbf{\Sigma} \mathbf{N} \text{ coupled channel potential} \\ \begin{aligned} \mathbf{V}_{\mathbf{A}\mathbf{N},\mathbf{A}\mathbf{N}} \quad \mathbf{V}_{\mathbf{A}\mathbf{N},\mathbf{\Sigma}\mathbf{N}} \\ \mathbf{V}_{\mathbf{\Sigma}\mathbf{N},\mathbf{A}\mathbf{N}} \quad \mathbf{V}_{\mathbf{X}\mathbf{N},\mathbf{\Sigma}\mathbf{N}} \end{aligned} \right) = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 &$$

ALS of \Sigma N is 3 times stronger than **ALS of \Lambda N**.

ΛΝ-ΣΝ coupled channel potentials(odd parity sector)

LS v.s. ALS (Integrating out ΣN channel)

The ALS in the effective ΛN potential becomes comparably large as that of SLS.

◆ Technical comment: Violation of Hermiticity of ALS(ALS[S=0→S=1] ≠ ALS[S=1→S=0])

Two wave functions of ΛN - ΣN coupled channel are orthogonal

$$\delta_{nm} = \langle n \mid m \rangle = \int d^3x \Big(\psi^*_{\Lambda N}(\vec{x};n) \psi_{\Lambda N}(\vec{x};m) + \psi^*_{\Sigma N}(\vec{x};n) \psi_{\Sigma N}(\vec{x};m) \Big)$$

→ orthogonality in ∧N component fails at short distance.

$$\int d^3x \,\psi^*_{\Lambda N}(\vec{x};n)\psi_{\Lambda N}(\vec{x};m) = \delta_{nm} - \int d^3x \,\psi^*_{\Sigma N}(\vec{x};n)\psi_{\Sigma N}(\vec{x};m)$$

Summary

<u>Summary</u>

The gap between QCD and traditional/hyper nuclear physics is being filled by recent progress of LQCD

◆ LQCD simulation at physical point

Spatial volume is becoming huge (for multi-baryon system)

◆ LQCD calculation of light nuclei

◆ LQCD calculations are accumulating at heavier quark mass region.

- New techniques are being developed.
- LQCD calculation of nuclear forces
 - The method does not need ground state saturation
 - Wide range of application to baryon interaction
 NN, NY, YY, NNN, negative parity, LS and anti-symmetric LS potential, etc.
 - ◆ LQCD simulation at the physical point in large spatial volume is going on. (m_{pion}=135 MeV, L~9 fm.)

K computer (4th fastest in the world)

11.28 PFLOPS

Backup Slides

Nuclear Force from Lattice QCD

Volume dependence of the potential.

[Inoue et al., NPA881(2012)28] (53)

Similar behavior is seen in NF=3 calculation (flavor SU(3) limit)

- ✤ m_{PS}=672-1171 MeV: attraction shrinks as decreasing quark mass.
 - turning point: attraction starts to increase.
- ✤ m_{PS}=469-672 MeV:
 ♠ m_{PS}=0 -469 MeV:
- attraction increase (\leftarrow Our expectation !)

For the similar thing to happen for NF=2+1, pion mass has to be smaller.
 Nuclear force for NF=3 is generally more attractive than NF=2+1.

#(Goldstone mode) =
$$\begin{cases} 3 & (N_F = 2 + 1) \\ 8 & (N_F = 3) \end{cases}$$

Defining relation of HAL QCD potential (= Schroedinger eq) $\left(\vec{k}^{2} / m_{N} - H_{0}\right) \psi_{\vec{k}}(\vec{r}) = \int d^{3}r' U_{\text{HALQCD}}(\vec{r}, \vec{r}') \psi_{\vec{k}}(\vec{r}')$

Numerical Results

Parity-odd potentials for flavor SU(3) irreps.

- These two correspond to NN sector.
- Qualitatively good
 - Repulsive core at short distance
 - Strong LS potential

- No repulsive core at short distance (consistent with quark model)
- Strong anti-symmetric LS potential

Parity-odd ΛN potential

Flavor SU(3) irreps.:8, 10^{*}, 27 → potential

- ΛN component in ΛN-ΣN coupled channel potential
- Strong symmetric LS potential It comes from 27 irrep. (90%), i.e., NN LS

$$V_{\rm LS}^{(\Lambda N)} = \frac{1}{10} V_{\rm LS}^{(8)} + \frac{9}{10} V_{\rm LS}^{(27)}$$

 Weak anti-symmetric LS potential SU(3) Clebsch-Gordan factor: 1/(2*sqrt(5))

$$V_{\rm ALS}^{(\rm AN)} = \frac{1}{2\sqrt{5}} V_{\rm ALS}^{(8)}$$

ΣN component in anti-symmetric LS potential large

$$\frac{V_{\text{AN-SN coupled channel potential}}{V_{\text{AN-SN}}}}{V_{\text{SN-SN}}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} V_{\text{C}}^{(10^*)}(r) \mathbb{P}^{(S=0)} + \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} V_{\text{C}}^{(8A)}(r) \mathbb{P}^{(S=0)}$$

$$+ \begin{pmatrix} \frac{1}{10} & \frac{3}{10} \\ \frac{3}{10} & \frac{9}{10} \end{pmatrix} (V_{\text{C}}^{(8S)}(r) \mathbb{P}^{(S=1)} + V_{\text{T}}^{(8S)}(r) S_{12}(\hat{r}) + V_{\text{LS}}^{(8S)}(r) \vec{L} \cdot \vec{S}_{+})$$

$$+ \begin{pmatrix} \frac{9}{10} & -\frac{3}{10} \\ -\frac{3}{10} & \frac{1}{10} \end{pmatrix} (V_{\text{C}}^{(27)}(r) \mathbb{P}^{(S=1)} + V_{\text{T}}^{(27)}(r) S_{12}(\hat{r}) + V_{\text{LS}}^{(27)}(r) \vec{L} \cdot \vec{S}_{+})$$

$$+ \frac{1}{2\sqrt{5}} \begin{pmatrix} 1 & 3 \\ -1 & -3 \end{pmatrix} V_{\text{ALS}}(r) \mathbb{P}^{(S=0)} \vec{L} \cdot \vec{S}_{-} \mathbb{P}^{(S=0)}$$

ALS of \Sigma N is 3 times stronger than **ALS of \Lambda N**.

Effective ΛN potential (Integrating out ΣN)

• Model: AN-SN coupled channel Schrodinger eq. $m_N < m_A < m_{\Sigma}$

$$\begin{pmatrix} E + \frac{\nabla^2}{2\mu_{\Lambda N}} \end{pmatrix} \psi_{\Lambda N}(\vec{r}) \\ \begin{pmatrix} E - m_{\Sigma} + m_{\Lambda} + \frac{\nabla^2}{2\mu_{\Sigma N}} \end{pmatrix} \psi_{\Sigma N}(\vec{r}) \end{pmatrix} = \begin{pmatrix} V_{\Lambda N;\Lambda N}(\vec{r},\vec{\nabla}) & V_{\Lambda N;\Sigma N}(\vec{r},\vec{\nabla}) \\ V_{\Sigma N;\Lambda N}(\vec{r},\vec{\nabla}) & V_{\Sigma N;\Sigma N}(\vec{r},\vec{\nabla}) \end{pmatrix} \cdot \begin{pmatrix} \psi_{\Lambda N}(\vec{r}) \\ \psi_{\Sigma N}(\vec{r}) \end{pmatrix}$$

We use the potentials in the flavor SU(3) limit.
 Assuming that Baryon-Baryon potential is not so sensitive to the change of quark mass.

Method: (HAL QCD method) Λ Ν π Σ Ν π **D** Solve it for $J^{P}=0^{-}, 1^{-}, 2^{-}$ in the AN elastic region with AN incoming BC. \Box Focus on the AN component. $\begin{pmatrix} \Psi_{\Lambda N}(\vec{r}) \\ \Psi_{\Sigma N}(\vec{r}) \end{pmatrix} \Rightarrow \Psi_{\Lambda N}(\vec{r})$ ΛΝ-ΣΝ ΣΝ Effective AN potential by requiring that $\psi_{AN}(\mathbf{r})$ is reproduced. ΛN $\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right) \psi_{\Lambda N}(\vec{r}) = V(\vec{r}, \vec{\nabla}) \psi_{\Lambda N}(\vec{r})$ $V(\vec{r},\vec{\nabla}) = V_{C,S=0}(\vec{r})\mathbb{P}^{(S=0)} + V_{C,S=1}(\vec{r})\mathbb{P}^{(S=1)} + V_{T}(\vec{r})S_{12}(\hat{r}) + V_{LS}(\vec{r})\vec{L}\cdot\vec{S}_{+} + V_{ALS}(\vec{r})\vec{L}\cdot\vec{S}_{-} + \cdots$

Effective ΛN potential (Integrating out ΣN)

Baryon mass: (choice seems to be almost arbitrary)

$$m_{\rm B} = 2051 \,\text{MeV}(\text{original. SU}(3) \,\text{limit}) \Rightarrow \begin{cases} m_{\Sigma} = 2150 \,\text{MeV} \\ m_{\Lambda} = 2100 \,\text{MeV} \\ m_{\rm N} = 2000 \,\text{MeV} \end{cases}$$

- ◆ Energy : E=1MeV.
- ♦ 5 asymptotic states are used.

 $\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right)\psi_{\Lambda N}(\vec{r}) = \left(V_{C;S=0}(\vec{r})\mathbb{P}^{(S=0)} + V_{C;S=1}(\vec{r})\mathbb{P}^{(S=1)} + V_{T}(\vec{r})S_{12}(\hat{r}) + V_{LS}(\vec{r})\vec{L}\cdot\vec{S}_{+} + V_{ALS}(\vec{r})\vec{L}\cdot\vec{S}_{-}\right)\psi_{\Lambda N}(\vec{r})$

➔ spin "singlet" component

$$\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right) \mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r}) = V_{C;S=0}(\vec{r}) \mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r}) + V_{ALS}(\vec{r}) \mathbb{P}^{(S=0)} \vec{L} \cdot \vec{S}_{-} \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r})$$

➔ spin "triplet" component

$$\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right) \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r}) = \left(\frac{V_{C;S=1}(\vec{r}) + V_T(\vec{r})S_{12}(\hat{r}) + V_{LS}(\vec{r})\vec{L}\cdot\vec{S}_+ + \right) \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r}) + V_{ALS}(\vec{r})\mathbb{P}^{(S=1)}\vec{L}\cdot\vec{S}_-\mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r})$$

	S = 1	S = 0
$J^{P} = 0^{-}$	${}^{3}P_{0}$	
$J^P = 1^-$	${}^{3}P_{1}$	$^{-1}P_{1}$
$J^{P} = 2^{-}$	${}^{3}P_{2} - {}^{3}F_{2}$	

"Spin singlet" part

1

$$\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right) \mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r}) = V_{C;S=0}(\vec{r}) \mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r}) + V_{ALS}(\vec{r}) \mathbb{P}^{(S=0)} \vec{L} \cdot \vec{S}_{-} \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r})$$

$$\left(\begin{array}{c} \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^2}{dr^2} - \frac{2}{r^2}\right)\right) \phi_{1_{P_1}}(r; {}^{1}P_1) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^2}{dr^2} - \frac{2}{r^2}\right)\right) \phi_{1_{P_1}}(r; {}^{3}P_1) \end{array}\right) = \left(\begin{array}{c} \phi_{1_{P_1}}(r; {}^{1}P_1) & \sqrt{2}\phi_{3_{P_1}}(r; {}^{1}P_1) \\ \phi_{1_{P_1}}(r; {}^{3}P_1) & \sqrt{2}\phi_{3_{P_1}}(r; {}^{3}P_1) \end{array}\right) \cdot \left(\begin{array}{c} V_{\text{C};\text{S=0}}(r) \\ V_{\text{ALS}}(r) \end{array}\right)$$

2 equations

2 unknowns (potentials) □ Central pot.(spin singlet) \square Anti-sym. LS pot. (S=1 \rightarrow S=0)

"Spin triplet" part

 $\left(E + \frac{\nabla^2}{2\mu_{\Lambda N}}\right) \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r}) = \left(V_{C;S=1}(\vec{r}) + V_T(\vec{r})S_{12}(\hat{r}) + V_{LS}(\vec{r})\vec{L}\cdot\vec{S}_+ + \right) \mathbb{P}^{(S=1)} \psi_{\Lambda N}(\vec{r}) + V_{ALS}(\vec{r})\mathbb{P}^{(S=1)}\vec{L}\cdot\vec{S}_-\mathbb{P}^{(S=0)} \psi_{\Lambda N}(\vec{r})$

$$\begin{pmatrix} \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{2}{r^{2}}\right)\right) \phi_{_{3}P_{0}}(r;^{3}P_{0}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{2}{r^{2}}\right)\right) \phi_{_{3}P_{1}}(r;^{3}P_{1}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{2}{r^{2}}\right)\right) \phi_{_{3}P_{1}}(r;^{1}P_{1}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{2}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}P_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{2}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}P_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left(\frac{d^{2}}{dr^{2}} - \frac{12}{r^{2}}\right)\right) \phi_{_{3}P_{2}}(r;^{3}F_{2}) \\ \left(E + \frac{1}{2\mu_{\Lambda N}} \left($$

♦ 7 equations

- 4 unkowns (potentials)
 - □ Central potential (spin triplet)
 - Tensor potential
 - LS potential
 - \square Anti-symmetric LS potential (S=0 \rightarrow S=1)

$$-4\phi_{3_{P_{0}}}(r;^{3}P_{0}) -2\phi_{3_{P_{0}}}(r;^{3}P_{0}) 0$$

$$2\phi_{3_{P_{1}}}(r;^{3}P_{1}) -\phi_{3_{P_{1}}}(r;^{3}P_{1}) \sqrt{2}\phi_{3_{P_{1}}}(r;^{3}P_{1})$$

$$2\phi_{3_{P_{1}}}(r;^{1}P_{1}) -\phi_{3_{P_{1}}}(r;^{1}P_{1}) \sqrt{2}\phi_{3_{P_{1}}}(r;^{1}P_{1})$$

$$\frac{2}{5}\phi_{3_{P_{2}}}(r;^{3}P_{2}) + \frac{6\sqrt{6}}{5}\phi_{3_{P_{2}}}(r;^{3}P_{2}) \phi_{3_{P_{2}}}(r;^{3}P_{2}) 0$$

$$\frac{2}{5}\phi_{3_{P_{2}}}(r;^{3}F_{2}) + \frac{6\sqrt{6}}{5}\phi_{3_{P_{2}}}(r;^{3}P_{2}) -4\phi_{3_{P_{2}}}(r;^{3}P_{2}) 0$$

$$\frac{8}{5}\phi_{3_{P_{2}}}(r;^{3}P_{2}) + \frac{6\sqrt{6}}{5}\phi_{3_{P_{2}}}(r;^{3}P_{2}) -4\phi_{3_{P_{2}}}(r;^{3}P_{2}) 0$$

$$E_{AN;CM}=1MeV$$

$$\int_{0}^{\infty} \int_{0}^{0} \int_{0}^{$$

 ΛN part of ΛN-ΣN coupled channel potential (parity-odd sector) is obtained as linear combination of 8, 10^{*} and 27. [N.Ishii et al. coming soon]

(64)

②ΣN channel is integrated out from ΛN-ΣN coupled channel potential.

